

Command Reference Guide

Revision 6.2.9

Information in this document is subject to change without notice and does not represent a commitment on
the part of Dynamic Concepts, Inc. (DCI). Every attempt was made to present this document in a complete
and accurate form. DCI shall not be responsible for any damages (including, but not limited to
consequential) caused by the use of or reliance upon the product(s) described herein.

The software described in this document is furnished under a license agreement or nondisclosure
agreement. The purchaser may use and/or copy the software only in accordance with the terms of the
agreement. No part of this manual may be reproduced in any way, shape or form, for any purpose, without
the express written consent of DCI.

Dynamic Concepts Inc.
18-B Journey
Aliso Viejo, CA 92656
www.dynamic.com

© Copyright 2007 Dynamic Concepts, Inc. (DCI). All rights reserved.

dL4 is a trademark of Dynamic Concepts, Inc.

UniBasic is a trademark of Dynamic Concepts, Inc.

BITS is a trademark of Dynamic Concepts, Inc.

IRIS is a trademark of Point 4 Data Corporation.

Unix is a trademark of UNIX System Laboratories, Inc.

FoxPro is a trademark of Microsoft Computer Company, Inc.

c-tree is a trademark of Faircom.

 Table of Contents i

dL4 Command Reference Guide

CHAPTER 1 - INTRODUCTION ...1
INTENDED AUDIENCE ...1
ABOUT THIS GUIDE ...1
RELATED PUBLICATIONS..1
CONVENTIONS ...2

CHAPTER 2 - SCOPE COMMANDS..3
! (EXCLAMATION POINT) ...4
BASIC ...5
BYE ...6
CD..7
CLU ...8
DRIVERS ..9
EXEC...10
HALT ..11
KILL ..12
LEVEL...13
OEM ..14
PACK ..15
PSAVE ..16
RUN...17
SAVE...18
TIME ...19
USERS...20

CHAPTER 3 - BASIC COMMANDS..21
! (EXCLAMATION POINT) ...22
. (DOT)...23
.. (DOUBLE DOT) ..24
AUTO ..25
BREAK..26
CANCEL ...27
CHECK..28
CONTINUE...29
CONVERT ..30
DELETE ..32
DISPLAY ..33
DUMP..34
EDIT ..35
EXAMINE...36
EXIT ..37
FILE...38
FIND..39
GO ...40
HELP ...41
LABEL ..42
LIST...43
LOAD ..44
NEW ..45
NOBREAK..46
OEM ..47
PDUMP ...48
PSAVE ..49
RENUMBER ...50
RUN...51
SAVE...52
SHOW ...53
SIZE...54

 Table of Contents ii

dL4 Command Reference Guide

STATUS ..55
TRACE ..59
VARIABLE...60
XBREAK...61

CHAPTER 4 - DEBUGGER COMMANDS ...62
? (QUESTION MARK)...64
; (SEMICOLON) ...65
! (EXCLAMATION POINT) ...66
. (DOT) ..67
.. (DOUBLE DOT) ..68
BREAK..69
CONTINUE...70
DISPLAY ..71
DUMP..72
END...73
EXAMINE...74
EXIT ..75
FILE...76
FIND..77
GO ...78
HELP ...79
LET..80
LEVEL...81
LIST...82
NOBREAK..83
OEM ..84
PDUMP ...85
RETURN ...86
SHOW ...87
SIZE...88
STATUS ..89
TRACE ..93
VARIABLE...94
WB...95
WF ...96
WH ..97
WINDOW..98
WS ...99
WT...100
XBREAK...101

CHAPTER 5 - LOADSAVE ...102
LOADSAVE..103

CHAPTER 6 - RUN...105
RUN..106

CHAPTER 7 - TOOLS..107
BATCH..108
BITSDIR..109
BITSTERM ...112
BUILDFI ...113
BUILDXF..114
CHANGE...115
CHECKSUM...116
CONVBITS.PRF ...117
CONVERT.PRF ..118
COPY ..119

 Table of Contents iii

dL4 Command Reference Guide

DOKEY ...120
FORMAT...121
IC2FI..122
KEYMAINT..123
LIBR ..126
MAKE ...127
MAKECMND ...128
MAKEHUGE ..129
MAKEUNIV ...130
MFDEL..135
PGMCACHE ...136
PORT...137
QUERY ...138
SCAN ..139
TERM ..140
TESTLOCK...141
VERINDEX...142
WHO..143

APPENDIX A - GLOSSARY ...144

APPENDIX B - DL4 COMMAND SUMMARY...145

APPENDIX C - POSITION PARAMETER ...146

INDEX ..147

 Introduction 1

dL4 Command Reference Guide

Chapter 1 - Introduction
This version (6.2.9) of the dL4 Command Reference Guide is based on Version 6.2.9 of the dL4 product
and covers all future releases, except for any new enhancements.

The dL4 command set consists of:

• SCOPE System Command Processor commands

• Business BASIC commands

• Debugger Commands

• loadsave command

• run command

• utilities

These commands are described in this guide.

Intended Audience
The guide is designed to aid dL4 programmers with all levels of Business BASIC experience.

About This Guide
This guide is divided to describe the main components of dL4.

Chapter 2, “SCOPE Commands”, describes the System Command Processor and provides a detailed listing
of all its commands.

Chapter 3, “BASIC Commands”, describes dL4 Business BASIC and provides a detailed listing of all
BASIC commands.

Chapter 4, “Debugger Commands”, describes the Debugger and provides a detailed listing of all Debugger
commands.

Chapter 5, “loadsave”, describes the loadsave command.

Chapter 6, “run” - describes the run command.

Chapter 7, “tools” – describes the utility programs

Appendix A, “Glossary - defines terms in dL4 context.

Appendix B, “dL4 Command Summary” - presents dL4 commands in tabular form.

Appendix C, “Position Parameter” - describes the position parameter.

Related Publications
The planned dL4 document set – now in development and subject to revision -- consists of:

1. Introduction to dL4 Guide: The first document for dL4 users. Describes entire product in general
terms, defines key terms (e.g., Unicode, class), maps out other dL4 documents.

 Introduction 2

dL4 Command Reference Guide

2. dL4 Command Reference Guide: The anchor document of the documentation set. Describes loadsave
and run. Includes all SCOPE commands, including the Editor and Debugger.

3. dL4 Migration Guide: Compares and contrasts UniBasic and dL4. Designed to assist with migration
of UniBasic programs to dL4.

4. dL4 Files and Devices Reference Guide: Introduces the concept of driver classes and describes the
classes in detail. Designed to help the programmer use and benefit from driver classes.

5. dL4 Language Reference Guide: Describes dL4 statements in detail. Also describes language
elements such as mnemonics, functions, etc.

6. dL4 Installation & Configuration Guide Windows: A platform-specific description of how to configure
terminals, printers, etc.

7. dL4 Installation & Configuration Guide Unix: A platform-specific description of how to configure
terminals, printers, etc.

Conventions
This guide follows these conventions:

EXAMPLE OF CONVENTION DESCRIPTION
bold type Literal elements of command
SAVE filename string Metalinguistic variables are shown in italic type for

clarity and to distinguish them from elements of the
language itself.

LIST Mono-spaced type is used to display screen output and
example input commands and program examples.

LIST {-v} The right and left brace characters ({optional items})
indicate an item that is optional

KILL filename {filename...} A series of three periods (...) indicates that the
preceding item can be repeated as many times as
desired. Be careful not to confuse the three periods
with the Period or Double Period commands.

WINDOW (ON | OFF) Selection of one of a group of items is shown within
parenthesis separated by |. Choose only one; WINDOW
ON or WINDOW off. The parenthesis are not part of the
syntactical form.

 SCOPE Commands 3

dL4 Command Reference Guide

Chapter 2 - SCOPE Commands
The System Command Processor, or SCOPE, is a program that allows the system to understand your
commands. It provides dL4 developers with a Command Line-oriented Integrated Development
Environment (IDE). SCOPE:

• is a Command Interpreter

• acts interactively with user

• provides access to BASIC

• provides access to the Debugger through BASIC

The SCOPE Command Line IDE consists of three (3) command environments: SCOPE, BASIC, and
Debugger. The SCOPE, BASIC, and Debugger commands are described in Chapters 2, 3, and 4,
respectively.

The order in which SCOPE processes a command is as follows:

1. If the command line begins with an exclamation point (!), SCOPE simply passes the command,
without the exclamation point, to the operating system.

2. If the command line does not begin with an exclamation point, SCOPE checks for an internal
command. If an internal command is found, SCOPE executes that command.

3. If an internal command is not found, SCOPE looks for a dL4 BASIC program of said name. If a dL4
BASIC program is found, SCOPE loads and executes it.

4. If a dL4 BASIC command is not found, SCOPE passes the command, without the exclamation point,
to the operating system.

If SCOPE is started with a “-noshell” command line option, then native operating system commands, with
or without an exclamation point, are not executed and are treated as dL4 program names or internal
commands.

SCOPE supports a command history feature which allows the user to select, edit, and execute previously
typed commands within the current session. Typing an up arrow key or a down arrow key at any SCOPE
prompt causes SCOPE to move up or down in the command history and to display the selected command
for immediate use or editing.

This chapter describes the SCOPE commands in detail. Below, the table lists and briefly describes the
SCOPE commands.

COMMAND DESCRIPTION
! (Exclamation Point) Execute an operating system command.
BASIC Enter BASIC mode.
BYE Terminate dL4 SCOPE session.
CD Change current working directory.
CLU Change current working directory.
DRIVERS Display a list of all available drivers.
EXEC Execute contents of a text file.
HALT Terminate BASIC program on another port.
KILL Delete a data or program file.
LEVEL Display dL4 revision number and license number
OEM Lists the currently authorized OSNs (OEM Security Number).
PACK Change current working directory.
PSAVE Create an OSN protected program.
RUN Execute a program in memory or on disk.
SAVE Save the current program.
TIME Display current system time and usage.
USERS Display current number of ports in use.

 SCOPE Commands 4

dL4 Command Reference Guide

! (Exclamation Point)
Synopsis

Execute external operating system command
Syntax

!COMMAND
Parameters

command is any operating system (or null) command to be executed by a sub-shell.
Remarks

The Exclamation Point command is used to execute an external operating system command.

All system commands are executed by a separate child process, effectively putting dL4 to sleep until the
command terminates. Changes to environmental variables and current working directory within a child
processes are effective only during that process. Upon termination of the command, the parent (dL4)
resumes execution unaware of the child’s activities.

Examples
!ls -l
!vi query.bas
!edit query.bas

See also
CD, operating system documentation.

 SCOPE Commands 5

dL4 Command Reference Guide

BASIC
Synopsis

Enter BASIC Mode.
Syntax

#BASIC {filename}
Parameters

filename is any filename or pathname to a dL4 program file (not text file) to which you have read-
permission.

Remarks
If you don’t specify a program name, any previous dL4 program remains.

If the filename that you enter is a saved dL4 program file, any current program is cleared and memory is
loaded with the new program.

Only dL4 saved program files may be read with this command.

An error occurs if the filename cannot be loaded.
Examples

#BASIC 23/FILENAME
#BASIC /usr/progs/ar/payments
#BASIC

See also
LOAD, SAVE, NEW

 SCOPE Commands 6

dL4 Command Reference Guide

BYE
Synopsis

Terminate dL4 SCOPE session and exit to operating system prompt.
Syntax

#BYE
Parameters

None.
Remarks

 BYE is used to perform all the following functions:

1. clear any program from memory

2. close all channels

3. delete any remaining signals

4. reset any special terminal settings

5. terminate the current session.
Examples

#BYE

See also

 SCOPE Commands 7

dL4 Command Reference Guide

CD
Synopsis

Change current working directory.
Syntax

#CD { pathname }
Parameters

pathname is any directory name or full path_name.
Remarks

CD is used to change the current working directory. In the absence of a pathname, then the current
working directory is displayed when SCOPE is initialized, i.e., the startup directory is selected.

CD is functionally equivalent to the CLU and PACK commands.
Examples

#CD 23

#CD /usr/progs/ar/checks

#CD data

#CD ″test data″

See also
PACK, CLU

 SCOPE Commands 8

dL4 Command Reference Guide

CLU
Synopsis

Change current working directory.
Syntax

#CLU { pathname }
Parameters

pathname is any directory path to an existing directory.
Remarks

CLU is used to change the current working directory.

In the absence of a pathname, then the current working directory is displayed when SCOPE is initialized,
i.e., the startup directory is selected.

CLU is functionally equivalent to the CD and PACK commands.
Examples

#CLU 23

#CLU /usr/progs/ar/cash

See also
CD, PACK

 SCOPE Commands 9

dL4 Command Reference Guide

DRIVERS
Synopsis

Display a list of available drivers.
Syntax

#DRIVERS { searchtext }
Parameters

searchtext is optional string to search. The search is case-insensitive. If searchtext is specified, then only
those drivers whose names or class names contain the string searchtext will be displayed. If searchtext is
omitted, all drivers will be displayed.

Remarks
DRIVERS is used to display a list of available channel drivers.

For information on the supported driver classes, refer to the dL4 Files and Devices reference manual. For
platform specific drivers, refer to the dL4 platform guide for the specific operating system.

Examples
#DRIVERS

 Class Drivers

 Text Text
 Formatted Portable Formatted
 Contiguous Portable Contiguous
 Indexed-Contiguous Portable Indexed Contiguous
 Full-ISAM FoxPro Full-ISAM

See also

 SCOPE Commands 10

dL4 Command Reference Guide

EXEC
Synopsis

Execute the contents of a text file.
Syntax

#EXEC filename
Parameters

filename is any legal filename or pathname to a text file to which you have read permission.
Remarks

EXEC is used to read a file and interpret it one line at a time. The contents of the file can be a list of
BASIC and system commands which are interpreted individually. Input is switched to the text file
performing all commands within the file until EOF (End of File).

EXEC may be used to automatically load and dump BASIC programs, or perform any series of commands
as if they were entered at the keyboard.

Examples
#EXEC filename

#EXEC fcw

To load and dump a program, first create a text file containing the following lines:
basic programname
dump programname.bas!
exit

Then enter the following command line at the SCOPE prompt:
exec <name of text file>

To load and save a group of programs, first create a text file containing the following lines:
basic
new
load prog1.bas

save prog1.run!
new
load prog2.bas
save prog2.run!
exit

Then enter the following command line at the SCOPE prompt:
exec <name of text file>

See also
loadsave

 SCOPE Commands 11

dL4 Command Reference Guide

HALT
Synopsis

Terminate BASIC program on another port.
Syntax

#HALT port number
Parameters

port number is any integer in the range from 1 to the upper limit defined.
Remarks

HALT is used to terminate a BASIC program on another port by causing an Abort event to occur on that
selected port. An Abort event terminates execution of any running BASIC program.

Ports can only be HALTed one port at a time. Trying to HALT more than one at a time causes an error.
If no program is running, HALT is ignored.

Examples
#HALT 25

See also

 SCOPE Commands 12

dL4 Command Reference Guide

KILL
Synopsis

Delete a data or program file.
Syntax

#KILL filename.expr ...
Parameters

filename.expr is the data or program file name to be deleted.
Remarks

KILL is used to delete a file. KILL displays “DELETED!” when you delete a single file, and “ALL
DELETED!!” when you delete multiple files.

The filename..expr must contain a single filename or list of filenames to be deleted. Multiple strings may
each contain a single filename or a group of filenames separated by spaces. This command deletes both the
indexed and the contiguous files if an indexed-contiguous file is killed.

If an error occurs, the statement is aborted and any remaining filenames within the str.expr are not deleted.
Furthermore, other filename.exprs are not processed.

Examples
#KILL file1
#KILL file1 file2

See also

 SCOPE Commands 13

dL4 Command Reference Guide

LEVEL
Synopsis

Display dL4 revision and license numbers.
Syntax

#LEVEL
Parameters

None.
Remarks

LEVEL is used to display the dL4 revision number and/or the license number.
Examples

#LEVEL

 SCOPE Commands 14

dL4 Command Reference Guide

OEM
Synopsis

List the currently authorized OSNs (OEM Security Number).
Syntax

#OEM {TEMP}
Parameters

TEMP causes the command to prompt for a temporary OSN (OEM Security Number).
Remarks

The OEM command lists the currently authorized OSNs. If the TEMP option is used ("OEM TEMP"), the
OEM command will prompt for a temporary OSN to be used only by the current SCOPE session.

Examples
#OEM

#OEM TEMP

See also
LOADSAVE, PSAVE, SAVE

 SCOPE Commands 15

dL4 Command Reference Guide

PACK
Synopsis

Change current working Directory.
Syntax

#PACK { pathname }
Parameters

pathname is any directory path to an existing directory.
Remarks

PACK is used to display or change a current working directory.

If no pathname is specified, the current working pathname is displayed.

If a valid pathname is specified, the current working directory is changed to that pathname.
Examples

#PACK 23
#PACK /usr/ub/text

See also
CD, CLU

 SCOPE Commands 16

dL4 Command Reference Guide

PSAVE
Synopsis

Create an OSN (OEM Security Number) protected program.
Syntax

#PSAVE n, filename.expr ...
Parameters

filename.expr is the program file name to be created.

n is the number of the OSN listed by the OEM command
Remarks

The PSAVE command is used to create OSN protected programs. The PSAVE command is identical to
the SAVE command except for an optional OSN number that can precede the SAVE filename. For
example, the command "PSAVE 2,menu" would save the current program as "menu" after protecting it to
require the second OSN listed by the OEM command. Protected programs can be created only if the
specified OSN is a master OSN.

Examples
#PSAVE 4, "file1"

See also
LOADSAVE, OEM, SAVE

 SCOPE Commands 17

dL4 Command Reference Guide

RUN
Synopsis

Execute a program in memory or on disk.
Syntax

#RUN { filename }
Parameters

filename is any legal saved dL4 program file to which you have read-permission. An absolute or relative
pathname can be specified with the file name.

Remarks
RUN is used to interpret a previously-loaded program. The program could also have been loaded or
entered from text in Basic mode.

If no filename is supplied, the current program in memory, if any, is executed. If a filename is supplied,
any current program in memory is erased.

Examples
#RUN FILENAME
RUN /tmp/FILENAME
#RUN

See also

 SCOPE Commands 18

dL4 Command Reference Guide

SAVE
Synopsis

SAVE the current program.
Syntax

SAVE { -l n }{ <attributes> } { filename{!} } }
Parameters

The -l n option is used to create an OSN (OEM Security Number) protected program. The value "n" is the
number of a master OSN as listed by the SCOPE OEM command.

<attributes> are any optional valid file attributes, protections, or permissions to apply to the file on
creation. Standard IRIS, BITS, or UNIX-style permissions may be supplied. If omitted, file creation is
defaulted to Read/Write for all users, subject to any operating system masking in effect. If <attributes> are
supplied, a filename must follow.

filename is any optional filename or full pathname to a directory to which you have write-permission. A
filename is optional if the file has previously been saved. If it has not been saved, then the filename is
mandatory in the command. If the filename is omitted, the original filename for the program in memory is
used.

