
Files and Devices

Reference Guide
Revision 1.0



Information in this document is subject to change without notice and does not represent a commitment on the part of Dynamic
Concepts, Inc. (DCI).  Every attempt was made to present this document in a complete and accurate form.  DCI shall not be
responsible for any damages (including, but not limited to consequential) caused by the use of or reliance upon the product(s)
described herein.
The software described in this document is furnished under a license agreement or nondisclosure agreement. The purchaser
can use and/or copy the software only in accordance with the terms of the agreement. No part of this guide can be reproduced
in any way, shape or form, for any purpose, without the express written consent of DCI.
© Copyright 1998 Dynamic Concepts, Inc. (DCI). All rights reserved.
UniBasic, BITS and Dynamic Windows™ are trademarks of Dynamic Concepts Inc.
IRIS™ is a trademark of Point 4 Data Corporation.



Table of Contents i

dL4 Files and Devices Reference Guide

CHAPTER 1 - INTRODUCTION............................................................................................................................................1

SYNTAX NOTATIONS.................................................................................................................................................................1
TYPOGRAPHICAL CONVENTIONS...............................................................................................................................................2

CHANNEL I/O...........................................................................................................................................................................3

I/O USING CHANNELS...............................................................................................................................................................3
THE UNIFICATION OF I/O VIA CHANNELS .................................................................................................................................3
RECORD LOCKING ....................................................................................................................................................................3
CHANNEL OPERATIONS, EXPRESSIONS AND PARAMETERS .......................................................................................................4

Channel Operations.............................................................................................................................................................4
Channel Expression - #chn.expr..........................................................................................................................................6
Arguments and Parameters .................................................................................................................................................6

CHANNEL FUNCTIONS AND OPERATIONS ..................................................................................................................................8
DL4 DRIVERS AND CLASSES .....................................................................................................................................................8

Benefits of Using dL4 Classes and Drivers........................................................................................................................10
MORE ON RECORD LOCKING ..................................................................................................................................................10

Operating System Support for Record Locking .................................................................................................................10
Implementations of Locking...............................................................................................................................................11
Reading through Record Locks..........................................................................................................................................11

DL4 CHARACTER SETS.......................................................................................................................................................13

INTRINSIC CHARACTER SETS ..................................................................................................................................................13
Unicode Character Set.......................................................................................................................................................14

SUPPORTED DRIVERS ........................................................................................................................................................15

DRIVER AUTO SELECTION MECHANISM..................................................................................................................................16
INTRODUCTION TO FILES.........................................................................................................................................................16
TEXT FILE CLASS....................................................................................................................................................................17

Special Options with Text Files .........................................................................................................................................18
Types of Text Files .............................................................................................................................................................18
Creating Text Files ............................................................................................................................................................19
Opening and Closing Text Files ........................................................................................................................................19
Positioning Within Text Files.............................................................................................................................................20
Record Locking with Text Files .........................................................................................................................................21
Reading and Writing Data with Text Files ........................................................................................................................21
Table of Text Driver Options Supported............................................................................................................................22

PIPE DRIVERS .........................................................................................................................................................................23
Types of Pipe Drivers ........................................................................................................................................................23
Creating a Pipe Driver ......................................................................................................................................................24
Opening and Closing Pipe Drivers....................................................................................................................................24
Locking with Pipe Drivers .................................................................................................................................................25
Reading and Writing with Pipe Drivers.............................................................................................................................25

PROFILE CLASS .......................................................................................................................................................................26
Types of Profile Drivers.....................................................................................................................................................26
Creating Profile Files ........................................................................................................................................................26
Opening and Closing Profile Files ....................................................................................................................................26
Positioning within Profile Files .........................................................................................................................................27
Record Locking with Profile Files .....................................................................................................................................27
Reading Profile Files .........................................................................................................................................................27

FORMATTED FILES CLASS.......................................................................................................................................................28
Special Options with Formatted Files ...............................................................................................................................28
Types of Formatted File Drivers........................................................................................................................................28

UniBasic Formatted File Driver ........................................................................................................................................................ 28
Portable Formatted File Driver.......................................................................................................................................................... 29
Universal Files................................................................................................................................................................................... 29

Creating Formatted Files ..................................................................................................................................................29



Table of Contents ii

dL4 Files and Devices Reference Guide

Opening and Closing Formatted Files ..............................................................................................................................30
Table of Formatted Driver Options Supported..................................................................................................................30
Positioning with Formatted Files ......................................................................................................................................30
Reading and Writing Data with Formatted Files ..............................................................................................................31