Remarks
Prior to saving a program, it compiles the program which may result in errors. A compilation error still
allows a program to be saved.

The “run-only” option, Save -RO, is used to produce “run-only” program files. Save -RO creates a run-
only file which strips symbols so that a file cannot be listed, dumped, debugged, or modified in any way.
The creation process is irreversible and secure since the information needed to list the program is actually
discarded. A Save -RO file enables the developer to:

• Protect sensitive or trade-secret source code from theft or modification

• Safely embed security checks in a program, allowing it to run only on authorized systems.

When SAVE is performed from program mode, active channels and variables are undisturbed.
Examples

SAVE <22> prog!
SAVE <PWD> dat!
SAVE

See also
CHECK, OEM, SAVE

 SCOPE Commands 19

dL4 Command Reference Guide

TIME
Synopsis

Display current system time and usage.
Syntax

#TIME
Parameters

None.
Remarks

The current system time is displayed in the form:

• Mon is a three-letter month name, such as JAN.

• DD is the current day of the month

• Year is the current year such as 1993.

• HH is the current hours in 24-hour format.

• MM is the current minute of the hour.

• SS is the current second on the minute.

• NN is the current hundredth on the second.

• CPU is the amount of seconds used by the computer for all of your commands and program execution.

• Connect is the number of minutes you have been signed on to the system.
Examples

#TIME

See also

 SCOPE Commands 20

dL4 Command Reference Guide

USERS
Synopsis

Display current number of ports in use.
Syntax

#USERS
Parameters

None.
Remarks

USERS is used to determine the current number of dL4 ports in use. The local system is searched for all
port numbers currently in use. The total number of users is then displayed on the terminal. “Ports in use”
is synonymous with “number of users”.

In-use port numbers include secondary Windows sessions, multi-screens, phantom ports, terminals and
jobs initiated by SPAWN.

Examples
#USERS

See also

 BASIC Commands 21

dL4 Command Reference Guide

Chapter 3 - BASIC Commands
The BASIC commands are used to perform specific dL4 operations, such as DUMP, LOAD, and SAVE.
BASIC commands are user-driven and utilize syntax to define these operations.

If a command is not recognized , then BASIC attempts to immediately execute it as a BASIC statement.
Even a syntactically correct BASIC statement will not be executed if the current program contains an error
as reported by the CHECK command. Refer to dL4 Language Reference Guide for information about
statements that are executed immediately.

This chapter describes the BASIC commands in detail. The table below lists and briefly describes the
commands.

COMMAND DESCRIPTION
! (Exclamation Point) Execute external operating system command
. (Dot) Execute the next n program lines
.. (Double Dot) Execute next program line and step through function
AUTO Automatically enter program line numbers
BREAK Create a breakpoint
CANCEL Clear all variables and other runtime context
CHECK Scan program for proper structure and linkage
CONTINUE Resume execution of stopped program
CONVERT Convert UniBasic statements from a text file
DELETE Delete program statements
DISPLAY Display the values of specified variables of the current running program.
DUMP List a program to a text data file
EDIT Edit and change an existing statement.
EXAMINE Select procedure, function, library, or call stack level.
EXIT Exit BASIC environment to SCOPE environment.
FILE Display current program name and open all channels.
FIND Search and list selected program statements.
GO Resume execution of stopped program.
HELP Print text description of an error.
LABEL Convert statement numbers to labels.
LIST Decode and list BASIC statements.
LOAD Load BASIC statements from a text file.
NEW Clear memory for new program.
NOBREAK Delete a breakpoint
OEM Lists the currently authorized OSNs (OEM Security Number).
PDUMP List current program status, variables, and other information to a text data file.
PSAVE Create an OSN protected program.
RENUMBER Renumber statements in a program.
RUN Execute a program up to specified line, then enter the Debugger.
SAVE Save the current program.
SHOW Search and list selected program statements.
SIZE Display memory usage for current program/data.
STATUS Print the name of the current program file and execution status.
TRACE Enable statement trace debugging.
VARIABLE Display variable names in current procedure
XBREAK Create an external breakpoint

 BASIC Commands 22

dL4 Command Reference Guide

! (Exclamation Point)
Synopsis

Execute external operating system command
Syntax

! command
Parameters

command is any operating system (or null) command to be executed by a sub-shell.
Remarks

The Exclamation Point command is used to execute an external operating system command.

All system commands are executed by a separate child process, effectively putting dL4 to sleep until the
command terminates. Changes to environmental variables and current working directory within a child
processes are effective only during that process. Upon termination of the command, the parent (dL4)
resumes execution unaware of the child’s activities.

Examples
!ls -l
!vi query.bas
!edit query.bas

See also
CD, operating system documentation.

 BASIC Commands 23

dL4 Command Reference Guide

. (Dot)
Synopsis

Continue execution for one or more program lines.
Syntax

. {n}
Parameters

n is an optional integer used to specify the number of lines to step through the program. If n is omitted, 1
is assumed.

Remarks
Single statement execution is performed by entering a . and pressing Return. The current statement is
executed and the next statement to execute is displayed. Subsequent dots are used to step through the
program. To resume normal execution of a program, issue the command CONTINUE. For applications
relying on CALLed subprograms, single statement execution can be performed for both stepping through a
subprogram by entering a . and pressing return.

The “.” form executes subprograms. If “.” encounters a function, it steps into it. This means it enters the
function and afterwards remains at the first line.

There may be as many spaces as desired between “.” and the integer.
Examples

.100

. 3

. 7

See also
.. (Double Dot), RETURN

 BASIC Commands 24

dL4 Command Reference Guide

.. (Double Dot)
Synopsis

Continue execution for one or more program lines without showing procedure calls.
Syntax

.. {n}
Parameters

n is an optional integer used to specify the number of program lines to be executed. If n is omitted, 1 is
assumed.

Remarks
Double dot is used to execute the next program line(s) of a program.

Double dot executes the next n program lines where n is the command argument or one (1). Single-Step
Program Execution

If Double dot encounters a procedure or function call, it steps through it. This means the procedure is
executed and control advances to the next statement of the calling program without showing or stopping at
the lines in the called procedure.

There may be as many spaces as desired between Double dot and the integer.
Examples

.. 3

.. 5

See also
. (Dot), RETURN

 BASIC Commands 25

dL4 Command Reference Guide

AUTO
Synopsis

Automatic entry of program line numbers.
Syntax

{ starting line-no } AUTO { increment }
Parameters

starting line-no is an optional first line number, or an existing label, in the current program at which to
begin entering new statements. If omitted, 10 is the default. If an existing statement label is supplied,
entry begins at its current line number.

increment is the optional line number increment for automatic entry. If omitted, 10 is the default. A label
may not be supplied as the increment.

Remarks
AUTO is used to enable automatic entry of program line numbers.

AUTO displays the line-no, allowing entry of the new statement. If the line-no already exists, it is
replaced by the new entry if the statement is accepted without error.

If an error is detected in the statement entered, a message is displayed, any original line is unchanged and
the same line-no is requested.

AUTO is terminated by pressing the key associated with the ESC function.
Examples

AUTO 100
100 AUTO 1

Errors
Various syntax and encoding errors.

See also

 BASIC Commands 26

dL4 Command Reference Guide

BREAK
Synopsis

Create a breakpoint to the Debugger at a specified position or event, where processing or
reception of data is to be interrupted.

Syntax
BREAK position
BREAK IF ERROR

Parameters
position is the point in the program at which processing or reception of data is to be interrupted. A position
parameter is used by some BASIC/Debugger commands to specify a line in a dL4 program. For a full
definition of a position parameter, refer to Appendix C.

If error sets a breakpoint for the Debugger. The breakpoint occurs on error detection, before executing any
program error trapping (e.g., if err 0).

Remarks
BREAK is used to create a breakpoint for any purpose, such as examining data to allow for a display of
variables and statuses.

The number of breakpoints that can be created within a program is limited only by memory available.
Examples

BREAK 60
BREAK if error

See also
NOBREAK, STATUS, XBREAK

 BASIC Commands 27

dL4 Command Reference Guide

CANCEL
Synopsis

Clear all variables and other runtime context.
Syntax

CANCEL
Parameters

None.
Remarks

CANCEL clears variables and other runtime context of the current running program to allow programming
modifications. When you exit from a program or from the Debugger, you are left in a stopped state.
CANCEL cancels this stopped state.

CANCEL is automatically performed before any program change to a stopped program that requires
recompilation of the program. Changes to defined structure variables and OPTION statements are
examples of program changes requiring recompiling of a program. Whenever an automatic CANCEL
occurs due to a coding change that would invalidate the stopped program, the following message is
displayed:
 Notice: program edit required recompilation, variables cleared

CANCEL clears all stacks, variables, channels and runtime information. Once a running program is
canceled, CONTINUE, GO, single-step and line-no RUN commands are disallowed. An initial RUN must
be performed to re-initialize the program and open any required channels.

Examples
CANCEL

See also

 BASIC Commands 28

dL4 Command Reference Guide

CHECK
Synopsis

Scan program for proper structure and linkage.
Syntax

CHECK { -s } { -u }
Parameters

The optional -s switch is used to invoke a limited check operation, in which only program structures are
checked.

The optional –u switch is used to perform a check with additional warning messages for all variables that
have not been DIMmed or otherwise declared. This check is automatically performed for any program unit
containing an OPTION AUTO DIM OFF statement.

Remarks
CHECK is used to verify the current program for proper structures and external linkage. The command
performs a trial compilation and link of the program in order to provoke errors from the compiler and
linker. (Check -S omits the linker check.) Thus, CHECK is similar to a SAVE without the write-to-file
part.

During the compilation phase, CHECK detects any structural errors such as an extra ENDIF statement or
a missing structure definition.

During the linking phase, CHECK combines a set of one or more programs capable of running, based on
their various procedural references to each other. Linking occurs only if the “main” program makes
references to procedures which do not reside within that program.

Errors are reported as they are encountered during the process

If no errors are detected, the message 'No errors detected' is displayed.

Whereas program statements are syntactically checked during entry, CHECK essentially performs an
compilation of the program to ensure that it is structurally correct.

Examples
Check
Check -s
Check -u

See also
SAVE, RUN

 BASIC Commands 29

dL4 Command Reference Guide

CONTINUE
Synopsis

Resume execution of stopped program.
Syntax

CONTIN
CONTINUE

Parameters
None.

Remarks
CONTINUE is used to resume the execution of a program stopped by Breakpoint, STOP, non-trapped
error, or by the user (usually ESCAPE or CTRL D).

Execution resumes at the first instruction not yet executed in sequence.
Examples

CONTINUE
CONTIN

See also
BREAK, NOBREAK, XBREAK

 BASIC Commands 30

dL4 Command Reference Guide

CONVERT
Synopsis

Convert UniBasic statements from a text file.
Syntax

CONVERT textfilename {,alternate profile}
Parameters

textfilename is the name of any ASCII text file that contains UniBasic program statements.

The optional alternate profile directs CONVERT to that file for conversion information. If this profile is
not supplied, dL4 assumes that your conversion profile is stored within the file convert.prf. If the alternate
profile is not supplied, you should obtain it from your installation file or tape.

Remarks
CONVERT is used when you convert your UniBasic statements from text files.

CONVERT is similar to LOAD, except that certain syntax conversions are automatically performed by
CONVERT to assist in migrating programs from UniBasic, IRIS, or BITS to dL4. The CONVERT
command converts a whole file at a time, statement by statement.

In addition to handling syntactical changes, CONVERT utilizes the file named convert.prf, or any
alternate profile selected to assist in the migration of User Calls.

CONVERT performs the following functions automatically:

• INDEX #c is changed to SEARCH #c

• % operator is changed to MOD

• Semicolons are converted to commas as required in READ and WRITE statements

• CREATE is changed to BUILD

• UniBasic Multi-LET with ‘,’ separators is converted to ‘;’ separator

• Inserts spaces for missing space separators in mnemonic strings – ‘CSBU’ is converted to ‘CS BU’

• Keyword collisions are corrected by appending ‘_’ to a symbol

• Characters in quoted strings are converted to Unicode characters

• CHN is converted to CHF

• Missing parentheses around function arguments are automatically added

• When using a conversion profile, parenthesized subscript expressions are converted bracketed
subscripts (“A(5)” becomes “A[5]”)

• ERM is converted to ERM$ or the intrinsic function ERRMSG$ if specified in the conversion profile

• MSF is converted to MSF$

• STR is converted to STR$

• PEEK statements are converted to PAUSE NOT(“orig text”) statements.

• POKE statements are converted to PAUSE NOT(“orig text”) statements.

• SECTOR statements are converted to PAUSE NOT(“orig text”) statements.

• TAPE statements are converted to PAUSE NOT(“orig text”) statements.

• REM is not required to be followed by a space

• RESTORE is changed to RESTOR

 BASIC Commands 31

dL4 Command Reference Guide

 By utilizing the conversion profile, User Calls are remapped from the pre-dL4 forms:

 CALL NN, parameters or CALL $NAME, parameters to the form:

 Call procedure-name (arguments)

 CONVERT inserts the appropriate DECLARE statements.
Examples

CONVERT ar.text arprofile

See also
User Calls

 BASIC Commands 32

dL4 Command Reference Guide

DELETE
Synopsis

Delete program statements.
Syntax

{ starting line-no } DELETE { ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to delete. If omitted, the first line-no is
selected. If the starting line-no does not exist, the first existing higher line-no is used.

ending line-no is an optional last line-no in the current program to delete. If omitted, the highest line
number is selected. If the ending line-no does not exist, the first existing lower line-no is used.

Remarks
DELETE with starting and ending statement numbers is used to delete a range of statements, and
DELETE without a starting line-no or ending line-no is used to remove all statements in the current
program

DELETE does not clear variable names and values.
Examples

9900 DELETE
100 DELETE 200
DELETE

See also
NEW

 BASIC Commands 33

dL4 Command Reference Guide

DISPLAY
Synopsis

Display the values of specified variables of the current running program.
Syntax

DISPLAY <var>[,<var>...]
Parameters

Var indicates the names of specified variables of the current program. Each variable structure member, or
array element, appears on a separate line. You can specify an unlimited number of variables, and their
display extends onto new pages as necessary. DISPLAY prints all members of a structure variable, and all
elements of an array variable. A subscript of the form “i;j” can be used to display array elements i through
j.

Remarks
DISPLAY is restricted solely to the values of variables.

Examples
DISPLAY rec.
DISPLAY rec. salary
DISPLAY a$
DISPLAY a$[1,10]
DISPLAY a.b[5,2].c.d[3;5]

See also

 BASIC Commands 34

dL4 Command Reference Guide

DUMP
Synopsis

List a program to a text data file
Syntax

{ starting line-no } DUMP { switches } filename{!}{/text/}{ ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to decode. If omitted, the first line-no is
selected. If the starting line-no does not exist, the first existing higher line-no is used.

switches are optional parameters to control the output. Each parameter is a single letter preceded by a
hyphen (-). There is only one switch available with DUMP:

- u Force line number mode. The -u option causes the command to display lines with line numbers
whether or not the program uses or needs line numbers.

filename is a relative or absolute filename to which you have write permission. If the filename already
exists, it must be terminated by an exclamation point (!) to replace its contents. The file is built as a
standard Text File. If filename begins with a dollar sign (such as $LPT), the pipe driver will be opened
instead of a Text File.

/text/ is any optional string to search each statement for. The search is case-insensitive. If omitted, all
statements of a program are decoded. To decode only statements containing a specific string, enclose the
search text within / /. For each statement containing text, that statement is decoded, otherwise it is
omitted.

ending line-no is an optional last line-no in the current program to decode. If omitted, the highest line
number is selected. If the ending line-no does not exist, the first existing lower line-no is used.

Examples
100 DUMP FILENAME 200
INPUT: DUMP FILENAME! END_INPUT:

See also
LIST, FIND, Starting and Ending Line numbers

 BASIC Commands 35

dL4 Command Reference Guide

EDIT
Synopsis

Edit and change an existing statement.
Syntax

EDIT stn
Parameters

stn is the statement number of an existing statement to be edited within the program.
Remarks

EDIT is used to display the statement and to request input from the user. All of the built-in terminal input
actions for editing are supported:

Back Move cursor one space to left without erasing a character.
Backspace Delete character before cursor.
Cancel Clear input buffer.
Delete Delete current input character identified by cursor.
End Move cursor to last space of input.
Enter Terminate input and transmit data to system for processing.
Forward Move cursor to right one character.
Home Move cursor to first character of input, without affecting characters.
Insert Toggle between Overwrite and Insert mode.
NextWord Advance to first character of next word.
PrevWord Move cursor to first character of last word.
ToggleEcho Toggle between Echo mode on and off.
Abort Discard contents of input buffer and return to appropriate prompt.
Escape Discard contents of input buffer and return to appropriate prompt.

The EDIT command treats the line to be edited as typeahead and then allows the use of normal input
editing keys to support editing. In addition, the up and down arrow keys can be used to edit the previous or
next lines of the program.

Any time an error is detected during program entry, the line is redisplayed and EDIT is entered
automatically.

Examples
EDIT 10

See also

 BASIC Commands 36

dL4 Command Reference Guide

EXAMINE
Synopsis

Select procedure, function, library, or call stack level.
Syntax

EXAMINE position
Parameters

position is the name of a program or procedure, library, or line number.
Remarks

EXAMINE is used to find procedures/functions and to select the library or call stack level for examination
with other commands. For example, to list lines in a library used by the current program, enter the
command “EXAMINE libraryname” followed by LIST commands. To re-select the main program, enter
the command “EXAMINE programname”. EXAMINE also changes the current debugging stack level.
The command selects the first stack level applying to the given procedure or line, and informs you which
level is the current stack level and which line is the current program line on that level.

EXAMINE and LEVEL perform much the same function, although in different ways. The LEVEL
command is used to move the current Debugger view between levels in the CALL/SWAP stack, as
displayed in the STATUS command.

Examples
EXAMINE 1000
Examining [0];1
EXAMINE 1030
Examining 1020;1

See also
EXAMINE

 BASIC Commands 37

dL4 Command Reference Guide

EXIT
Synopsis

Exit BASIC environment to SCOPE environment.
Syntax

EXIT
Parameters

None.
Remarks

EXIT is used to terminate BASIC mode. Before terminating BASIC:

• All user channels are closed

• Program tracing is ended.

• The alternate escape is enabled as an abort event.

• Command mode is entered.

EXIT is identical to pressing the interrupt key (CTRL C). However, it may be included in a text file
executed using EXEC.

Examples
EXIT

See also
EXEC

 BASIC Commands 38

dL4 Command Reference Guide

FILE
Synopsis

Display current program and all open channels.
Syntax

FILE {options}
Parameters

{options} is:

-h Display all open hidden channels

#no Display all channel function information for channel #
Remarks

FILE is used to display the name of the program loaded into memory and information about all opened
channels.

chnl# Driver Class Driver Title Filename

11 Window Terminal Window “ Keyword “
12 Raw Raw File “/(fd0)/(fd2)

chnl# is the number of a dL4 channel.

Driver Class is the class of dL4 driver associated with the opened channel.

Driver Title is the name of the actual driver servicing the opened channel.

Filename is the name of the opened file or device.

If a channel number is used, the file displays Chf(0) to Chf(11) and Chf$(0) to Chf$(11) values.
Examples

FILE -h
FILE #7

See also
Chf() and Chf$ in dL4 Language Reference Guide

 BASIC Commands 39

dL4 Command Reference Guide

FIND
Synopsis

Search and list selected program statements.
Syntax

{ starting line-no } FIND { switches } / text / { ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to search and decode. If omitted, the first
line-no is selected. If the starting line-no does not exist, the first existing higher line-no is used.

switches are optional parameters to control the display. Each parameter is a single letter preceded by a
hyphen (-) :

 V Visual mode. The -v option causes the command to display lines a screenful at a time.
Specifically, if there are more than number-of-lines-per-screen minus two lines to be listed, then
the command issues a “[MORE]” prompt after displaying number-of-lines-per-screen minus two
lines. If the user types a space, the next number-of-lines-per-screen minus two lines are displayed
and the “[MORE]” prompt is repeated. If the user types the ENTER key, the next line is
displayed and the “[MORE]” prompt is repeated. If all of the selected lines have been displayed,
the command terminates. The user can terminate the command at any time by using the ESCAPE
or INTERRUPT character defined for the terminal. The “-V” option is the default for interactive
sessions.

/text/ is any optional string to search each statement for. The search is case-insensitive. If omitted, all
statements of a program are decoded. To decode only statements containing a specific string, enclose the
search text within / /. For each statement containing text, that statement is decoded, otherwise it is
omitted.

ending line-no is an optional last line-no in the current program to search and decode. If omitted, the
highest line number is selected. If the ending line-no does not exist, the first existing lower line-no is used.

Remarks
FIND is used to search for desired program statement by reading BASIC object code. When a statement is
found, FIND converts the BASIC object code back into text and lists it. The command looks for every
full and partial match of the desired program statement. For example, if you specify Swap, both Swap and
Swapf are located.

Examples
FIND -V /open #/
100 FIND -V /variable =/ 500
100 FIND /chain/ INPUT:

See also
LIST, SHOW, Starting and Ending Line numbers

 BASIC Commands 40

dL4 Command Reference Guide

GO
Synopsis

Resume execution of stopped program.
Syntax

GO {procedure/line}
{line|label} GO {position}

Parameters
position indicates where execution is to stop. A position parameter is used by some BASIC/Debugger
commands to specify a line in a dL4 program. For a full definition of a position parameter, refer to
Appendix C.

Remarks
GO is used to resume the execution of a program stopped by:

• Breakpoint

• STOP

• a non-trapped error

If debugging options such as Breakpoint or Single Step are used, execution resumes at the first instruction
in sequence not yet executed. Entry into Debugger mode using STOP, Breakpoint, or a non-trapped error
leaves all channels open.

Examples
GO 150
GO 780

See also
BREAK, CONTINUE, NOBREAK, XBREAK

 BASIC Commands 41

dL4 Command Reference Guide

HELP
Synopsis

Print text description of an error.
Syntax

HELP error number
Parameters

error number is any positive integer representing a dL4 error number as returned by the SPC(8) function.
Enter only one number at a time: HELP 25 26 is a format error.

Remarks
HELP is used to investigate the causes of error situations. If no error number is specified, the text
description of the last error is displayed. If no error exists, the string “No such error” is displayed. This
string is also displayed if you enter HELP with no error number.

error number is assumed to be an error number returned by SPC(8). Alternate error numbers, such as
those returned by ERR(0) may not be supplied to the HELP command as the error number.

Examples
HELP 23
HELP 255

See also

 BASIC Commands 42

dL4 Command Reference Guide

LABEL
Synopsis

Convert statement numbers to labels.
Syntax

LABEL
Parameters

None.
Remarks

LABEL is used to remove all line number references within a program. For example, the GOTO,
ESCSET, and GOSUB statements, applying to a statement number in UniBasic code, are converted from
the form:
 GOTO NNNN

to the form:
 GOTO LNNNN

where NNNN is the old statement number, and LNNNN is the new label for that line number.

Once statement numbers are removed from a program, they are omitted during a DUMP operation, and
supplied automatically during a LOAD. Programs without line numbers are more easily maintained and
allow the use of modern development tools, such as screen editors, cut and paste, source-code control
systems, etc.

Examples
LABEL
LNNN:
GOTO LNNN

See also

 BASIC Commands 43

dL4 Command Reference Guide

LIST
Synopsis

Decode and list dL4 program statements.
Syntax

{ starting line-no } LIST { switches } { / text / } { ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to decode. If omitted, the first line-no is
selected. If the starting line-no does not exist, the first existing higher line-no is assumed.

switches are optional parameters to control the display. Each parameter is a single letter preceded by a
hyphen (-). There is only one switch available with LIST:

- V Visual mode. The -v option causes the command to display lines a screenful at a time.
Specifically, if there are more than number-of-lines-per-screen minus two lines to be listed, then
the command issues a “[MORE]” prompt after displaying number-of-lines-per-screen minus two
lines. If the user types a space, the next number-of-lines-per-screen minus two lines are displayed
and the “[MORE]” prompt is repeated. If the user types the ENTER key, the next line is
displayed and the “[MORE]” prompt is repeated. If all of the selected lines have been displayed,
the command terminates. The user can terminate the command at any time by using the ESCAPE
or INTERRUPT character defined for the terminal. The “-V” option is enabled by default for
interactive sessions.

/text/ is any optional string to search each statement for. The search is case-insensitive. If omitted, all
statements of a program are decoded. To decode only statements containing a specific string, enclose the
search text within / /. For each statement containing text, that statement is decoded and listed. All other
statements are not listed.

ending line-no is an optional last line-no in the current program to decode. If omitted, the highest line
number is selected. If the ending line-no does not exist, the first existing lower line-no is assumed.

Remarks
LIST is used to decode BASIC object code which has been LOADed, convert it back into text, and list it
in statement number sequence onscreen.

To decode statements to a file, device or pipe, use DUMP.

LIST always uses line numbers to display statements.
Examples

LIST -V
LIST -V /WRITE #0/
100 LIST -V 500
INPUT: LIST END_INPUT:

See also
FIND, DUMP, SHOW

 BASIC Commands 44

dL4 Command Reference Guide

LOAD
Synopsis

Load dL4 statements from a text or program file.
Syntax

LOAD filename { starting line-no } LOAD { filename | -filename } { increment line-no }
Parameters

starting line-no is an optional first line-no to use for numbering incoming text program lines. If omitted,
10 is assumed. If the incoming text program has line numbers, they are used and any supplied starting
line-no is effectively ignored.

filename is any Text File or Program file to which you have read-permission.

The optional '-' preceding the filename may be used to remove comments from the incoming program.

increment line-no is an optional increment value to use for numbering incoming text program lines. If
omitted, 10 is assumed. If the incoming text program has line numbers, they are used and the supplied
increment line-no is effectively ignored.

Remarks
LOAD is used to merge the program lines contained in the specified text file or to load a new program file
into memory. Note that loading a program file replaces the current program. As each line of text is loaded,
it is added to the current program (which may have been empty) in memory. The statements in the text file
need not be in any particular order if the program uses line numbers. If any statement already exists, it is
replaced. For example, assume the following program is currently in memory:
 10 A=A+1
 20 B=SQR(A)

and a LOAD is performed from a text file containing:
20 C=SQR(A)+B
26 If A=30 Then Stop
30 Goto 100

The resulting program would be:
 10 A=A+1
 20 C=SQR(A) +B
 26 If A=30 Then End
 30 Goto 100

If the incoming program does not use line numbers, the statements in the text file must be in the exact order
required by the program. The optional starting line-no and increment line-no, or the defaults, is used to
add or replace existing lines within the program.

LOAD-filename strips all comment text, not merely trailing ! comments.

LOAD merges lines without line numbers, rather than executing them.

To load a new program source, you must execute NEW prior to LOAD.
Examples

LOAD sys/program
9000 load sys/inputsub 10

See also
NEW

 BASIC Commands 45

dL4 Command Reference Guide

NEW
Synopsis

Clear memory for a new program.
Syntax

NEW
Parameters

None.
Remarks

NEW is used to:

• clear (close) all open channels

• clear workspace

• release (erases) all breakpoints

• release memory, memory-resident programs, and variables

• reset autoline number

• reset auto increment
Examples

NEW

See also
LOAD

 BASIC Commands 46

dL4 Command Reference Guide

NOBREAK
Synopsis

Delete a breakpoint at the specified position or event.
Syntax

NOBREAK position
NOBREAK IF ERROR

Parameters
A position parameter is used by some BASIC/Debugger commands to specify a line in a dL4 program. For
a full definition of a position parameter, refer to Appendix C.

Remarks
NOBREAK is used to delete or clear a breakpoint at a specified position or positions. It is not a toggle for
BREAK, although you may use NOBREAK and then BREAK together to reassign breakpoints.

Entering NOBREAK without a procedure or line causes a deletion of all breakpoints.
Examples

NOBREAK 600
NOBREAK IF ERROR
NOBREAK

See also
BREAK, XBREAK

 BASIC Commands 47

dL4 Command Reference Guide

OEM
Synopsis

List the currently authorized OSNs (OEM Security Number).
Syntax

OEM {TEMP}
Parameters

TEMP causes the command to prompt for a temporary OSN (OEM Security Number).
Remarks

The OEM command lists the currently authorized OSNs. If the TEMP option is used ("OEM TEMP"), the
OEM command will prompt for a temporary OSN to be used only by the current SCOPE session.

Examples
#OEM

#OEM TEMP

See also
LOADSAVE, PSAVE, SAVE

 BASIC Commands 48

dL4 Command Reference Guide

PDUMP
Synopsis

List program status, variables, and other information to a text data file
Syntax

PDUMP filename{!}
Parameters

filename is a relative or absolute filename to which you have write permission. If the filename already
exists, it must be terminated by an exclamation point (!) to replace its contents. The file is built as a
standard Text File. If filename begins with a dollar sign (such as $LPT), the pipe driver will be opened
instead of a Text File.

Examples
PDUMP FILENAME

See also
DUMP

 BASIC Commands 49

dL4 Command Reference Guide

PSAVE
Synopsis

Create an OSN (OEM Security Number) protected program.
Syntax

PSAVE n, filename.expr ...
Parameters

filename.expr is the program file name to be created.

n is the number of the OSN listed by the OEM command
Remarks

The PSAVE command is used to create OSN protected programs. The PSAVE command is identical to
the SAVE command except for an optional OSN number that can precede the SAVE filename. For
example, the command "PSAVE 2,menu" would save the current program as "menu" after protecting it to
require the second OSN listed by the OEM command. Protected programs can be created only if the
specified OSN is a master OSN.

Examples
#PSAVE 4, "file1"

See also
LOADSAVE, OEM, SAVE

 BASIC Commands 50

dL4 Command Reference Guide

RENUMBER
Synopsis

Renumber statements in a program.
Syntax

{begin stn} RENUMB {step}
{begin stn} RENUMBER {step}

Parameters
begin stn is the optional first statement number to use for the renumbered program. If omitted, 10 is
assumed. If begin stn is a label, its current stn is used as the first statement number.

Step is the optional increment to use between the renumbered lines. If omitted, 10 is assumed.
Remarks

RENUMBER is used to make room for new statements between sequentially-numbered lines.

If there’s an error, no renumbering takes place.
Examples

1000 RENUMB 30
2000 RENUMBER 20

See also
Statement Numbers, Starting and Ending Statement Numbers, LABEL

 BASIC Commands 51

dL4 Command Reference Guide

RUN
 Synopsis

Execute a program and optionally enter the Debugger at a specified line.
Syntax

{line-no} RUN {position}
Parameters

line no is the line number where the program is to be restarted.

position is the breakpoint where the program is to stop and enter the Debugger. For a full definition of a
position parameter, refer to Appendix C.

line-no RUN is used to start execution of a program. A line number is specified to restart execution of a
program using any existing variable values or open channels. Using the RUN command without a current
program results in an empty program being executed. A READY message is printed and the user is left in
BASIC mode.

Remarks
The GO command resumes execution of a program stopped by a breakpoint.

Examples
RUN 1600
100 RUN

See also

 BASIC Commands 52

dL4 Command Reference Guide

SAVE
Synopsis

SAVE the current program.
Syntax

SAVE { -l n }{-ro} {{ <attributes> } { (options) } { filename{!} } }
Parameters

The -l n option is used to create an OSN (OEM Security Number) protected program. The value "n" is the
number of a master OSN as listed by the SCOPE OEM command.

<attributes> are any optional valid file attributes, protections, or permissions to apply to the file on
creation. Standard IRIS, BITS, or UNIX-style permissions may be supplied. If omitted, file creation is
defaulted to Read/Write for all users, subject to any operating system masking in effect. If <attributes> are
supplied, a filename must follow.

(options) are any optional program file options such as “exec=command”, “stdexec”, or “netexec”.

filename is any optional filename or full pathname to a directory to which you have write-permission. A
filename is optional if the file has previously been saved. If it has not been saved, then the filename is
mandatory in the command. If the filename is omitted, the original filename for the program in memory is
used.

Remarks
Prior to saving a program, it compiles the program which may result in errors. A compilation error still
allows a program to be saved.

The “run-only” option, Save -RO, is used to produce “run-only” program files. Save -RO creates a run-
only file which strips symbols so that a file cannot be listed, dumped, debugged, or modified in any way.
The creation process is irreversible and secure since the information needed to list the program is actually
discarded. A Save -RO file enables the developer to:

• Protect sensitive or trade-secret source code from theft or modification

• Safely embed security checks in a program, allowing it to run only on authorized systems.

The “exec=command” option can be used under Unix with execute permissions to create a program that
can be executed directly from a Unix shell prompt. The command value is the path of run along with any
run command line options. The option “stdexec” is equivalent to “exec=!#/usr/bin/run”. The option
“netexec” is equivalent to ‘exec=!#/usr/bin/run –NB’. On Windows systems, file extensions can be used
and associated to create equivalent functionality.

Active channels and variables are undisturbed.
Examples

SAVE <22> prog!
SAVE <755> (stdexec) prog!
SAVE <W> dat!
SAVE

See also
CHECK, OEM, SAVE

 BASIC Commands 53

dL4 Command Reference Guide

SHOW
Synopsis

Search and list selected program statements.
Syntax

{ starting line-no } SHOW { switches } / text / { ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to search and decode. If omitted, the first
line-no is selected. If the starting line-no does not exist, the first existing higher line-no is used.

switches are optional parameters to control the display. Each parameter is a single letter preceded by a
hyphen (-) :

 V Visual mode. The -v option causes the command to display lines a screenful at a time.
Specifically, if there are more than number-of-lines-per-screen minus two lines to be listed, then
the command issues a “[MORE]” prompt after displaying number-of-lines-per-screen minus two
lines. If the user types a space, the next number-of-lines-per-screen minus two lines are displayed
and the “[MORE]” prompt is repeated. If the user types the ENTER key, the next line is
displayed and the “[MORE]” prompt is repeated. If all of the selected lines have been displayed,
the command terminates. The user can terminate the command at any time by using the ESCAPE
or INTERRUPT character defined for the terminal. The “-V” option is enabled by default for
interactive sessions.

/text/ is any optional string to search each statement for. The search is case-insensitive. If omitted, all
statements of a program are decoded. To decode only statements containing a specific string, enclose the
search text within / /. For each statement containing text, that statement is decoded, otherwise it is
omitted.

ending line-no is an optional last line-no in the current program to search and decode. If omitted, the
highest line number is selected. If the ending line-no does not exist, the first existing lower line-no is used.

Remarks
SHOW is used to search for desired program statement by reading BASIC object code. When a statement
is found, SHOW converts the BASIC object code back into text and lists it. The command looks for
every full and partial match of the desired program statement. For example, if you specify Swap, both
Swap and Swapf are located.

Examples
SHOW -V /open #/
100 SHOW -V /variable =/ 500
100 SHOW /chain/ INPUT:

See also
LIST, SHOW, Starting and Ending Line numbers

 BASIC Commands 54

dL4 Command Reference Guide

SIZE
Synopsis

Display memory usage for current program/data.
Syntax

SIZE { -l }
Parameters

The -l option causes the sizes and names of all linked libraries to be displayed.
Remarks

SIZE is used to display the amount of memory allocated for the storage of a current program and variables.
For example:
 Code Data By
 4376 0 menudispatch
 4376 0 Total

Code is the number of bytes used to store the BASIC object code encoded program.

Data is the number of bytes used to store data for variables.

Code and Data space is displayed separately for each nested subprogram.
Examples

SIZE

SIZE -l

See also
NEW

 BASIC Commands 55

dL4 Command Reference Guide

STATUS
Synopsis

Prints the name of current program file and execution status.
Syntax

STATUS {BREAKPOINT | MACHINE |SYSTEM | UNIT}
Parameters

{BREAKPOINT} displays each of the existing breakpoints.

{MACHINE} displays current characteristics of the current program as a whole.

{SYSTEM}displays the current directory and other system information.

{UNIT} displays current characteristics of the program unit being examined.
Remarks

STATUS is used to determine the current execution status and program filename, breakpoints, and other
status information, which it prints. The current execution status is displayed after a breakpoint. One line
is printed for each function call, procedure call, subprogram call, program SWAP, or GOSUB that is still
in progress.

Most of the displayed lines take the form “xxx [n] location”, where “xxx” is either “- ” if this is the
current examination level, as controlled by the LEVEL and EXAMINE commands, or three (3) spaces
before the status indication.

The value of “n” is the stack level, starting at zero in the main program and increasing with each function
call, procedure call, subprogram call, or program SWAP. The string “location” has one of the following
forms (l = line number; s = statement number within that line, starting at 1):

 l;s
 local: l;s
 external: l;s
 pgm: l;s
 external: local: l;s
 lib: external: local: l;s
 lib: external: l;s
 pgm: l;s
 pgm: local: l;s
 pgm: external: l;s
 pgm: external: local: l;s
 pgm: lib: external: l;s

pgm is the name of the program containing the line.

lib is the name of the library containing the line.

external is an external procedure or function name.

local is a local procedure or function name.

For example:
 --> [1] PrintHello:20;1
 [0] 40;1

In the above example, the program has stopped at the first statement of line 20 within a CALL to the
procedure “PrintHello”.