CONTIGUOUS DATA FILES CLASS............................................................................................................................................31
Special Options with Contiguous Data Files.....................................................................................................................31
Types of Contiguous File Drivers ......................................................................................................................................31
Creating Contiguous Data Files........................................................................................................................................32
Opening and Closing Contiguous Data Files ....................................................................................................................32
Table of Contiguous Driver Options Supported ................................................................................................................32
Positioning with Contiguous Data Files............................................................................................................................33
Reading and Writing Data with Contiguous Files.............................................................................................................33

INDEXED CONTIGUOUS DATA FILES CLASS ............................................................................................................................33
Types of Index Contiguous File Drivers ............................................................................................................................34
Creating Indexed Files.......................................................................................................................................................35
Opening and Closing Indexed Data Files..........................................................................................................................36
Table of Indexed Contiguous Driver Options Supported...................................................................................................36
Accessing an Indexed Data File ........................................................................................................................................36
Indexed File Errors & Recovery ........................................................................................................................................40
Full-ISAM Bridge Driver...................................................................................................................................................40

Requirements When Using The Bridge Driver.................................................................................................................................. 41
Accessing Emulated Indexed-Contiguous Files ................................................................................................................................ 41
Bridge Profile - a "data dictionary" ................................................................................................................................................... 41

INDEX FILES CLASS ................................................................................................................................................................42
Types of Index Drivers .......................................................................................................................................................42

FULL-ISAM DATABASE FILES CLASS .....................................................................................................................................42
Using 'item' Designations in Structure Variables ..............................................................................................................43
Types of Full-ISAM File Drivers .......................................................................................................................................44
Creating Full-ISAM Database Files ..................................................................................................................................45
Defining a Full-ISAM Record Definition...........................................................................................................................45
Adding an Index to a Full-ISAM File ................................................................................................................................45
Deleting an Index from a Full ISAM File ..........................................................................................................................46
Logically Mapping Full-ISAM Records & Indices ............................................................................................................46
Adding a new Record to a Full-ISAM File ........................................................................................................................47
Deleting a Record within a Full-ISAM File.......................................................................................................................47
Locating Records within a Full-ISAM File........................................................................................................................48
Managing Records within a Full-ISAM File .....................................................................................................................48

FoxPro Full-ISAM Driver ................................................................................................................................................................. 49
Microsoft SQL Server Full-ISAM Driver.......................................................................................................................................... 50

WINDOW CLASS......................................................................................................................................................................50
The Underlying Principles of a Window............................................................................................................................51
Differing Implementations .................................................................................................................................................51
Types of Window Drivers...................................................................................................................................................52
Controlling Windows From BASIC....................................................................................................................................52

OPEN ................................................................................................................................................................................................ 54
CLOSE/CLEAR ................................................................................................................................................................................ 55
READ................................................................................................................................................................................................ 56
WRITE .............................................................................................................................................................................................. 57
ERASE .............................................................................................................................................................................................. 58
SIZE .................................................................................................................................................................................................. 59
MOVE............................................................................................................................................................................................... 60
CHANNEL:SHOW/HIDE................................................................................................................................................................. 61
CHANNEL:HSCROLL/VSCROLL.................................................................................................................................................. 62

Special Output Characters Defined for Windows..............................................................................................................63
Special Output Characters Controlling I/O modes ............................................................................................................................ 63
Special Output Characters Controlling the Cursor ............................................................................................................................ 63
Special Output Characters Controlling Text Drawing....................................................................................................................... 64
Special Output Characters Controlling Canvas Editing..................................................................................................................... 65
Special Output Characters for Graphic Drawing ............................................................................................................................... 66



Table of Contents iii

dL4 Files and Devices Reference Guide

Miscellaneous Special Output Characters ......................................................................................................................................... 66
Form and Chart Drawing Characters ................................................................................................................................................. 66
Special Output Characters Which Support Repeat Counts................................................................................................................ 66

Cursor Tracking Mode.......................................................................................................................................................67
Using Dynamic Windows...................................................................................................................................................67

RAW CLASS ............................................................................................................................................................................68
Types of Raw Drivers.........................................................................................................................................................68
Creating Files ....................................................................................................................................................................68
Opening and Closing Files and Devices............................................................................................................................68
Positioning Within Files ....................................................................................................................................................69
Record Locking with the Rawfile Driver............................................................................................................................69
Read and Writing with the Rawfile Driver.........................................................................................................................69
Channel Functions and Operations...................................................................................................................................69