If a subprogram call (CALL “filename”) or SWAP is in progress, then either:

 “ filename - CALLed”

or:

 BASIC Commands 56

dL4 Command Reference Guide

 “ filename - SWAPed”

is printed at the point in the stack at which the call or SWAP occurred:
--> [1] SUBPROGRAM:10;1
 SUBPROGRAM - CALLed
 [0] 50;1

--> [1] SWAPPROGRAM:10;1
 SWAPPROGRAM - SWAPed
 [0] 60;1

The STATUS command considers each program, external function, or external procedure to be a separate
program unit with its own GOSUB stack. If any entries are present in a GOSUB stack to indicate that a
GOSUB has occurred without a RETURN or other action to pop the stack, then the stack is displayed as
in the following example:

--> [1] PRINTHELLO:20;1
 GOSUB Stack:
 [0] 50;1
 [0] 40;1

Each line of the GOSUB display shows the line number and the statement number at which the GOSUB
was executed.

Status Breakpoint
The status breakpoint command displays each of the existing breakpoints, using the same
“pgm:lib:external:local:line;stmt” format as the current execution status. If error breakpoints (BREAK IF
ERROR) are enabled, the line “Break If Error” is also printed:
 dbg>status b
 PrintHello:20;1

Status Machine
The status machine command, which displays current characteristics of the current program as a whole, is
described in the EXAMPLES subsection.

Status System
The status system command, which displays current directory and other system information, is described in
the EXAMPLES subsection.

Status Unit
The status unit command displays current characteristics of the program unit being examined. Each
program, external function, or external procedure is a separate program unit. These characteristics are
described in the EXAMPLES subsection.

Entering STATUS * produces a Format error.
Examples

If you enter STATUS without a parameter, the screen displays:
status
-->[0] 90;1

where [0] indicates level 0, 90 indicates line number, and 1 indicates statement number within the line
number.

If you enter STATUS with the {MACHINE} parameter, the screen displays:
status machine
Default input channel: 102
Default output channel: 102
Trace channel: None

 BASIC Commands 57

dL4 Command Reference Guide

Command line string: “”
Hot-key program: “swap.run”

where the Default input channel is the channel number used by any non-channel INPUT statement.

The Default output channel is the channel number used by any non-channel PRINT statement.

The Trace channel is the channel number used for program tracing, if enabled by the TRACE statement or
command.

The Command line string is is the command line by which the current program was invoked.

The Hot-key program is the name of the program, if any, to be invoked by the SWAP key. The program
name can be set by using the SWAPF intrinsic procedure.

If you enter STATUS with the {SYSTEM} parameter, the screen displays:
Current directory: C:\Program Files\dL4\SAMPLES
Port number: 4094
Number of users: 2
MSC(7) value: 257
SPC(5) value: 257
SPC(7) value: 0

If you enter STATUS with the {UNIT} parameter, the screen displays:
status unit
Current position: [0] 90;1
Last error number: 0
Last error position: n/a
Last error text: “”
Last END or STOP: 0
DATA position: 0
Last determinant: <Not-A-Number>
Last input element: 0
Last input size: 0
Input pend mode: On
Number precision: %3
Date precision: %3
LIB directory: “”

status unit is a status listing.

Current position is the current execution location within the program unit. [0] 90;1 indicates level 0, line
90, statement 1 within the line.

Last error number indicates line where the last error occurs. 0 indicates there was no last error.

Last error position is not available: n/a indicates there is no last error position.

Last error text is an English phrase when available. “” means none was found.

Last END or STOP is the location, if any, of the last END or STOP statement that was executed. 0
indicates no such location exists.

DATA position is is the current DATA line number to be used by non-channel READ statements. 0 is the
current value.

Last determinant is the current value of the “DET(0)” function, the determinant generated by the last
matrix inversion statement. <Not-A-Number> indicates the current value is undefined; most likely no
MAT INV statement has been executed.

Last input element is the current value of “MSC(1)”. In this case, the current value is 0.

Last input size is is the current value of “SPC(17)”. The current value is 0.

Input pend mode is either On or Off.

Number precision is the precision to be applied to any newly-created numeric variable. The current
precision is %3.

 BASIC Commands 58

dL4 Command Reference Guide

Date precision is the precision to be applied to any newly-created date variable. The current precision is
%3.

LIB directory is the current value of “MSC$(6)”.
See also

END, EXAMINE, LEVEL

 BASIC Commands 59

dL4 Command Reference Guide

TRACE
Synopsis

Enable statement trace debugging.
Syntax

TRACE {ON {#channel}| OFF}
Parameters

channel indicates the channel where TRACE output is to be sent.
Remarks

The TRACE command is used to enable TRACE ON and TRACE OFF. Trace mode is used to observe
the line number program flow without performing single steps. dL4 provides various ways to handle
tracing:

To turn Trace mode on, use TRACE ON or TRACE ON #chn.num.

To turn Trace mode off, use TRACE OFF.

The TRACE ON statement can be followed by an optional channel number for redirecting trace output to
a file or driver. The channel number that is given must be opened prior to executing the TRACE statement.
If the channel is subsequently closed, trace output defaults to the terminal.

Tracing is automatically disabled when another program is loaded using CHAIN, SWAP, or SPAWN.
Cancelling a running program does not turn TRACE off.

Examples
TRACE
TRACE ON
TRACE OFF
TRACE ON #5

See also
SYSTEM 20, SYSTEM 21 in dL4 Language Reference Guide

 BASIC Commands 60

dL4 Command Reference Guide

VARIABLE
Synopsis

Display variable names that are defined in the currently selected procedure.
Syntax

VARIABLE
Parameters

None.
Remarks

VARIABLE displays a list of the variable names defined in the currently selected procedure.
Examples

VARIABLE

See also
LEVEL, LIST, STATUS

 BASIC Commands 61

dL4 Command Reference Guide

XBREAK
Synopsis

Create a breakpoint to the Debugger at a specified position or event, where processing or
reception of data is to be interrupted.

Syntax
XBREAK position
XBREAK IF ERROR

Parameters
position is the point in the program at which processing or reception of data is to be interrupted. A position
parameter is used by some BASIC/Debugger commands to specify a line in a dL4 program. For a full
definition of a position parameter, refer to Appendix C. Breakpoints created with XBREAK will be
applied to both the current program and to any program which is loaded by CHAIN, SWAP, or CALL
statements during execution. Thus, an “XBREAK 60” command would create a breakpoint at line 60 in the
current program and at line 60 in any program that was entered during execution. The position specified in
the XBREAK command does not have to exist in the current program.

If error sets a breakpoint for the Debugger. The breakpoint occurs on error detection, before executing any
program error trapping (e.g., if err 0).

Remarks
XBREAK is used to create a breakpoint for any purpose, such as examining data to allow for a display of
variables and statuses.

The number of breakpoints that can be created within a program is limited only by memory available.
Examples

XBREAK 60
XBREAK if error

See also
BREAK, NOBREAK, STATUS

 Debugger Commands 62

dL4 Command Reference Guide

Chapter 4 - Debugger Commands
A Debugger session is started whenever any of the following events occur:

• step (“.” or “..”) command line count reached

• non-trapped BASIC error or forced termination (ESCAPE or CTRL D)

• Breakpoint

• STOP or SUSPEND statement

• Abort

• Untrapped ESCape event

To resume execution, type GO. To exit, type END.

The Command Abbreviation feature of Debugger mode allows you to issue a command by entering only
enough of its letters to form a unique abbreviation, instead of typing the whole word. For example, you
could enter “ST” for “STATUS”, or “T” for “TRACE”. It would not be possible to enter “E” for “END”,
because “E” could also apply to EXAMINE. This abbreviation facility is available only in Debugger
mode.

To display a list of commands, type “?”.

The Debugger is available only through the SCOPE Command Line IDE. Those programs that are run
from outside the Command Line IDE do not have access to the debugger.

This chapter describes the Debugger commands in detail. The table below lists and briefly describes the
commands.

COMMAND DESCRIPTION
? (Question Mark) Display a list of commands or a description of <command>.
; (Semicolon) Display the values of specified variables of the current running program.
! (Exclamation Point) Execute external operating system command
. Execute the next n program lines
.. Execute next program line and step through function
BREAK Create a breakpoint at specified position or positions.
CONTINUE Resume execution of stopped program.
DISPLAY Display the values of specified variables of the current running program.
DUMP List a program to a text data file.
END Exit from Debugger.
EXAMINE Examine and select which is the current program mode.
EXIT Abort program and exit BASIC.
FILE Display current program and open all files.
FIND Search and list selected program statements.
GO Resume execution of stopped program.
HELP Print text description of an error.
LEVEL Moves current Debugger view between levels in the CALL/SWAP stack.
LET Assign value to variable.
LIST Decode dL4 statements.
NOBREAK Delete a breakpoint at specified position or positions.
OEM Lists the currently authorized OSNs (OEM Security Number).
PDUMP List program status, variables, and other information to a text data file
RETURN Continue execution until the current procedure or function exits
SHOW Search and list selected program statements.
SIZE Display memory usage for current program/data.
STATUS Print the name of the current program file and execution status.
TRACE Enable statement trace debugging.
VARIABLE Display variable names in current procedure
WB Move the debug window to the bottom of the screen.

 Debugger Commands 63

dL4 Command Reference Guide

WF Resize the debug window to full screen.
WH Resize the debug window to half screen.
WINDOW Move, resize, or change treatment of the debug window.
WS Resize the debug window to quarter screen.
WT Move the debug window to the top of the screen.
XBREAK Create breakpoint at specified position or positions

 Debugger Commands 64

dL4 Command Reference Guide

? (QUESTION MARK)
Synopsis

Display a list of commands or a description of <command>.
Syntax

? {command}
Parameters

command is one of the debug commands as listed by entering the "?" without parameters.
Remarks

Displays the available debugger commands when ? is entered without parameters.

When a valid debugger command is entered as a parameter, displays a HELP message for that command.
Examples

?
? go

See also

 Debugger Commands 65

dL4 Command Reference Guide

; (SEMICOLON)
Synopsis

Display the values of specified variables of the current running program.
Syntax

; <var>[,<var>...]
Parameters

var indicates the names of specified variables of the current program. Each variable structure member, or
array element, appears on a separate line. You can specify an unlimited number of variables, and their
display extends onto new pages as necessary. Semicolon (“;”) prints all members of a structure variable,
and all elements of an array variable. A subscript of the form “i;j” can be used to display array elements i
through j.

; is restricted solely to the values of variables.
Examples

; rec.
; rec. salary
; a$
; a$[1,10]
; a.b[5,2].c.d[3;5]

See also

 Debugger Commands 66

dL4 Command Reference Guide

! (Exclamation Point)
Synopsis

Execute external operating system command
Syntax

! command
Parameters

command is any operating system (or null) command to be executed by a sub-shell.
Remarks

The Exclamation Point command is used to execute an external operating system command.

All system commands are executed by a separate child process, effectively putting dL4 to sleep until the
command terminates. Changes to environmental variables and current working directory within a child
processes are effective only during that process. Upon termination of the command, the parent (dL4)
resumes execution unaware of the child’s activities.

Examples
!ls -l
!vi query.bas
!edit query.bas

See Also
CD, operating system documentation.

 Debugger Commands 67

dL4 Command Reference Guide

. (Dot)
Synopsis

Continue execution for one or more program lines..
Syntax

. {n}
Parameters

n is an optional integer used to specify the number of lines to step through the program. If n is omitted, 1
is assumed.

Remarks
Single statement execution is performed by entering a . and pressing Return. The current statement is
executed and the next statement to execute is displayed. Subsequent dots are used to step through the
program. To resume normal execution of a program, issue the command CONTINUE. For applications
relying on CALLed subprograms, single statement execution can be performed for both stepping through a
subprogram by entering a . and pressing return.

The “.” form executes subprograms. If “.” encounters a function, it steps into it. This means it enters the
function and afterwards remains at the first line.

There may be as many spaces as desired between “.” and the integer.
Examples

.100

. 3

. 7

See also
.. (Double Dot), RETURN

 Debugger Commands 68

dL4 Command Reference Guide

.. (Double Dot)
Synopsis

Continue execution for one or more program lines without showing procedure calls
Syntax

.. {n}
Parameters

n is an optional integer used to specify the number of program lines to be executed. If n is omitted, 1 is
assumed.

Remarks
Double dot is used to execute the next program line(s) of a program.

Double dot executes the next n program lines where n is the command argument or one (1). Single-Step
Program Execution

If Double dot encounters a procedure or function call, it steps through it. This means the procedure is
executed and control advances to the next statement of the calling program without showing or stopping at
the lines in the called procedure.

There may be as many spaces as desired between Double dot and the integer.
Examples

.. 3

.. 5

See also
. (Dot), RETURN

 Debugger Commands 69

dL4 Command Reference Guide

BREAK
Synopsis

Create a breakpoint to the Debugger at a specified position or positions, where processing or
reception of data is to be interrupted.

Syntax
BREAK position
BREAK if error

Parameters
position is the point in the program at which processing or reception of data is to be interrupted. For a full
definition of the position parameter, refer to Appendix C.

Remarks
If error indicates that a break into debugger occurs if an error is encountered.

BREAK is used to create a breakpoints for any purpose, such as examining data to allow for a display of
variables and statuses.

The number of breakpoints can be created within a program is limited only by memory available.
Examples

BREAK 60
BREAK if error

See also
CONTINUE, NOBREAK, STATUS, XBREAK

 Debugger Commands 70

dL4 Command Reference Guide

CONTINUE
Synopsis

Resume execution of stopped program.
Syntax

CONTIN
CONTINUE

Parameters
None.

Remarks
CONTINUE is used to resume the execution of a program stopped by Breakpoint, STOP, non-trapped
error, or by the user (usually ESCAPE or CTRL D).

Execution resumes at the first instruction not yet executed in sequence.
Examples

CONTINUE
CONTIN

See also
BREAK, NOBREAK, XBREAK

 Debugger Commands 71

dL4 Command Reference Guide

DISPLAY

Synopsis

Display the values of specified variables of the current running program.
Syntax

DISPLAY <var>[,<var>...]
Parameters

Var indicates the names of specified variables of the current program. Each variable structure member, or
array element, appears on a separate line. You can specify an unlimited number of variables, and their
display extends onto new pages as necessary. DISPLAY prints all members of a structure variable, and all
elements of an array variable. A subscript of the form “i;j” can be used to display array elements i through
j.

Remarks
DISPLAY is restricted solely to the values of variables.

Examples
DISPLAY rec.
DISPLAY rec. salary
DISPLAY a$
DISPLAY a$[1,10]
DISPLAY a.b[5,2].c.d[3;5]

See also

 Debugger Commands 72

dL4 Command Reference Guide

DUMP
Synopsis

List a program to a text data file.
Syntax

{ starting line-no } DUMP { switches } filename{!}{/text/} { ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to decode. If omitted, the first line-no is
selected. If the starting line-no does not exist, the first existing higher line-no is used.

switches are optional parameters to control the output. Each parameter is a single letter preceded by a
hyphen (-). There is only one switch available with DUMP:

- u Force line number mode. The -u option causes the command to display lines with line numbers
whether or not the program uses or needs line numbers.

filename is a relative or absolute filename to which you have write permission. If the filename already
exists, it must be terminated by an exclamation point (!) to replace its contents. The file is built as a
standard Text File. If filename begins with a dollar sign (such as $LPT), then the pipe driver will be opened
instead of a Text File.

/text/ is any optional string to search each statement for. The search is case-insensitive. If omitted, all
statements of a program are decoded. To decode only statements containing a specific string, enclose the
search text within / /. For each statement containing text, that statement is decoded, otherwise it is
omitted.

ending line-no is an optional last line-no in the current program to decode. If omitted, the highest line
number is selected. If the ending line-no does not exist, the first existing lower line-no is used.

Examples
100 DUMP FILENAME 200
INPUT: DUMP FILENAME! END_INPUT:

See also
LIST, FIND, Starting and Ending Line numbers

 Debugger Commands 73

dL4 Command Reference Guide

END
Synopsis

Exit from Debugger.
Syntax

END
Parameters

None.
Remarks

END is used to exit from the Debugger. The command:

• closes all channels

• forces an exit from all stack levels, leaving the user in the root program (level 0)

You are placed in BASIC mode and the READY prompt is displayed.
Examples

END

See also

 Debugger Commands 74

dL4 Command Reference Guide

EXAMINE
Synopsis

Examines and selects the current program file.
Syntax

EXAMINE <procedure/line>
Parameters

<procedure> is the procedure specified for examination.

<line> is the line specified for examination.
Remarks

EXAMINE is used to examine and select the current program file. The command selects the current
program for examination, not merely a line. The current program is the one LISTed and DUMPed. In
addition, EXAMINE also changes the current debugging stack level. The command selects the first stack
level applying to the given procedure or line, and informs you which level is the current stack level and
which line is the current program line on that level.

EXAMINE and LEVEL perform much the same function, although in different ways. The LEVEL
command is used to move the current Debugger view between levels in the CALL/SWAP stack, as
displayed in the STATUS command.

Examples
EXAMINE 1000
Examining [0];1
EXAMINE 1030
Examining 1020;1

See also
EXAMINE

 Debugger Commands 75

dL4 Command Reference Guide

EXIT
Synopsis

Abort program and exit BASIC.
Syntax

EXIT
Parameters

None.
Remarks

EXIT is used to exit from the Debugger and the BASIC environment. The command:

• closes all channels

• forces an exit from all stack levels, leaving the user at the SCOPE prompt
Examples

EXIT

See also
END

 Debugger Commands 76

dL4 Command Reference Guide

FILE
Synopsis

Display current program and all open files.
Syntax

FILE {options}
Parameters

{options} is:

-h Display all open hidden channels

#no Display all channel function information for channel #
Remarks

FILE is used to display the name of the program loaded into memory and information about all opened
channels.

chnl# Driver Class Driver Title Filename

11 Window Terminal Window “ Keyword “
12 Raw Raw File “/(fd0)/(fd2)

chnl# is the number of a dL4 channel.

Driver Class is the class of dL4 driver associated with the opened channel.

Driver Title is the name of the actual driver servicing the opened channel.

Filename is the name of the opened file or device.

If a channel number is used, the file displays Chf(0) to Chf(11) and Chf$(0) to Chf$(11) values.
Examples

FILE -h
FILE #7

See also
Chf() and Chf$ in dL4 Language Reference Guide

 Debugger Commands 77

dL4 Command Reference Guide

FIND
Synopsis

Search and list selected program statements.
Syntax

{ starting line-no } FIND { switches } / text / { ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to search and decode. If omitted, the first
line-no is selected. If the starting line-no does not exist, the first existing higher line-no is used.

switches are optional parameters to control the display. Each parameter is a single letter preceded by a
hyphen (-) :

 V Visual mode. The -v option causes the command to display lines a screenful at a time.
Specifically, if there are more than number-of-lines-per-screen minus two lines to be listed, then
the command issues a “[MORE]” prompt after displaying number-of-lines-per-screen minus two
lines. If the user types a space, the next number-of-lines-per-screen minus two lines are displayed
and the “[MORE]” prompt is repeated. If the user types the ENTER key, the next line is
displayed and the “[MORE]” prompt is repeated. If all of the selected lines have been displayed,
the command terminates. The user can terminate the command at any time by using the ESCAPE
or INTERRUPT character defined for the terminal. The “-V” option is enabled by default for
interactive sessions.

/text/ is any optional string to search each statement for. The search is case-insensitive. If omitted, all
statements of a program are decoded. To decode only statements containing a specific string, enclose the
search text within / /. For each statement containing text, that statement is decoded, otherwise it is
omitted.

ending line-no is an optional last line-no in the current program to search and decode. If omitted, the
highest line number is selected. If the ending line-no does not exist, the first existing lower line-no is used.

Remarks
FIND is used to search for desired program statements by reading BASIC object code. When a statement
is found, FIND converts the BASIC object code back into text and lists it. The command looks for every
full and partial match of the desired program statement. For example, if you specify Swap, both Swap and
Swapf are located.

Examples
FIND -V /open #/
100 FIND -V /variable =/ 500
100 FIND /chain/ INPUT:

See also
LIST, SHOW, Starting and Ending Line numbers

 Debugger Commands 78

dL4 Command Reference Guide

GO
Synopsis

Resume execution of stopped program.
Syntax

{line} GO {break-procedure/break-line}
Parameters

Line indicates where execution is to resume.

Break-procedure and break-line indicate where execution is to stop.
Remarks

GO is used to resume the execution of a program stopped by:

• Breakpoint

• STOP

• a non-trapped error

If debugging options such as Breakpoint or Single Step are used, execution resumes at the first instruction
in sequence not yet executed or at the specified line. Entry into Debugger mode using STOP, Breakpoint,
or a non-trapped error leaves all channels open.

Entry into command mode automatically closes all open channels. To perform operating system
commands, use the command to invoke a shell or another copy of dL4.

Examples
GO
GO 780

See also
BREAK, CONTINUE, XBREAK

 Debugger Commands 79

dL4 Command Reference Guide

HELP
Synopsis

Print text description of an error.
Syntax

HELP error number
Parameters

error number is any positive integer representing a dL4 error number as returned by the SPC(8) function.
Enter only one number at a time: HELP 25 26 is a format error.

Remarks
HELP is used to investigate the causes of error situations. If no error number is specified, the text
description of the last error is displayed. If no error exists, the string “No such error” is displayed. This
string is also displayed if you enter HELP with no error number.

error number is assumed to be an error number returned by SPC(8). Alternate error numbers, such as
those returned by ERR(0) may not be supplied to the HELP command as the error number.

To obtain an error number, use the ERR(0) function.
Examples

HELP 23
HELP 255

See also

 Debugger Commands 80

dL4 Command Reference Guide

LET
Synopsis

Assign value to variable.
Syntax

LET var = value
Parameters

var is the name of a variable in the program.

value is the data to be assigned to the variable var.
Remarks

LET is used to modify the value of a program variable. The data type of var and value must correspond.
Examples

LET A$="Y"

LET I=10

See also

 Debugger Commands 81

dL4 Command Reference Guide

LEVEL
Synopsis

Moves current Debugger view between levels in the CALL/SWAP stack.
Syntax

LEVEL number
LEVEL +
LEVEL -

Parameters
number is the requested level, with 0 being the bottom of the stack, the main program.

“+” means to rise one level above the current level.

“-“ means to descend one level below the current level.
Remarks

The LEVEL command attempts to select the requested level, and then prints the current level. Any
attempt to exceed the top or bottom of the stack simply selects the top or bottom of that stack. For
example, LEVEL prints the level you request and keeps printing the top level when the limit is reached. In
other words, if you ask for Level 5 when there are only 3 levels, LEVEL prints Level 3 for you.

Examples
LEVEL +
LEVEL -
LEVEL 3

See also
EXAMPLE

 Debugger Commands 82

dL4 Command Reference Guide

LIST
Synopsis

Decode and list dL4 program statements.
Syntax

{ starting line-no } LIST { switches } { / text / } { ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to decode. If omitted, the first line-no is
selected. If the starting line-no does not exist, the first existing higher line-no is assumed.

switches are optional parameters to control the display. Each parameter is a single letter preceded by a
hyphen (-). There is only one switch available with LIST:

- V Visual mode. The -v option causes the command to display lines a screenful at a time.
Specifically, if there are more than number-of-lines-per-screen minus two lines to be listed, then
the command issues a “[MORE]” prompt after displaying number-of-lines-per-screen minus two
lines. If the user types a space, the next number-of-lines-per-screen minus two lines are displayed
and the “[MORE]” prompt is repeated. If the user types the ENTER key, the next line is
displayed and the “[MORE]” prompt is repeated. If all of the selected lines have been displayed,
the command terminates. The user can terminate the command at any time by using the ESCAPE
or INTERRUPT character defined for the terminal. The “-V” option is enabled by default for
interactive sessions.

/text/ is any optional string to search each statement for. The search is case-insensitive. If omitted, all
statements of a program are decoded. To decode only statements containing a specific string, enclose the
search text within / /. For each statement containing text, that statement is decoded and listed. All other
statements are not listed.

ending line-no is an optional last line-no in the current program to decode. If omitted, the highest line
number is selected. If the ending line-no does not exist, the first existing lower line-no is assumed.

Remarks
LIST is used to decode BASIC object code which has been LOADed, convert it back into text, and list it
in statement number sequence onscreen.

To decode statements to a file, device or pipe, use DUMP.

LIST always uses line numbers to display statements.
Examples

LIST -V
LIST -V /WRITE #0/
100 LIST -V 500
INPUT: LIST END_INPUT:

See also
FIND, DUMP, Starting and Ending Line numbers

 Debugger Commands 83

dL4 Command Reference Guide

NOBREAK
Synopsis

Delete a breakpoint at the specified position or event.
Syntax

NOBREAK {position}
NOBREAK IF ERROR

Parameters
position parameter is used by some BASIC/Debugger commands to specify a line in a dL4 program. For a
full definition of position parameter, refer to Appendix C.

Remarks
NOBREAK is used to delete or clear a breakpoint at a specified position or positions. It is not a toggle for
BREAK, although you may use NOBREAK and then BREAK together to reassign breakpoints.

Entering NOBREAK without a procedure or line causes a deletion of all breakpoints.
Examples

NOBREAK 600
NOBREAK IF ERROR
NOBREAK

See also

BREAK, STATIUS, XBREAK

 Debugger Commands 84

dL4 Command Reference Guide

OEM
Synopsis

List the currently authorized OSNs (OEM Security Number).
Syntax

OEM {TEMP}
Parameters

TEMP causes the command to prompt for a temporary OSN (OEM Security Number).
Remarks

The OEM command lists the currently authorized OSNs. If the TEMP option is used ("OEM TEMP"), the
OEM command will prompt for a temporary OSN to be used only by the current SCOPE session.

Examples
#OEM

#OEM TEMP

See also
LOADSAVE, PSAVE, SAVE

 Debugger Commands 85

dL4 Command Reference Guide

PDUMP
Synopsis

List program status, variables, and other information to a text data file
Syntax

PDUMP filename{!}
Parameters

filename is a relative or absolute filename to which you have write permission. If the filename already
exists, it must be terminated by an exclamation point (!) to replace its contents. The file is built as a
standard Text File. If filename begins with a dollar sign (such as $LPT), the pipe driver will be opened
instead of a Text File.

Examples
PDUMP FILENAME

See also
DUMP

 Debugger Commands 86

dL4 Command Reference Guide

RETURN
Synopsis

Continue execution until the current procedure or function exits.
Syntax

RETURN
Parameters

None.
Examples

RETURN

See also
GO

 Debugger Commands 87

dL4 Command Reference Guide

SHOW
Synopsis

Search and list selected program statements.
Syntax

{ starting line-no } SHOW { switches } / text / { ending line-no }
Parameters

starting line-no is an optional first line-no in the current program to search and decode. If omitted, the first
line-no is selected. If the starting line-no does not exist, the first existing higher line-no is used.

switches are optional parameters to control the display. Each parameter is a single letter preceded by a
hyphen (-) :

 V Visual mode. The -v option causes the command to display lines a screenful at a time.
Specifically, if there are more than number-of-lines-per-screen minus two lines to be listed, then
the command issues a “[MORE]” prompt after displaying number-of-lines-per-screen minus two
lines. If the user types a space, the next number-of-lines-per-screen minus two lines are displayed
and the “[MORE]” prompt is repeated. If the user types the ENTER key, the next line is
displayed and the “[MORE]” prompt is repeated. If all of the selected lines have been displayed,
the command terminates. The user can terminate the command at any time by using the ESCAPE
or INTERRUPT character defined for the terminal. The “-V” option is enabled by default for
interactive sessions.

/text/ is any optional string to search each statement for. The search is case-insensitive. If omitted, all
statements of a program are decoded. To decode only statements containing a specific string, enclose the
search text within / /. For each statement containing text, that statement is decoded, otherwise it is
omitted.

ending line-no is an optional last line-no in the current program to search and decode. If omitted, the
highest line number is selected. If the ending line-no does not exist, the first existing lower line-no is used.

Remarks
SHOW is used to search for desired program statement by reading BASIC object code. When a statement
is found, SHOW converts the BASIC object code back into text and lists it. The command looks for
every full and partial match of the desired program statement. For example, if you specify Swap, both
Swap and Swapf are located.

Examples
SHOW -V /open #/
100 SHOW -V /variable =/ 500
100 SHOW /chain/ INPUT:

See also
LIST, SHOW, Starting and Ending Line numbers

 Debugger Commands 88

dL4 Command Reference Guide

SIZE
Synopsis

Display memory usage for current program/data.
Syntax

SIZE { -l }
Parameters

The -l option causes the sizes and names of all linked libraries to be displayed.
Remarks

SIZE is used to display the amount of memory allocated for the storage of a current program and variables.
For example:

 Code Data By

 4376 0 menudispatch

 4376 0 Total

Code is the number of bytes used to store the BASIC object code encoded program.

Data is the number of bytes used to store data for variables.

Code and Data space is displayed separately for each nested subprogram.
Examples

SIZE

See also
NEW

 Debugger Commands 89

dL4 Command Reference Guide

STATUS
Synopsis

Prints the name of current program file and execution status.
Syntax

STATUS {BREAKPOINT | MACHINE | SYSTEM | UNIT }
Parameters

{BREAKPOINT} displays each of the existing breakpoints.

{MACHINE} displays current characteristics of the current program as a whole.

{SYSTEM}displays the current directory and other system information.

{UNIT} displays current characteristics of the program unit being examined.
Remarks

STATUS is used to determine the current execution status and program filename, breakpoints, and other
status interaction, which it prints. The current execution status is displayed after a breakpoint. One line is
printed for each function call, procedure call, subprogram call, program SWAP, or GOSUB that is still in
progress.

Most of the displayed lines take the form “xxx [n] location”, where “xxx” is either “- ” if this is the
current examination level, as controlled by the LEVEL and EXAMINE commands, or three (3) spaces
before the status indication.

The value of “n” is the stack level, starting at zero in the main program and increasing with each function
call, procedure call, subprogram call, or program SWAP. The string “location” has one of the following
forms (l = line number; s = statement number within that line, starting at 1):

 l;s
 local: l;s
 external: l;s
 pgm: l;s
 external: local: l;s
 lib: external: local: l;s
 lib: external: l;s
 pgm: l;s
 pgm: local: l;s
 pgm: external: l;s
 pgm: external: local: l;s
 pgm: lib: external: l;s

pgm is the name of the program containing the line.

lib is the name of the library containing the line.

external is an external procedure or function name.

local is a local procedure or function name.

For example:
-->[1] PrintHello:20;1
 [0] 40;1

In the above example, the program has stopped at the first statement of line 20 within a CALL to the
procedure “PrintHello”.

If a subprogram call (CALL “filename”) or SWAP is in progress, then either:

 “ filename - CALLed”

or:

 Debugger Commands 90

dL4 Command Reference Guide

 “ filename - SWAPed”

is printed at the point in the stack at which the call or SWAP occurred:
--> [1] SUBPROGRAM:10;1
 SUBPROGRAM - CALLed
 [0] 50;1

--> [1] SWAPPROGRAM:10;1
 SWAPPROGRAM - SWAPed
 [0] 60;1

The STATUS command considers each program, external function, or external procedure to be a separate
program unit with its own GOSUB stack. If any entries are present in a GOSUB stack to indicate that a
GOSUB has occurred without a RETURN or other action to pop the stack, then the stack is displayed as
in the following example:

-- > [1] PRINTHELLO:20;1
 GOSUB Stack:
 [0] 50;1
 [0] 40;1

Each line of the GOSUB display shows the line number and the statement number at which the GOSUB
was executed.

Status Breakpoint
The status breakpoint command displays each of the existing breakpoints, using the same
“pgm:lib:external:local:line;stmt” format as the current execution status. If error breakpoints (BREAK IF
ERROR) are enabled, the line “Break If Error” is also printed:
 dbg>status b
 PrintHello:20;1

Status Machine
The status machine command, which displays current characteristics of the current program as a whole, is
described in the EXAMPLES subsection.

Status System
The status system command, which displays current directory and other system information, is described in
the EXAMPLES subsection.

Status Unit
The status unit command displays current characteristics of the program unit being examined. Each
program, external function, or external procedure is a separate program unit. These characteristics are
described in the EXAMPLES subsection.

Entering STATUS * produces a Format error.
Examples

If you enter STATUS without a parameter, the screen displays:
status
-->[0] 90;1

where [0] indicates level 0, 90 indicates line number, and 1 indicates statement number within the line
number.

If you enter STATUS with the {MACHINE} parameter, the screen displays:
status machine
Default input channel: 102
Default output channel: 102

 Debugger Commands 91

dL4 Command Reference Guide

Trace channel: None
Command line string: “”
Hot-key program: “swap.run”

where the Default input channel is the channel number used by any non-channel INPUT statement.

The Default output channel is the channel number used by any non-channel PRINT statement.

The Trace channel is the channel number used for program tracing, if enabled by the TRACE statement or
command.

The Command line string is is the command line by which the current program was invoked.

The Hot-key program is the name of the program, if any, to be invoked by the SWAP key. The program
name can be set by using the SWAPF intrinsic procedure.

If you enter STATUS with the {SYSTEM} parameter, the screen displays:
Current directory: C:\Program Files\dL4\SAMPLES
Port number: 4094
Number of users: 2
MSC(7) value: 257
SPC(5) value: 257
SPC(7) value: 0

If you enter STATUS with the {UNIT} parameter, the screen displays:
status unit
Current position: [0] 90;1
Last error number: 0
Last error position: n/a
Last error text: “”
Last END or STOP: 0
DATA position: 0
Last determinant: <Not-A-Number>
Last input element: 0
Last input size: 0
Input pend mode: On
Number precision: %3
Date precision: %3
LIB directory: “”

status unit is a status listing.

Current position is the current execution location within the program unit. [0] 90;1 indicates level 0, line
90, statement 1 within the line.

Last error number indicates line where the last error occurred. 0 indicates there is no last error.

Last error position is not available: n/a indicates there is no last error position.

Last error text is an English phrase when available. “” means none was found.

Last END or STOP is the location, if any, of the last END or STOP statement that was executed. 0
indicates no such location exists.

DATA position is is the current DATA line number to be used by non-channel READ statements. 0 is the
current value.

Last determinant is the current value of the “DET(0)” function, the determinant generated by the last
matrix inversion statement. <Not-A-Number> indicates the current value is undefined: most likely no
MAT INV statement has been executed).

Last input element is the current value of “MSC(1)”. In this case, the current value is 0.

Last input size is is the current value of “SPC(17)”. The current value is 0.

Input pend mode is either On or Off.

 Debugger Commands 92

dL4 Command Reference Guide

Number precision is the precision to be applied to any newly-created numeric variable. The current
precision is %3.

Date precision is the precision to be applied to any newly-created date variable. The current precision is
%3.

LIB directory is the current value of “MSC$(6)”.
See also

BREAK, END, EXAMINE, LEVEL, XBREAK

 Debugger Commands 93

dL4 Command Reference Guide

TRACE
Synopsis

Enable statement trace debugging.
Syntax

TRACE {ON {#channel}| OFF}
Parameters

channel indicates the channel where TRACE output is to be sent.
Remarks

The TRACE command is used to enable TRACE ON and TRACE OFF. Trace mode is used to observe
the line number program flow without performing single steps. dL4 provides various ways to handle
tracing:

To turn Trace mode on, use TRACE ON or TRACE ON #chn.num.

To turn Trace mode off, use TRACE OFF.

The TRACE ON statement can be followed by an optional channel number for redirecting trace output to
a file or driver. The channel number that is given must be opened prior to executing the TRACE statement.
If the channel is subsequently closed, trace output defaults to the terminal.

Tracing is automatically disabled when another program is loaded using CHAIN, SWAP, or SPAWN.

 Canceling a running program does not turn TRACE off.
Examples

TRACE
TRACE ON
TRACE OFF
TRACE ON #5

See also

 Debugger Commands 94

dL4 Command Reference Guide

VARIABLE
Synopsis

Display variable names that are defined in the currently selected procedure.
Syntax

VARIABLE
Parameters

None.
Remarks

VARIABLE displays a list of the variable names defined in the currently selected procedure.
Examples

VARIABLE

See also
LEVEL, LIST, STATUS

 Debugger Commands 95

dL4 Command Reference Guide

WB
Synopsis

Move the debug window to the bottom of the screen.
Syntax

WB
Parameters

None.
Remarks

A debug window is only used if dL4 windows are open.
Examples

WB

See also
WT

 Debugger Commands 96

dL4 Command Reference Guide

WF
Synopsis

Resize the debug window to full screen
Syntax

WF
Parameters

None.
Remarks

A debug window is only used if dL4 windows are open.
Examples

WF

See also
WH, WS

 Debugger Commands 97

dL4 Command Reference Guide

WH
Synopsis

Resize the debug window to one half the screen.
Syntax

WH
Parameters

None.
Remarks

A debug window is only used if dL4 windows are open.
Examples

WH

See also
WF, WS

 Debugger Commands 98

dL4 Command Reference Guide

WINDOW
Synopsis

Move, resize, or change treatment of the debug window.
Syntax

WINDOW [@x,y] [columns,rows] [rows] [CLOSE] [HIDE]

W [@x,y] [columns,rows] [rows] [CLOSE] [HIDE]
Parameters

@x,y are numerics that move the upper left corner of the debug window to the column, row coordinates.

columns,rows are numerics that resize the debug window by number of columns and rows.

rows is a numeric that resizes the debug window by number of rows

CLOSE will cause the debugger to close the debug window when program execution continues.

HIDE will cause the debugger to keep the debug window open when program execution continues. This is
the default state of the debug window.

Remarks
A debug window is only used if dL4 windows are open.