DIRECTORY CLASS .................................................................................................................................................................70
Types of Directory Drivers ................................................................................................................................................70
Accessing Directories ........................................................................................................................................................70
Reading and Writing with Directory Drivers.....................................................................................................................70

DRIVER LIST CLASS ................................................................................................................................................................71
Types of Driver List Drivers ..............................................................................................................................................71

SYSTEM CLASS .......................................................................................................................................................................72
Types of System Drivers.....................................................................................................................................................72

PORT COMMUNICATION CLASS...............................................................................................................................................72
Types of Port Communication Drivers ..............................................................................................................................72

PROGRAM CLASS ....................................................................................................................................................................72

APPENDIX A - WHETHER A STATEMENT IS USED WITH  A DRIVER-CLASS .....................................................73

INDEX ......................................................................................................................................................................................75



Introduction 1

dL4 Files and Devices Reference Guide

Chapter 1 - Introduction
This guide is written for experienced programmers.  It is a reference that describes the dL4 programmer’s
Input / Output interface between the dL4 programming language and external devices, files and database
systems.

Information concerning individual statements and functions can be found in the dL4 Language Reference
Guide.

This guide is divided into topical sections which describe the concepts and various types of supported I/O
objects and operations within dL4.

Syntax Notations

The following partial list of notations are used herein to describe syntax.  For a complete list of all such
notations, please refer to the dL4 Language Reference Guide:

NOTATION STANDS FOR MEANING
chan.expr Channel expression An expression that combines a channel number followed by three

optional numeric parameters, commonly indicating a record number, a
field position, and a timeout value.

chan.no Channel number An integer value, between 0 and 99 inclusive, preceded by #, that the
program uses for a logical connection between a BASIC program and a
file.

crt.expr CRT expression An expression used for cursor positioning, e.g. @x,y.
expr Expression A valid series of constants, variables, functions, and operators to define a

desired computation.
filename Filename A string literal or expression containing a name which is optionally

preceded by a relative or absolute directory pathname.
file.spec.items File specification,

items
A file specification expressed as a list of items.

file.spec.str File specification,
string

A file specification expressed as a string expression.

num.expr Numeric expression An expression yielding a number.
str.expr String expression An expression yielding a string value or a string variable.
str.lit String literal A quoted sequence of characters, e.g. “string”.
struct.name Structure Name The name of a pre-defined, fixed grouping of variables defined at

compile-time.
var.list List of variables or

expressions
An arbitrary number of comma separated variables of any dL4 data
types.

var.mat Matrix Variable Any numeric matrix variable name.
var.name Variable Name A variable name.
num.var Numeric variable A variable of numeric data type.
str.var String variable A variable of string data type.
struct.var Structure variable A variable of structure data type.



Introduction 2

dL4 Files and Devices Reference Guide

Typographical Conventions

This guide uses the following typographic conventions:

Example of convention Description
GOSUB Capitalized words in bold indicate language-specified reserved words.
KILL filename Variables are shown in italic type for clarity and to distinguish them from elements of

the language itself.
LIST Mono-spaced type is used to display screen output and example input commands and

program examples.
<letter> Information inside angle brackets <> must be from specified group, e.g., a single

letter.
WHILE  |  UNTIL A vertical bar indicates that the user must choose one of the items.
[expr] Items inside square brackets are mandatory.
{expr} Items inside braces are optional.
stmt {\ stmt} ... A series of three periods (...) indicates that the item preceding them can be repeated

one or more times.



Channel I/O 3

dL4 Files and Devices Reference Guide

Channel I/O

I/O Using Channels

All Input and Output (I/O) between dL4 and external devices, files, or databases  is performed by first
establishing a logical, numbered, connection to a target object and thereafter directing commands and I/O
operations through that numbered connection.  Such numbered connections are called channels and are
further defined as any numeric expression which, when truncated to an integer results in a positive value in
the range 0 to 99.

In order to perform commands or direct Input or Output operations through a channel, a connection must
first be established between dL4 and the deisred object.  Connections are typically initiated by a request to
either OPEN an existing, or BUILD a new object on a specific channel.