Examples
WINDOW 20,70

WINDOW @0,10

See also
LOADSAVE, PSAVE, SAVE

 Debugger Commands 99

dL4 Command Reference Guide

WS
Synopsis

Resize the debug window to one quarter of the screen.
Syntax

WS
Parameters

None.
Remarks

A debug window is only used if dL4 windows are open.
Examples

WS

See also
WF, WH

 Debugger Commands 100

dL4 Command Reference Guide

WT
Synopsis

Move the debug window to the top of the screen.
Syntax

WT
Parameters

None.
Remarks

A debug window is only used if dL4 windows are open.
Examples

WT

See also
WB

 Debugger Commands 101

dL4 Command Reference Guide

XBREAK
Synopsis

Create a breakpoint to the Debugger at a specified position or event, where processing or
reception of data is to be interrupted.

Syntax
XBREAK position
XBREAK IF ERROR

Parameters
position is the point in the program at which processing or reception of data is to be interrupted. A position
parameter is used by some BASIC/Debugger commands to specify a line in a dL4 program. For a full
definition of a position parameter, refer to Appendix C. Breakpoints created with XBREAK will be
applied to both the current program and to any program which is loaded by CHAIN, SWAP, or CALL
statements during execution. Thus, an “XBREAK 60” command would create a breakpoint at line 60 in the
current program and at line 60 in any program that was entered during execution. The position specified in
the XBREAK command does not have to exist in the current program.

If error sets a breakpoint for the Debugger. The breakpoint occurs on error detection, before executing any
program error trapping (e.g., if err 0).

Remarks
XBREAK is used to create a breakpoint for any purpose, such as examining data to allow for a display of
variables and statuses.

The number of breakpoints that can be created within a program is limited only by memory available.
Examples

XBREAK 60
XBREAK if error

See also
BREAK, NOBREAK, STATUS

 loadsave 102

dL4 Command Reference Guide

Chapter 5 - loadsave
loadsave encodes BASIC source code from a text file into BASIC object code which is saved as an
executable dL4 program. loadsave enables you to develop applications outside the dL4 Command Line-
oriented IDE environment.

Since loadsave works with text files, it lets you use the Source Code Control System (SCCS) on Unix as a
maintenance and enhancement tracking tool. In addition, loadsave may be invoked in a make or nmake
description file to maintain up-to-date versions of programs. A detailed description of SCCS and make is
beyond the scope of this guide. Consult your system documentation for SCCS and make utilities.

 loadsave 103

dL4 Command Reference Guide

loadsave
Synopsis

Load and save a BASIC program.
Syntax

loadsave {switches} source file -o object file
Parameters

switches are optional command line options to loadsave.

source file is a required text filename containing a valid dL4 BASIC program.

object file is the required output filename where the final encoded BASIC object code is saved.
Remarks

Option switches associated with loadsave are:

-h or -? Output simple usage information..

-H Output complete usage information..

-c profile If you are converting from other versions of BASIC, you may need to use this option to
convert older programs. `'profile' is the name of a 'conversion profile' used to control the
conversion. Commented examples of conversion profiles can be found in the dL4 Tools
directory (“convert.prf” or “convbits.prf”). Options can be set in the conversion profile to
select the language dialect (IRIS, BITS, or IMS), to generate missing line numbers used
by GOTO or GOSUB statements, or perform other non-standard conversions.

-C outfile Specifies the text output file for the converted program (used with –c and without -o).

-e Do not display the program source line of an error.

-i n{,m} Specifies indentation for IF, DO, and other multiline structures. The number “n” is the
number of columns to indent and the optional “m” is the initial left margin. The default
values are equivalent to “-i 2,0”. This option can only be used with “-C”.

-l n Create an OSN protected program. The value "n" is the number of a master OSN as
listed by the SCOPE OEM command.

-L Convert line numbers to labels.

-n n{,i} Specify initial output line number used for source files that do not use line numbers. If ‘i’
is specified, the line number will be incremented by ‘i’ between each line.

-o outfile Specifies the output file for the compiled program (required unless –C or –O specified).

-O outfile Specifies the output file for the compiled program. Unlike “-o”, the output file will be
produced even if errors are detected.

-ro Output a run-only program (implies -s).

-s Strip all remarks.

-t n Specify the number of leading spaces that are equivalent to a tab character. This option is
used with “-C” to produce an output text file with tabs replacing leading spaces wherever
possible.

-u Check program for undeclared variables.

-U Force output of line numbers to the text file specified by the “-C” option.

-v Output the version number of loadsave.

-V Output version number of loadsave without any other explanatory text.

-w Print warning messages for possible errors such as unDIMmed variables.

 loadsave 104

dL4 Command Reference Guide

loadsave loads a BASIC program from a text file and saves it as a BASIC program file.

The -ro option creates a Run-only file which cannot be listed.

If the source file contains an error or does not exist, the object file is neither saved nor created. The object
file is created only if the entire encoding process succeeds. If the object file already exists, it is
overwritten.

In addition to the standard dL4 statements, loadsave supports include statement in the source text file to
insert lines from other text files. To avoid placing paths in include statements, the runtime parameter
INCSTRING can be used to provide a space separated search list of directories that contain include files.
Example:

 Include “filename”

On Unix systems, options and permissions can be added to 'outfile' to make the object file directly
executable from the operating system command line. The stdexec and netexec options assume that dL4 run
has been installed as /usr/bin/run. The netexec option uses '/usr/bin/run -NB' to execute the program
without a terminal definition. The exec option is used to specify the run path or run options. A dL4
program file with Unix execution options can still be used in dL4 scope. On Windows systems, file
associations can be configured to provide a similar direct execution feature.

Examples
loadsave {-s} {-c profile} -o outfile srcfile

loadsave -{vh?}

loadsave -o "<755> (stdexec) outfile" srcfile

 run 105

dL4 Command Reference Guide

Chapter 6 - run
run executes a BASIC object code file in a non-Command Line IDE environment.

The run session begins when the user types “run filename”.

The run session terminates when the program relinquishes control, or when a non-trapped error occurs
during program execution.

The long chain statement is not supported for run because there is no System Command Line Processor
(SCOPE). Long chain is described in the dL4 Language Reference Guide.

 run 106

dL4 Command Reference Guide

run
Synopsis

Executes BASIC programs.
Syntax

run {option switches} filename {arguments}
Parameters

option switches are optional command line options to run.

filename is any filename or path to a dL4 program file (not text file) to which you have read-permission.

arguments are additional information passed to the BASIC program.
Remarks

run is the BASIC interpreter used to execute a previously-saved BASIC program. The filename can be
either a relative or absolute filename. The arguments are passed to the BASIC program.

Option switches associated with run are:

-h or -? Output usage information.

-B Specify binary terminal input and output.

-k n Specify the socket “keepalive” interval in seconds for the standard input channel.

-N Specify dumb terminal mode.

-t filename Specify terminal definition file.

-X Specify dynamicXport mode. This option should only be used by dynamicXport.
Examples

run payroll
run payroll 7/4/76

 Tools 107

dL4 Command Reference Guide

Chapter 7 - Tools
This chapter describes the utility programs that are supplied with dL4. These programs are dL4 BASIC
programs and are installed in the Tools subdirectory.

 Tools 108

dL4 Command Reference Guide

BATCH
Synopsis

Start and execute commands on a different port.
Syntax

batch

batch port { command | ^commandfile }

batch /h
Parameters

port is the port number to start and execute command on.

command is a command to execute.

commandfile is the path of a text file containing commands to execute..
Remarks

The BATCH utility allows a user to attach an interactive or phantom port and transmit commands to that
port.

The /H option displays instructions for using BATCH.

port is an optional port number. If port is not supplied on the command line, prompt mode is selected (see
below). The port must be a valid port number. If an interactive dL4 session is currently running on the
selected port, it is terminated to command mode. If not, a background process is created assuming the
identity of the specified port number.

command is any dL4 command, such as the name of a program or command. The form ^commandfile
instructs BATCH to read and transmit all of the commands in the text file to the selected port. If command
or commandfile is not supplied, prompt mode is selected (see below).

BATCH is designed to operate in one of two modes - immediate and prompt. Immediate mode is assumed
whenever both a port and command or commandfile is specified on the command line. This mode is useful
when a single specific command is to be performed in background which requires no additional input.

Prompt mode is assumed when any required parameter is not supplied and BATCH enters a dialogue mode
with the user. A port is requested if one was not supplied as part of the command line. Once the port is
attached BATCH repeatedly prompts for entry of a command. Multiple commands, such as starting a
program followed by the entry of required prompts is permitted. After successful transmission of each
command, you are prompted for another. Pressing ESCAPE terminates entry of commands and requests a
new port number for another prompt-mode session. Pressing ESCAPE a second time terminates BATCH.

Examples

batch 87 libr [output] ^

batch

 Tools 109

dL4 Command Reference Guide

BITSDIR
Synopsis

List files in a directory.
Syntax

bitsdir {switches}
Parameters

switches are optional command line options to bitsdir.

 Tools 110

dL4 Command Reference Guide

Remarks
switches are optional, and used to limit, select and control the list of filenames printed from a directory. If
no switches are entered, all public files in the current working directory are displayed. The following
switches may be entered in any order, separated by spaces:

/H Print instructions for using BITSDIR. An abbreviated list of commands and their

formats is displayed.

/L Output to printer, $LPT. All output is paginated and directed to the executable script lpt.

/L=$filename Output to device 'filename'. Select any executable pipe to direct the output. All output is

paginated and directed through the pipe.

/L=filename Create and output to a text file 'filename'.

/S Abbreviate the information displayed using two columns. Only the filename, account,

and size is displayed.

path: Specify the pathname from which to create the directory listing. pathname must be

terminated by a colon.

[GRP-USR] List public files on the group id (GRP) and user id (USR). Public files are those which

you have read or write permission. Up to 10 different [GRP-USR] selections may be
entered.

[GRP-*] List all public files for one group, any user.

[*-USR] List all public files for one user, any group.

[*-*] or @ List all public files on any account.

/A Alphabetize by filename. All selected files are sorted by filename.

/AA Alphabetize by user account numbers. Files are sorted first by [GRP-USR], followed by

filename.

T=type Restrict listing to specific file types. These types are:
 T Tree-Structured Data Files.
 $ Executable device drivers, shell scripts or native OS programs.
 C Contiguous Data Files.
 I Indexed Data Files; all, whether poly or normal.
 B BASIC Saved Program files.
 S System BASIC Saved Program Files.

>X List only those files not accessed within X hours.

<X List only those files accessed within X hours.

<<X List only those files created within X hours

>>X List only those files older than X hours.

(abc*) Restrict listing to files beginning with 'abc', such as "abc", "abcdata".
(*xyz) Restrict listing to files ending with 'xyz', such as "xyz" and "dataxyz".
(ab*z) Restrict listing to files beginning with 'ab' and ending with 'z'.
(*ijk*) Restrict listing to files containing 'ijk'.

 Tools 111

dL4 Command Reference Guide

Up to 20 selections, separated by commas may be included within ().
.

Examples
dir /L=textfile @T=I (A.*, *.dat)

dir /usr/ub/1: @ /A

 Tools 112

dL4 Command Reference Guide

BITSTERM
Synopsis

Display or control status of active ports.
Syntax

bitsterm {portrange} monitor {switches}

bitsterm {portrange} evict

bitsterm /h
Parameters

portrange is a continuous range of port numbers. It can be a single port number, a range expressed in the
form “first – last”, or the keyword “all” which selects all ports.

switches are options for the monitor display.
Remarks

The bitsterm utility has several functions controlled by the function keyword:

Monitor display status of selected ports

Evict terminate selected ports

-h display usage information

The function keywords “monitor” and “evict” can be abbreviated as “m”or “e”. Case is ignored in all
keywords and switchs. The supported switches for the bitsterm monitor function are:

C repeat display every 10 seconds

F display open channel and file information for the program running on the port
Examples

bitsterm all mf

bitsterm 5-12 evict

 Tools 113

dL4 Command Reference Guide

BUILDFI
Synopsis

Interactively create a Full-ISAM file.
Syntax

buildfi
Parameters

None.
Remarks

buildfi is a simple interactive utility that allows the user to define and create a Full-ISAM file without
writing a dL4 program.

Examples
buildfi

 Tools 114

dL4 Command Reference Guide

BUILDXF
Synopsis

Interactively create an Indexed-Contiguous file.
Syntax

buildxf
Parameters

None.
Remarks

buildxf is a simple interactive utility that allows the user to define and create an Indexed-Contiguous file
without writing a dL4 program.

Examples
Buildxf

 Tools 115

dL4 Command Reference Guide

CHANGE
Synopsis

Modify file permissions or attributes
Syntax

change {switches} {filename}
Parameters

switches are optional command line options to change

filename is the path of the file to be modied.
Remarks

Option switches associated with change are:

-h or -? Output usage information.

CHANGE operates in a interactive mode, displaying the current attributes and requesting new values.
Press RETURN to move to the next prompt without changing the displayed information. To change an
item, enter the new information and press RETURN. Press ESCAPE to terminate the command.

The prompt for NEW COST is printed only for UniBasic compatibility and has no affect.
Examples

change data/customer

 Tools 116

dL4 Command Reference Guide

CHECKSUM
Synopsis

Calculate or compare a file checksum.
Syntax

checksum {switches} { {-c checksum} filename} …
Parameters

switches are optional command line options to checksum.

filename is the path of a file to be checksummed. If the filename is preceded by a “-c checksum” option,
then the calculated checksum is compared with “checksum” and a “Matched” or “Different” status message
is displayed instead of the checksum.

Remarks
Option switches associated with checksum are:

-h or -? Output usage information.

-m Use MD5 checksum.
Examples

checksum –m programs/mainmenu

 Tools 117

dL4 Command Reference Guide

CONVBITS.PRF
Synopsis

Sample conversion profile for converting BITS program source text.
Syntax

N/A.
Parameters

None.
Remarks

The convbits.prf file is a sample conversion profile for use with the CONVERT command or with
LOADSAVE. The profile was written to convert BITS BASIC source text files to dL4.

Examples
convert program.bas,/usr/lib/dl4/tools/convbits.prf

 Tools 118

dL4 Command Reference Guide

CONVERT.PRF
Synopsis

Sample conversion profile for converting IRIS program source text.
Syntax

N/A.
Parameters

None.
Remarks

The convert.prf file is a sample conversion profile for use with the CONVERT command or with
LOADSAVE. The profile was written to convert IRIS BASIC source text files to dL4.

Examples
convert program.bas,/usr/lib/dl4/tools/convert.prf

 Tools 119

dL4 Command Reference Guide

COPY
Synopsis

Copy file.
Syntax

copy {<attr>} destination = sourcefile {,sourcefile} …
Parameters

attr are optional file attributes such as access permissions.

destination is the path of the destination file.

sourcefile is a path of a file to be copied to destination.
Remarks

The source files are copied to destination which is a new file to be created. If destination begins with a
dollar sign, it will be opened with the pipe driver. If more than one source file is specified, the source files
will be concatenated.

Examples
COPY backup/payrollbackup = data/payroll

COPY <644> programsave=program

COPY $lpt=data2

 Tools 120

dL4 Command Reference Guide

DOKEY
Synopsis

Examine or modify indexed contiguous files.
Syntax

dokey {filename}
Parameters

filename is the path of an indexed contiguous file.
Remarks

The dokey utility is identical to the keymaint utility. Please see the description of keymaint for a
description of both keymaint and dokey.

Examples

dokey data/customers

 Tools 121

dL4 Command Reference Guide

FORMAT
Synopsis

Create a formatted or contiguous file.
Syntax

format { {<attr>} { [numrecs:reclen] } filename }

format /h
Parameters

attr are optional file attributes such as file permissions.

numrecs is the number of records in the contiguous file.

reclen is the contiguous record length in bytes.

filename is the path of the file to be created.
Remarks

Option switches associated with format are:

/h Output usage information.

The format utility is used to create formatted or contiguous files. A formatted file will be created unless
the “[numrecs:reclen]” option is specified. If no optional parameters are specified, the utility will prompt
for the filename and file attributes. When creating a formatted file, the utility will prompt item types and
sizes in the following formats:

Sn String data where n is the length of the field. Valid lengths are greater than zero and less than
65535. For example, S20 will create a 20-byte string field.

Dn Numeric data where n is the precision to be specified. Valid precisions are 1 through 5. See the
dL4 Language Reference Guide for a description of numeric precision. For example, N2 will
create a 4-byte numeric field.

Bn Binary strings, where n is the length of the field in words (2 bytes per word). Valid lengths are
greater than zero and less than 32768. For example, B20 will create a 40-byte binary field.

Examples

format data/orders

 Tools 122

dL4 Command Reference Guide

IC2FI
Synopsis

Convert indexed contiguous files or data to Full-ISAM files or data.
Syntax

ic2fi
Parameters

None.
Remarks

The IC2FI utility is an interactive program to convert indexed contiguous files to Full-ISAM files. The
utility may also be used interactively or non-interactively to copy data from indexed contiguous files to an
existing Full-ISAM file. Separate documentation is available that describes how to use the IC2FI utility.

Examples
ic2fi

 Tools 123

dL4 Command Reference Guide

KEYMAINT
Synopsis

Examine or modify indexed contiguous files.
Syntax

keymaint {filename}

keymant /L{=logfile} {filename}
Parameters

filename is the path of the indexed contiguous file to be accessed.

logfile is a log output filename.
Remarks

KEYMAINT is an interactive utility to access, modify, and repair indexed contiguous files. If a filename
is not specified on the command line, KEYMAINT prompts for a filename. The commands are shown
below. Many commands prompt for additional information. The prompts are shown in bold face and the
responses are explained in italics.

Cmd Name Description

A Add Key Insert keys into the index currently selected.

 Enter Key to add:

 Enter the key to insert.

 Enter Record # for (key):

 Enter the record # to be associated with (KEY).

C List Count Displays the number of keys that were listed using the last L option.

D Delete Key Delete keys from the selected index.

 Enter the key you wish to delete:

 Enter the key to delete.

 (KEY) deleted, return record # (rec) to free list?

 Enter N if you do not want the record returned; any other response will return
the record to the free list. The (KEY) field will display the KEY you deleted and
the (rec) field displays the record number used by the KEY.

F New File Change from one file to another.

 Enter Filename:

 Enter a new filename in the form filename or filename-index-number.

G Get Key Scan the selected index (from a specified starting point) to locate a key to delete.

 Enter beginning key to delete:

 Enter the key that you wish to start the scan from. The key and associated
record number are displayed.

 (D)elete, (S)can, (E)xit:

 Enter E to return to the command prompt.

 Enter S to scan up to the next key.

 Enter D to delete the key.

 Tools 124

dL4 Command Reference Guide

H Help Displays the help information.

I Info on File Recall file information for display.

L List Index Displays keys in the selected index.

 Enter Key to start at:

 Enter the key from which you wish to start the display. The display shows 14
keys, then responds:

 Press 'Return' to see more:

 Press Return to see the next 14 keys.

 Press ESCape to return to the command prompt.

N New Index Change the selected index.

 Enter index number:

 Enter the index (directory) number you wish to browse.

O Output Data Output up to 512 bytes of a data record as a string. All non-printable characters
are displayed as ^.

 Enter Record # for (O)utput:

 Enter the Record number you want to output.

R Read Data Read a data record one item at a time.

 Enter key to read:

 Enter the key for the record you want to read. If you press <Return>, the
response is:

 Enter the Record # to read:

 Enter a physical record number.

 Enter type (1-6=Numeric, S###=String):

 Enter a number from 1 to 6 to specify numeric precision.

 Enter S and the length for a string. String length can be up to 512 bytes.

 Enter Displacement:

 Enter the byte displacement in the data record for the item you want to read.
You will then see the record number, displacement, the type, and the data item.

W Write Data Write a data record one item at a time.

 Enter Key to write:

 Enter the key of the record you want to write. If you press <Return>, the
response is:

 Enter the Record # to write:

 Enter a physical record number.

 Enter type (1-6=Numeric, S###=String):

 Enter a number from 1 to 6 to specify numeric precision.

 Enter S and the length for a string. String length can be up to 512 bytes.

 Enter Displacement:

 Enter the byte displacement in the data record for the item you want to write.

 Tools 125

dL4 Command Reference Guide

 Enter data to write:

 Enter the data you want to write. You will then see the record number,
displacement, the type, and the data item.

X Exit Allows you to exit KEYMAINT

Z Get Record Get or release records.

 (G)et or (R)elease Record

 Enter G to get a record from the free list.

 Enter R to release a record to the free list.

 If you enter G, the display is “Record number (rec) is now yours!” where (rec)
is the record number removed from the free list.

 If you enter R, the display is:

 Enter Record number to release:

 Enter the record number that you want to release back to the free list.

Press ESCAPE to return to the previous prompt. You will move back one prompt each time you press
ESCAPE.

The /L option can be used with any command to print the output as a log:

/L Sends the output to the system printer '$lpt'.

/L=$file Sends the output to a secondary printer named file.

/L=file Sends the output to a text file named file.
Examples

keymaint data/customers

 Tools 126

dL4 Command Reference Guide

LIBR
Synopsis

List files in a directory.
Syntax

libr {switches}
Parameters

switches are optional command line options to libr.
Remarks

The switches shown below are optional, and used to limit, select and control the list of filenames printed
from a specified directory. If no switches are entered, all public files in the current working directory are
displayed. The switches may be entered in any order, separated by spaces:

@ List all accessible files for all accounts. An accessible file is any file with read
permission set for the user issuing the command.

@g List all accessible files belonging only to accounts in group g, where g is a decimal
number

@g,u List all accessible files belonging only to the account group g, and user u.

*type Restrict listing to specific file types. Valid types are:

T Text Files.

$ Executable device drivers, shell scripts or 'C' programs.

C Contiguous Data Files.

I Indexed Data Files; all, whether poly or normal.

B BASIC Saved Program files.

S System BASIC Saved Program Files.

F Formatted Data File

abc List all only files whose names begin with the characters given. For example: abc, abcc,
abcd, abcz, etc.

^ Alphabetize listing by filename. All selected files are sorted by filename. Without the
up-arrow option, files are listed in order of occurrence in directory.

>X List only those files not accessed within X hours.

<X List only those files accessed within X hours.

dir/ List files in directory dir. Only directories within the LUST environment variable will be
searched.

_ Abbreviate the information displayed using only the File Type and Filename columns.

[dest] Output the listing to either a pipe ($lpt) or a textfile.
Examples

libr sys/ @ *B

libr 1/ >20 <40 *I ^

 Tools 127

dL4 Command Reference Guide

MAKE
Synopsis

Create multiple data files with the same attributes..
Syntax

make {<attr>} filename {,filename} …
Parameters

attrs are optional file attributes such as file access permissions.

filename is the path of a file to be created.
Remarks

Examples

make <100:512CP> ABC D17 DISK1 FILE-17

 Tools 128

dL4 Command Reference Guide

MAKECMND
Synopsis

Generate a command file for BATCH or EXEC.
Syntax

makecmnd { cmdfile using DIRfile }

makecmnd /h
Parameters

cmdfile is a text file to be created.

DIRfile is a text file in the format produced by a “DIR /l=file” command.
Remarks

Option switches associated with makecmnd are:

/h Output usage information.

MAKECMND generates a command file for use by BATCH or EXEC commands. A command file
generally consists of a set of commands repeated for a number of filenames read from a DIR utility
directory listing. If no options are present on the command line, the user is prompted for the file to create
(cmdfile) and for the directory file (DIRfile).

The user is prompted to enter a series of commands to apply to each of the filenames in the DIRfile. Up to
20 command lines may be entered. Command lines are normally duplicated to the command file, with the
following replacement options:

Characters Replaced with (from DIRfile listing)

? A filename.

? (X,Y) Characters X through Y of a filename.

@ The account [GRP-USR]

<?> The file's attributes.

<?+Y-Z> Add or subtract individual letters from the file's attributes.

(SAV) The appropriate save command for the BASIC program (SAVE or PSAVE). The DIR
listing must be of the “/V” option type.

Negative subscripts can be used with the "?" character to specify a displacement from the end of the
filename, for example:

? "FILENAME"

?(,1,) "FILENAM"

?(-3) "NAME"
Examples

makecmnd cfile using dirlist

 Tools 129

dL4 Command Reference Guide

MAKEHUGE
Synopsis

Convert files to huge file format.
Syntax

makehuge {switches} {path} …
Parameters

switches are optional command line options to makehuge.

path is the path of a file or directory to be converted.
Remarks

Option switches associated with makehuge are:

-h or -? Output usage information.

-d Convert all files in specified directory.

-v Output additional conversion status messages

Examples

makehuge data/history

 Tools 130

dL4 Command Reference Guide

MAKEUNIV
Synopsis

Convert non-portable UniBasic files to Universal files
Syntax

makeuniv {switches} -o outputdir profile

makeuniv {switches} -p profile sourcedir

makeuniv –h

makeuniv -H

makeuniv -v
Parameters

switches are optional command line options to makeuniv.

outputdir is the path of a directory into which converted files will be written. The files to be converted are
specified in the profile file. If the profile file specifies files from different sub-directories, those sub-
directories will be recreated in outputdir. The output directory cannot contain the source data files that are
being converted.

profile is the path of a text profile file. When using the “-p” option, the profile file is created and written by
makeuniv. When using the “-o” option, the profile file must be an existing text file using the format
specified in the Remarks section.

sourcedir is the path of a directory containing files to be converted. The directory can contain sub-
directories.

Remarks
MAKEUNIV converts non-portable UniBasic formatted, contiguous, and indexed contiguous files to
Universal or Portable equivalents. Because UniBasic is not available for Windows and conversion must be
performed on the system that created the files, MAKEUNIV is not provided in dL4 For Windows.

Conversion is normally performed in three steps:

1. Run MAKEUNIV with the "-p" option to generate a prototype conversion file which describes all of the
UniBasic files in the specified directory and its subdirectories. Example:

 makeuniv -p ubfiles.txt datafile-directory

2. Use a text file editor to modify the prototype conversion file to add any needed record field definitions
and to check for warning messages. For BCD ("Q") data files, the prototype conversion file will be
produced with all of the information needed to convert the files and no changes will be needed. For non-
BCD files, the user must add record field definitions using the syntax described below.

3. Run MAKEUNIV again but with the "-o" option and the conversion file created in steps 1 and 2. This
step performs the actual conversion of the files in the source directory to Universal or Portable files in the
destination directory. The utility will create the destination directory and any subdirectories if they do not
already exist. Example:

makeuniv -o newfile-directory ubfiles.txt

Because non-Universal UniBasic files are not portable, conversion must be performed on the same type of
system on which the files were created. The file and directory names must not contain spaces.

One of the following mode switches must be specified when using MAKEUNIV:

-h Output basic help.

-H Output extended help.

-v Output version number

 Tools 131

dL4 Command Reference Guide

-o dir Build destination files in directory "dir".

-p filename Output conversion layout profile to "filename".

When generating a conversion profile with the “-p” option (step 1), the optional switches are:

-c arg Set contiguous and indexed contiguous file conversion options according to "arg". The
only option is "allstring" which treats non-BCD file records as all string data. A record
section will be output for non-BCD files defining the record as a single string.
Manual editing of the record section will not be required.

-f arg Set formatted file conversion options according to “arg". The option can either be
"inttobcd" or or "extended". The "inttobcd" option converts 16-bit binary integer fields to
BCD integers and may cause overflow errors during conversion. The
"extended" option allows the use of binary integers and 5 word BCD floating point. An
"extended" file can not be accessed by UniBasic.

-i arg Set index conversion options according to "arg". The only option is "iriskeys" which
converts IRIS or binary keys ("k" files) to ASCII strings.

-l Use dL4 LUMAP and/or DL4LUST when evaluating file paths.

-t arg Select files according to "arg" which can be any combination of "b" (BCD files), "n"
(non-BCD files), "c"(contiguous), "f" (formatted), and "i" (indexed
contiguous).

When converting files to the output directory with the “-o” option, the optional switches are:

-k Use random key insertion algorithm.

-l Use dL4 LUMAP and/or DL4LUST when evaluating file paths.

-r Replace destination file.

-t arg Select files according to "arg" which can be any combination of "b" (BCD files), "n"
(non-BCD files), "c"(contiguous), "f" (formatted), and "i" (indexed
contiguous).

-u Enable "records-in-use" count (default setting).

-U Disable "records-in-use" count.

The conversion profile is a text file and consists of sections which contain value or definition lines.
Sections start with a section name enclosed in square brackets, for example: ‘[FILE]’. Value or definition
lines are denoted by a keyword equal to a value, such as ‘FILE=test’. Lines beginning with a semicolon (;)
are comments and blank lines are allowed. The conversion profile can viewed or modified with normal text
file editors.

A ‘[FILE]’ section must exist in the conversion profile for each file to be converted. The ‘[FILE]’ section
must begin with a value line 'FILE=filepath'. It may also contain optional values REPLACEFILE,
RECORDORIGIN, SKIPTHISFILE, INTTOBCD, EXTENDEDTYPES, and IRISKEYSAREASCII.
'REPLACEFILE=Yes' (or ‘No’) and 'RECORDORIGIN=0' (or ‘1’). If not specified, REPLACEFILE
defaults to NO and RECORDORIGIN defaults to 0. For example:

[File]
File=filename
ReplaceFile=Yes
RecordOrigin=1

The FILE value is the path of the file to be converted.

The REPLACEFILE value may be either ‘Yes’ or ‘No’ and determines the action if a file of the same name
already exists in the destination directory. It is similar to the '-r' command line option but controls
replacement on a file by file basis. The default value is ‘No’. The '-r' option, if used on the MAKEUNIV
command line, will override this specification.

The RECORDORIGIN value allows the specification of byte positions, in the record definition section that
follows, to begin at 0 or 1. This allows the user to think of the first byte of the record as either byte 0 or
byte 1. The default value is zero.

 Tools 132

dL4 Command Reference Guide

The SKIPTHISFILE value instructs MAKEUNIV to process or skip the file. The value may be either
‘Yes’ or ‘No’ with a default value of ‘No’.

The INTTOBCD value controls whether binary integer fields in formatted files are converted to BCD
integers. The value can be either ‘Yes’ or ‘No’ with a default value of ‘No’.

The EXTENDEDTYPES value controls whether binary integer and 5% floating point fields can be used in
converted formatted files. The value can be either ‘Yes’ or ‘No’ with a default value of ‘No’.

The IRISKEYSAREASCII value controls whether the IRIS ASCII key values in an indexed contiguous
file with IRIS keys should be converted to ASCII character values. The value can be either ‘Yes’ or ‘No’
with a default value of ‘No’.

If a contiguous or indexed contiguous file is being converted, a ‘[RECORD]’ section must follow the
‘[FILE]’ section. The ‘[RECORD]’ section contains FIELD definition lines, one for each data field in the
record. A FIELD definition line has the form 'FIELD=parm1,parm2,parm3{,parm4}'.

parm1 is an optional identifier used to document the field usage and may be omitted. If omitted a comma
must precede parm2. MAKEUNIV does not use this identifier, but rather uses a count of the FIELD
definitions. For example, if MAKEUNIV reports a problem with FIELD 3 then this refers to the third field
defined in the [RECORD] section.

parm2 specifies the field starting byte position in the record. Unless RECORDORIGIN was set to one in
the ‘[FILE]’ section, the first byte position is zero.

parm3 specifies the length of the field. For string or binary fields, parm3 is the byte count. For numeric
fields, parm3 must be the precision. The precision is entered as the mapped precision.

parm4 is used for binary and array fields. If the field is binary, enter a B for parm4. If the field is a numeric
array, enter the DIMed value of the array for parm4.

The following example defines 5 fields where the fifth field is an array DIMed to 10 (11 elements):
[Record]
Field=Alpha1,1,24
Field=Alpha2,25,24
Field=Numeric,50,4%
Field=Binary,58,10
Field=Array,68,2%,10

In the example above, the field names reflect the field types, but this isn’t required.

Putting it all together, the following is an example of a conversion profile for multiple files:
[File]
File=ub/cust.master
ReplaceFile=Yes
RecordOrigin=1
[Record]
Field=Name,1,24
Field=Addr1,25,24
Field=Addr2,49,10
Field=Zip,59,2%
Field=Binary,63,10,B
Field=L4YS,73,4%,4
.
.
.
[File]
File=ub/detail.file
[Record]
;Detail file
Field=RecNumber,0,1%
Field=OrderDate,2,5%
Field=PartNumber,6,7

Files with multiple record types.

 Tools 133

dL4 Command Reference Guide

If converting a file with multiple record types (an MRT file), it will be necessary to use a
RECORDNUMBER or RECORDID definition in the [RECORD] section. A RECORDNUMBER or
RECORDID definition, if used, must precede the FIELD definitions. A RECORDNUMBER definition is
used if the field layout is dependent upon the location of the record in the file. A RECORDID definition is
used if the field layout is determined by a field in the record.

Case 1 - field layout dependent upon location of the record in the file.

A file has records with either type A or type B fields as determined by the record number. Records 1 to 10
are type A fields. Records 11 to 20 are type B fields.

Record Fields
1 Field 1a Field 2a Field 3a
2 Field 1a Field 2a Field 3a
.
.
.
10 Field 1a Field 2a Field 3a
11 Field 1b Field 2b Field 3b
.
.
.
20 Field 1b Field 2b Field 3b

The RECORDNUMBER= label is followed by comma delimited parameters that specify an optional name,
a byte offset which is just a placeholder, a byte length which is just a place holder, a record number that
identifies the starting record number for the following field definitions, and an optional ending record
number that specifies an inclusive range for the field definitions to follow.

[File]
File=ub/mrt_by_record_number.file
;MRT by record number file
[Record]
RecordNumber=a_Fields,0,0,1,10
Field1a=RecNumber,0,5%
Field2a=OrderDate,4,5%
Field3a=PartNumber,8,7
[Record]
RecordNumber=b_Fields,0,0,11,20
Field1b=RecNumber,0,1%
Field2b=OrderQty,2,1%
Field3b=PartNumber,4,7

Case 2 - field layout dependent upon the value in a field in the file.

A file has records with either type A or type B fields as determined by the value in a field.

Record Fields
1 ID Field 1a Field 2a Field 3a
2 a Field 1a Field 2a Field 3a
3 a Field 1a Field 2a Field 3a
4 b Field 1b Field 2b Field 3b
5 a Field 1a Field 2a Field 3a
6 a Field 1a Field 2a Field 3a
7 b Field 1b Field 2b Field 3b
8 b Field 1b Field 2b Field 3b

The RECORDID= label is followed by comma delimited parameters that specify an optional name, the
starting byte offset of the field that identifies the record type, the byte length of the field that identifies the
record type if the identifier is a string or the precision of the field that identifies the record type if the
identifier is numeric, and the value of the record type identifier for the field definitions that follow. Note
that if the record type identifier value is alphanumeric, it is case sensitive.

[File]
File=ub/mrt_field_value.file
;MRT by field value file

 Tools 134

dL4 Command Reference Guide

[Record]
RecordId=a_Fields,0,2,a
Field1a=RecNumber,2,5%
Field2a=OrderDate,6,5%
Field3a=PartNumber,10,7
[Record]
RecordId=b_Fields,0,2,b
Field1b=RecNumber,2,1%
Field2b=OrderQty,4,1%
Field3b=PartNumber,6,7

The file may have records where multiple fields are used to define the field layout. This is refered to as an
ANDed MRT file. For example:

Record Fields
1 ID1 ID2 Field 1ab Field 2ab Field 3ab
2 a b Field 1ab Field 2ab Field 3ab
3 c d Field 1cd Field 2cd Field 3cd
4 c d Field 1cd Field 2cd Field 3cd
5 a b Field 1ab Field 2ab Field 3ab

In this case, the [Record] section would be
[Record]
RecordId=ANDed_IDField,0,2,a
RecordId=ANDed_IDField,0,2,b
Field=RecNumber,4,1%
Field=OrderQty,6,2%
Field=PartNumber,10,7
[Record]
RecordId=ANDed_IDField,0,2,c
RecordId=ANDed_IDField,0,2,d
Field=RecNumber,4,1%
Field=OrderQty,6,1%
Field=PartNumber,8,7

If the file also has a field layout that is not determined by the value in the defining field, a default [Record]
section must be defined. This default [Record] section need only contain FIELD labels and is the last
[RECORD] section of the applicable [FILE] section. For example, any of the the above sections may be
followed by:

[Record]
Field1d=RecNumber,2,1%
Field2d=OrderQty,2,3%
Field3d=PartNumber,8,7

and all records without a matching value in the RECORDID fields will be defined as having the above
fields.

Examples
makeuniv –f inttobcd –p convfiles.prf olddata

makeuniv –o newdata convfiles.prf

 Tools 135

dL4 Command Reference Guide

MFDEL
Synopsis

Delete multiple files.
Syntax

mfdel {list}
Parameters

list is a list of one or more files or options.
Remarks

The list consists of a series of filenames to be deleted. Special options are permitted as follows:

Convention Explanation

@dirname@ Specify a default directory to apply to all subsequent filenames with the exception of
filenames in the form dirname:filename.

^Dirfile Extract the filenames to be deleted from DIRfile. Any @dirname@ selection is
overridden for the files within the DIRfile.

Examples
mfdel MINE @progs@ DONM THAT file files:ZZZ

 Tools 136

dL4 Command Reference Guide

PGMCACHE
Synopsis

Control or examine the program cache.
Syntax

pgmcache {switches}
Parameters

switches are optional command line options to pgmcache.
Remarks

Option switches associated with pgmcache are:

add filename Add program or library file to program cache.

delete Delete program cache when all users have exited.

status Display the program cache status and contents.

The pgmcache utility is used to control and examine the program cache. Program caching is described in
the dL4 installation and configuration manuals. If no switches are specified, the utility displays the cache
status.