The Unification of I/O Via Channels

From the point of view of a dL4 program, all I/O with the outside world occurs via an operation of some
kind to an open channel.  Even the seminal statement:

Print X

is literally interpreted as:

Print #OUT;X

where #OUT is substituted with the number of the "default output" channel, which is typically a hidden (i.e.
> 99) channel number referring to the terminal or window.  The function of PRINT itself can be described
in terms of even lower-level operations, so that the above example is nearly equivalent to:

BUFFER$ = X
Write #OUT;BUFFER$

Conversely, INPUT X is (nearly) equivalent to:

Read #IN;BUFFER$
X = BUFFER$

where #IN is the default input channel.

Record Locking

Locking is a feature implemented by many dL4 drivers to provide programmers an ability to block access to
all or part of an object opened on a channel.  Used primarily during updates to shared information, locking
ensures that information is not erroneously updated by more than one user at a time.

Locking is essential in applications where two or more users may attempt to update the same information
simultaneously.  For example, one user in the Receiving Department might be performing a Purchase Order
receipt, adding to inventory, while another in the Order Department is pulling inventory to fill an order.
Applications must be written to ensure that all such updating operations are exclusive so that no information
or transactions are lost.  By employing Locking, whenever two or more users (or processes) attempt to



Channel I/O 4

dL4 Files and Devices Reference Guide

access the same information, the first is granted access, while additional requests are suspended (or an error
is given) until the information is unlocked by the first user and made available.

For example, the first user is updating stock received into inventory.  The part number is entered and its
associated record is read and locked.  The second user entering that part number for an order is suspended.
The first user enters the amount received and the record is updated and unlocked.  The second user now
continues, reading the updated inventory record.  In most cases, the transaction occurs so quickly, that other
users are not aware that they are suspended.  This assumes, of course, that the first user didn't  leave the
record locked indefinitely.  A timeout feature provides programmer control over how long to wait for
locked information.

A deadly embrace may occur when two or more users are attempting to access information which is locked
by the other.  Both users wait indefinitely for the other to unlock the information.  For example, user 1 has
locked the ABC Company customer information and is attempting to read the parts file information for
wool carpet.  Meanwhile, user 2 has already locked wool carpet and tries to read ABC Company.  Each
waits indefinitely for the other.  Some systems return a system error when a deadly embrace is detected.

You can avoid infinite suspension of a program by specifying a time-out or period of time (in tenth-
seconds) to wait for a locked information.  If, after that amount of time the information is still locked, an
error is generated to the program so that it may decide upon the next course of action.

Channel Operations, Expressions and Parameters

Once a connection is established  with either OPEN or BUILD, programs direct operations on a channel by
specifying:

• What:  Specify a channel operation to perform, such as reading or writing data

• Where:   Specify the channel expression which identifies the channel number and parameters

• With:  Specify a list of arguments for the operation

Channel Operations

The following list of dL4 statements are used to perform operations through channels.  The exact syntax and
function(s) performed by the statement are documented in the dL4 Language Reference Guide.  The
purpose of documenting these statements herein is to facilitate a discussion on their behavior on an object
by object basis.

ADD # Add data to a channel.  This low-level operation adds information to the driver.

ADD INDEX # Add a new Index.

ADD RECORD # Add a new record.

BOX # Draw a rectangle or square.

BUILD # Build a new object.

CHANNEL op # Perform custom operation op on an opened channel.

CLEAR # Clear an open channel - If the channel is opened to a newly built file, delete the
file, otherwise the Clear operation is identical to a Close.

CLOSE # Close an open channel - If the channel is opened to a newly built file, close the
file making it permanent.

DEFINE RECORD # Establish a record definition.

DELETE INDEX # Delete an index from a Full-ISAM file.



Channel I/O 5

dL4 Files and Devices Reference Guide

DELETE RECORD # Delete an existing record.

DUPLICATE Copy a file.

EOPEN # Exclusively open a file for single-user access if supported by the driver and
operating system.

GET # Obtain driver-specific parameters from channel.

INPUT # Perform an Input statement from a channel.

KILL Delete file(s).

MAP # This low-level operation logically maps information on a channel.

MAP RECORD # Logically Map a physical record layout to a structure

MAT INPUT # Assign keyboard/file input to a matrix.

MAT PRINT # Print contents of an array or matrix.

MAT RDLOCK # Read an array, matrix, or string with locking.

MAT READ # Read {lock} a matrix / binary string.

MAT WRITE # Write {lock} a matrix/binary string.

MAT WRLOCK # Write an array, matrix, or string with locking.

MODIFY Change filename or a file's attributes.

MOVE # Move a window.