Examples
pgmcache
pgmcache add standardcalls.lib

 Tools 137

dL4 Command Reference Guide

PORT
Synopsis

Display or control status of active ports.
Syntax

port {portrange} monitor

port {portrange} evict
Parameters

portrange is a continuous range of port numbers. It can be a single port number, a range expressed in the
form “first – last”, or the keyword “all” which selects all ports.

Remarks
The PORT utility is similar to the TERM utility, however, PORT is a converted UniBasic utility and has
fewer capabilities than the TERM utility.

PORT EVICT terminates each port numbers selected by portrange.

PORT MONITOR displays the activity of all port numbers selected by portrange. The letter M or the
word ACTIVITY may replace the word MONITOR. Monitor mode displays the following information:

Port The dL4 port number.

Group The group number a particular user is assigned to.

User The user number a particular user is assigned to.

Processor The process running which is always dL4.

Program The program running under dL4. If a port is at command mode or at SCOPE, the display
may be empty for that port's program.

Examples
port all monitor

port 5-12 evict

 Tools 138

dL4 Command Reference Guide

QUERY
Synopsis

Display file status.
Syntax

query {switches} filename {as drivername}
Parameters

switches are options as described in the Remarks section. Each switch must be preceded by a dash
character.

filename is the path of the file to be examined.

drivername is the name of the driver to be used with filename. This parameter should only be used when
the driver cannot be determined from the filename (for example, with SQL tables).

Remarks
Option switches associated with query are:

-k Scan the indexes of an indexed contiguous file and report the number of keys in each
index.

-l Sends the output to the system printer '$lpt'.

-l=$file Sends the output to a secondary printer named ‘file’.

-l=file Sends the output to a text file named ‘file’.

-p Pages the screen output.

-s Output dL4 DEF STRUCT and MEMBER statements for the record and field definitions
of a Full-ISAM file. This option can be used with the “-l=file” option to generate a dL4
source file.

The query utility displays file status information such as file type and size. The information displayed is
dependent on the file type.

Examples
query data/customers

query –l=$someprinter customers as MySQL Full-ISAM

 Tools 139

dL4 Command Reference Guide

SCAN
Synopsis

Obtain detailed information about a file.
Syntax

scan {switches} {directory} {filename | DIRfile} …
Parameters

switches are options as described in the Remarks section.

directory is a directory to be used with all subsequent filenames.

filename is a file to be examined.

DIRfile is a DIR utility style list of filenames.
Remarks

If no switches or filenames are entered on the command line, the user is prompted for the file to be
examined. Press RETURN to terminate this method of operation. Switches and options may be used to
affect the operation as follows:

Option Meaning

/H Output instructions for using SCAN.

/L=$name Re-direct all output to the pipe driver as $name.

/L=filename Re-direct all output to filename as a text file.

packname Specify the packname (directory) to be searched for all subsequent filenames. This
option may be used to simplify command input when a number of filenames on the same
pathname are to be scanned.

filename A specific filename to obtain detailed information for.

^DIRfile A list of filenames, created by the DIR utility to obtain detailed information for. Each
filename within the DIR output file is scanned.

Examples
scan icfile

 Tools 140

dL4 Command Reference Guide

TERM
Synopsis

Display or control status of active ports.
Syntax

term {portrange} monitor {switches}

term {portrange} evict

term {portrange} dump

term -h
Parameters

portrange is a continuous range of port numbers. It can be a single port number, a range expressed in the
form “first – last”, or the keyword “all” which selects all ports.

switches are options for the monitor display.
Remarks

The term utility has several functions controlled by the function keyword:

Monitor display status of selected ports

Evict terminate selected ports

Dump trigger port dump on selected ports. This function will have no effect on ports that do not
have the DL4PORTDUMP runtime parameter defined. See the description of CALL
FORCEPORTDUMP in the dL4 Language Reference Guide for more information.

-h display usage information

The function keywords “monitor”, “evict”, and “dump” can be abbreviated as “m”, “e”, or “d”. Case is
ignored in all keywords and switches. The supported switches for the term monitor function are:

B Display only those ports that are blocked waiting for a record lock to be released. If known, the
port number that is currently locking the desired record is displayed.

C repeat display every 10 seconds

F For each selected and active port, display the open channel numbers, the filename of the file open
on the channel, and the current record number (if available). The current record number is
followed by the letter “U” if the record is unlocked, “L” if the record is locked, and “B” if the port
is waiting because the record has been locked by another port.

L display the current line number of the program running on the port

P page the display
Examples

term all ml

term 5-12 evict

term 22 dump

 Tools 141

dL4 Command Reference Guide

TESTLOCK
Synopsis

Test if record locking works on a file system.
Syntax

testlock {file offset length} …

testlock -h
Parameters

file is the path of an existing file on the file system to test.

offset is the byte offset at which to apply a record lock (typically 0).

length is the number of bytes to lock in the file at the specified offset.
Remarks

The testlock utility is normally used to check if record locking works on a remote file system such as NFS.

Examples

testlock /networkfs/accounting/customers 0 100

 Tools 142

dL4 Command Reference Guide

VERINDEX
Synopsis

Check indexed contiguous file integrity.
Syntax

verindex
Parameters

None.
Remarks

The verindex utility examines the index portion of an indexed-contiguous file and attempts to detect
corrupted index blocks. The utility is run interactively and can examine either individual files or all files
within a specified directory.

Examples
verindex

 Tools 143

dL4 Command Reference Guide

WHO
Synopsis

Display information about the your port.
Syntax

who
Parameters

None.
Remarks

The WHO utility displays the following information about your dL4 process:

Port The UniBasic port number

CPU Secs (not used)

Connect The dL4 session time in hours and minutes

Time System date and time

Disk (not used)

User User and Group Number

Default The current working directory name

Total Used (not used)

Limit (not used)

Left (not used).
Examples

who

 Glossary 144

dL4 Command Reference Guide

Appendix A - Glossary
This glossary defines terms in the context of dL4:
absolute pathname the full pathname, starting at the root.
BASIC object code SEE object code.
block one or more statements treated as though they were a single statement.
channel a communication method between an application and a dL4 driver for requesting specific

file operations.
character a representation of a letter, number, or other special data representation.
character code a numeric value that represents a particular character in a set, such as the ASCII

character set.
character data type a representation of a letter, number, or other special data representation.
character set a mapping of characters to their identifying numeric values.
context SEE runtime context.
c-tree a keyed file structure developed by Faircom, Inc. and used by dL4.
driver a dL4 driver acts as a translator converting a generic file operation request from an

application program into a specific command that carries out the requested operation.
executable a program that is ready for execution.
file a collection of records.
index a mechanism of locating data.
infinite loop the never-ending repetition of a block of dL4 statements.
interface SEE port.
ISAM files ISAM (Indexed Sequential Access Method) is a storage and retrieval system that allows

efficient access to data records using key values.
key values identifying values used in a file to describe and locate a desired record.
keyword a reserved word used as part of dL4 syntax.
loop the repeated circular execution of one or more statements.
member each individual data type in a structure data type. See structure data type.
nested loop a loop within a loop.
object code a translation, not readable to the user, of a program source code that can be directly

executed by the computer.
OSN OEM Security Number.
phantom port a port that does not have access to its display device. Typically it runs in background.
portable capable of being ported to different systems.
position parameter A position parameter is used by some BASIC/Debugger commands to specify a line in a

dL4 program. SEE Appendix C for description of position parameter.
program a set of executable instructions.
relative pathname a partial pathname relative to your current working directory.
record a set of related fields.
reserved word in dL4, a word that has a fixed function and cannot be used for any other purpose. Same

as keyword.
root the root directory, which is the main directory that contains everything on the disk.
run time related to the events that occur while a program is being executed.
runtime context a machine state when a dL4 program is executed.
SCCS Source Code Control System (SCCS) is a Unix utility that allows source code level

revision control for a project.
source code a user-readable text file containing dL4 BASIC language statements.
step into trace inside a function.
step through execute a function but do not trace inside a function. Trace resumes outside the function.
string a sequence of alphanumeric characters. dL4 converts all strings to Unicode characters.
structure data type a data type that organizes different data types so that they can be referenced as a single

unit. Typically, used to define a record in a data file.

subscript a number inside brackets that differentiates one element of an array from another.
UniBasic a state-of-the-art Business BASIC language, matched with the UNIX operating system;

developed and marketed by Dynamic Concepts, Inc.
Unicode a 16-bit character set capable of encoding all known characters and used as a worldwide

character-encoding standard.

 DL4 Command Summary 145

dL4 Command Reference Guide

Appendix B - dL4 Command Summary
COMMAND SCOPE BASIC Debugger
!
;
.
..
AUTO
BASIC
BREAK
BYE
CANCEL
CD
CHECK
CLU
CONTINUE
CONVERT
DELETE
DISPLAY
DRIVERS
DUMP
EDIT
END
EXAMINE
EXIT
FILE
FIND
GO
HALT
HELP
KILL
LABEL
LEVEL
LIST
LOAD
NEW
NOBREAK
PACK
RETURN
RENUMBER
RUN
SAVE
SHOW
SIZE
STATUS
TIME
TRACE
USERS
VARIABLE
XBREAK

 Position Parameter 146

dL4 Command Reference Guide

Appendix C - Position Parameter
A position parameter is used by some BASIC/Debugger commands to specify a line in a dL4 program. The
line may be in the main program or in a library that is linked with the main program. A position
parameter should be in one of the following formats:

line-number
local-procedure-name
external-procedure-name
library-name
program-name
external-procedure-name:local-procedure-name
library-name:line-number
library-name:local-procedure-name
library-name:external-procedure-name
library-name:external-procedure-name:local-procedure-name
program-name:line-number
program-name:local-procedure-name
program-name:external-procedure-name
program-name:external-procedure-name:local-procedure-name
external-procedure-name::
library-name::
program-name::
library-name:::
program-name:::
library-name:::line-number
program-name:::line-number

Any format without a line-number will select the first executable line of the procedure, library, or program.
The more complex formats are used to distinguish between procedures, libraries, and programs that have
the same name. A "position" parameter is interpreted relative to the current BASIC or Debugger view of
the program and so the meaning of the simple formats can vary.

The formats "program-name:::line-number" and "library-name:::line-number" can be used to avoid any
ambiguity.

 Position Parameter 147

dL4 Command Reference Guide

Index
! Command ..4, 22, 66
% operators ...30
. Command...23, 67
.. Command...24, 68
; (Semicolon) Command...65
? (Question Mark) Command ...64
Abort event ...11, 37
AUTO Command..25
Automatic entry of program line numbers......................25
BASIC command..5
BASIC object code ...54, 88
batch

BASIC tool...108
BATCH Tool ..108
BITS ...18, 30, 52
bitsdir

BASIC tool...109
BITSDIR Tool ..109
BITSTERM Tool ..112
braces {} ...2
BREAK Command ...26, 69
Breakpoint ..40, 62
BUILD statement ..30
buildfi

BASIC tool...113
BUILDFI Tool..113
buildxf

BASIC tool...114
BUILDXF Tool ..114
Business BASIC ...1
BYE Command...6
CALL Subprograms

Debugging ..23, 67
Cancel any current running program27
CANCEL Command...27
CD Command ...7
CD Command - Change working directory......................7
CHAIN statement

With TRACE Command..93
change

Switches associated with ..115
-h (Output help) ..115

BASIC tool...115
Change current working directory8, 15
CHANGE Tool ...115
CHECK Command ...28

-s switch..28
checksum

Switches associated with ..116
-h (Output help) ..116
-m (Use MD5 checksum)......................................116

BASIC tool...116
CHECKSUM Tool ...116

CHF..30
CHN ...30
Clear any program from memory6
Clear memory for new program45
Close all channels ...6
CLU Command ..8
CONTIN Command See CONTINUE Command, See

CONTINUE Command
CONTINUE Command ..29, 70
CONVBITS.PRF Tool ...117
CONVERT Command..30
Convert statement numbers to labels42
Convert UniBasic statements from a text file30
CONVERT.PRF Tool...118
copy

BASIC tool ..119
COPY Tool...119
Create a breakpoint to the Debugger69
Create breakpoint..26
Create external breakpoint..........................60, 61, 94, 101
CREATE statement ...30
Debugger ..1, 3
DECLARE statement ...31
Decode and list dL4 program statements..................43, 82
Delete a breakpoint at the specified position or positions

..46, 83
Delete a data or program file ..12
Delete any remaining signals..6
DELETE Command ...32
Delete program statements ...32
DISPLAY Command..33, 71
Display current program and all open files...............38, 76
Display current system time and usage19
Display dL4 revision ..13
Display list of available drivers ..9
Display memory usage for current program/data54, 88
Display names of specified variables33, 65, 71
dL4 Command Reference Guide

Conventions...2
Intended Audience..1
Related Publications ...1

dL4 command set ...1
dL4 Command Summary..145
dokey

BASIC tool ..120
DOKEY Tool ...120
DRIVERS Command ...9
DUMP Command...34, 72

-u Switch – Force line number mode....................34, 72
Edit and change an existing statement............................35
EDIT Command ...35
Enable statement trace debugging59, 93
END Command ..73

 Index 148

dL4 Command Reference Guide

Enter BASIC mode...5
ERM...30
ERM$...30
ESC function...25
Examine and select current program file36, 74
EXAMINE Command ..36, 74
EXEC Command ..10
Execute a program in memory or on disk.......................17
Execute the contents of a text file...................................10
Execute the next n program lines..................23, 24, 67, 68
Executes next program lines.....................................24, 68
EXIT Command..37, 75
Exit program mode to command mode...........................37
FILE Command ..38, 76
FIND Command ...39, 77

-v - Visual mode ...77
format

Switches associated with ..121
/h (Output help) ..121

BASIC tool...121
FORMAT Tool ...121
Glossary ..144
GO Command...40, 78
HALT Command ..11
HELP Command...41, 79
hidden channels ..38
Hot-key program...91
ic2fi

BASIC tool...122
IC2FI Tool ..122
IDE3, 62, 102, 105, See Integrated Development

Environment
Immediate execution of commands21
INDEX # C statement ..30
Integrated Development Environment..............................3
IRIS...18, 30, 52
italic type ..2
keymaint

BASIC tool...123
KEYMAINT Tool ..123
Keyword collisions ...30
KILL Command..12
LABEL Command..42
LET Command ...80
LEVEL Command ..13, 81
libr

BASIC tool...126
LIBR Tool...126
line number RUN..51
Linking ...28
List a program in a text data file34, 48, 72, 85, 86
LIST Command ..43, 82

-V Switch - Visual mode ..82
LOAD Command..44
Load dL4 statements from a text file44
loadsave ..1

Introduction ..102
Switches associated with ..103

-B (Specify binary I/O)...106
-c (Profile)...103

-C (Text output) ..103
-e (Do not display program source line of error) ..103
-h (Output help text) ...103
-h (Output simple help text)..................................103
-k (Specify socket keepalive interval)106
-N (Specify dumb terminal mode106
-o (Outfile)..103
-O (Outfile) ...103
-ro (Output a run-only program)...........................103
-ro (Read-only) ...104
-s (Strip all remarks) ...103
-t (Specify terminal definition file).......................106
-v (Version number of loadsave)103
-X (Specify DynamicXport mode)106

Syntax...103
make

BASIC tool ..127
MAKE Tool..127
make utility ...102
makecmnd

Switches associated with ..128
/h (Output help) ..128

BASIC tool ..128
MAKECMND Tool..128
makehuge

Switches associated with129, 131
-d (Convert directory)...129
-h (Output help) ..129
-vd (Verbose)..129

BASIC tool ..129
MAKEHUGE Tool...129
MAKEUNIV Tool..130
mfdel

BASIC tool ..135
MFDEL Tool ..135
MOD ..30
Move current Debugger view between levels81
Move the debug window ..95, 100
MSF..30
MSF$..30
Nested subprograms ...54
NEW Command ...45
nmake utility ...102
NOBREAK Command ...46, 83
OEM Command..14, 47, 84
OPTION statements..27
OSN protected program..16, 49
PACK Command..15
PDUMP Command...48, 85
PEEK statement ...30
Permissions...18
pgmcache

Switches associated with136, 138
add (add file to cache) ..136
delete (delete program cache)...............................136
status (display cache status)..................................136

BASIC tool ..136
PGMCACHE Tool ...136
Phantom ports...20

 Index 149

dL4 Command Reference Guide

POKE statement...30
port

BASIC tool...137
PORT Tool ...137
Ports in use, display current number of20
position parameter ..146
Print text description of an error...............................41, 79
Print the name of current program file and execution

status ...55, 89
PSAVE Command ..16, 49
query

BASIC tool...138
QUERY Tool..138
REM statement...30
RENUM CommandSee RENUMBER Command
RENUMBER Command...50
Renumber statements in a program50
Reset any special terminal settings6
RESTOR statement ..30
RESTORE statement ...30
Resume execution of stopped program.........29, 40, 70, 78
RETURN Command...86
run...105

Switches associated with ..106
-h (Output help) ..106

BASIC Interpreter..106
RUN Command

From BASIC...51
from SCOPE ...17

SAVE Command ..52
Run-Only option ...18

SAVE the current program18, 52
scan

BASIC tool...139
Scan program for proper structure and linkage28
SCAN Tool ...139
SCCSSee Source Code Control System
SCOPE

Commands...3
SCOPE System Command Processor1
SEARCH #C statement ...30
Search and list selected program statements.39, 53, 77, 87
SECTOR statement..30
Security checks ...52
SHOW Command...53, 87
Single-Step Execution ..24, 68
SIZE Command ..54, 88
Size the debug window.......................................96, 97, 99
Source Code Control System (SCCS)102
SPAWN Statement

With TRACE Command..93
SPC(8) ..41, 79
stack levels..36
STATUS Command..55, 89

BREAKPOINT parameter ..89
MACHINE parameter...89
UNIT parameter..89

STOP statement ..40

STR ..30
STR$..30
structure variables...27
SWAP Statement

With TRACE Command ...93
TAPE statement ...30
term

BASIC tool ..112, 140
TERM Tool ..140
Terminal input actions ..35

Back..35
Backspace ...35
Cancel ...35
Delete..35
End..35
Enter ...35
Forward ..35
Home ..35
Insert ...35
NextWord ...35
PrevWord..35
ToggleEcho ..35

Terminal Input Actions
Abort...35
Escape...35

Terminate BASIC program on another port11
Terminate SCOPE session..6
Terminate the current session ...6
TESTLOCK Tool ...141
TIME Command...19
Tools...107
Trace channel..91
TRACE Command ...59, 93

TRACE OFF ...93
TRACE ON ...93

Trace mode ...93
UniBasic ...30, 42

Multi-LET...30
Unix ..18, 52

make utility ...102
nmake utility ...102

User Calls ...30, 31
USERS Command ..20
VARIABLE Command ..60, 94
verindex

BASIC tool ..142
VERINDEX Tool ...142
WB Command ..95
WF Command ..96
WH Command..97
who

BASIC tool ..143
WHO Tool..143
WINDOW Command...98
WS Command ..99
WT Command ..100
XBREAK Command ..61, 101