OPEN # Open an existing file for reading and writing or open a driver.

PRINT # Redirect normal PRINT format to a channel.

RDLOCK # Read and lock a record.

READ # Read {lock} data from a channel.

READ RECORD # Read entire structure and update indices.

RECV Receive a message.

REWIND # Reset the channel to the first record and byte.

ROPEN # Open a file for Read-only, ignore locks.

SEARCH # Maintain the index portion of a file.

SEND Transmit a message to another port.

SET # Read and write driver-specific parameters on a channel.

SETFP # Set the file position for sequential transfers.

SIGNAL Transmit/Receive a message.

SIZE # Select size of window in columns and rows.

TRACE # Enable statement trace debugging.

UNLOCK # Unlock any locked record on a channel.

WINDOW Maintain a window.

WOPEN # Open a file/device for write-only.

WRITE # Write {lock} data to a channel.

WRITE RECORD# Unlock any locked record on a channel.

WRLOCK # Write and lock a record.



Channel I/O 6

dL4 Files and Devices Reference Guide

Channel Expression - #chn.expr

A channel expression, chn.expr, consists of the # character followed by a channel number and zero to three
optional numeric parameters, all separated by comma.  The three optional numeric parameters usually
indicate a record number, a field position, and a record-lock time-out value.  However, it is possible for
these parameters to indicate something else as the meaning of these parameters are dependent upon the
object being operated upon.  A channel expression always terminates with a semi-colon.

SYNOPSIS

STATEMENT #channel {,parameter1 {,parameter2 {,parameter3}}};expr.list {;}

DESCRIPTION
STATEMENT specifies any dL4 BASIC statement that performs an operation to an opened channel.

channel is any num.expr which, after evaluation, is truncated to an integer and used to select one of 100
possible open channels.  The channel  must be in the range 0 to 99.  Hidden channels, outside of this range,
are reserved for system use.

The optional parameter1 is any num.expr which, after evaluation, is truncated to an integer.  parameter1 is
typically used to select a starting record number for an operation.

The optional parameter2 is any num.expr which, after evaluation, is truncated to an integer.  parameter2 is
typically used to specify the item number (field number) or byte-displacement in a record for an operation.

The optional parameter3  expression is any num.var which, after evaluation, is truncated to an integer.
parameter3 is typically used as a timeout, meaning the maximum time (in tenth-seconds) to wait for a
selected record to become available and unlocked.  If, after the specified time-out the record is still locked,
the error message "Error in statement stm.no/ Record is locked" is returned to the program and an error
number 123 is returned by SPC(8). If the time-out is (-1) or omitted, retry continues indefinitely.  Any time-
out is terminated immediately upon the record becoming available.

Occasionally, it may be necessary to supply parameter2 without specifically supplying a value for the
preceding parameter.  Negative values typically specify a ‘default’ condition for such parameters.  For
example, the channel expression #5,-1,5; supplied to a READ statement might result in a read operation on
channel 5 to the next record (-1) and the fifth item of that record.  Any use of negative parameters, as well
as the requirement of how many parameters are required, is a function of the STATEMENT and the type of
object opened on the channel.  The meaning of a negative value used as a placeholder is typically:

PARAMETER ACTION

-1 The record selected is the next record after the one used in the last operation the channel.

-2 The record selected is the same record that was used in the last operation the channel.

-3 The record selected is the previous record to the one used in the last operation the channel.

This document details the use of individual statements and their function through an opened channel to all
of the standard dL4 embedded objects.

Arguments and Parameters

A list of arguments, parameters, expressions, variables, etc., may follow the chn.expr, if the statement
syntax permits or requires arguments.

The expr.list  may contain a list of variables or expressions for the operation.  However, if the channel
operation is of a type which reads information from the channel, it is generally illegal to specify
expressions.  Data may only be read into variables.

If the OPTION statement "OPTION FILE ACCESS RAW" is in effect, an optional trailing ; means
nothing and is ignored. But if the default OPTION of "OPTION FILE ASSESS STANDARD" is in
effect, an optional trailing ; may be used with some statements, such as READ or WRITE, to control the



Channel I/O 7

dL4 Files and Devices Reference Guide

locking or unlocking of the current information being processed.  For those statements which support a
locking feature, termination with a semi-colon results in the unlocking of any current record, otherwise the
record remains locked.

To maintain a record lock after reading information, simply omit the optional ';' at the end of a statement.
To write part of a record and retain the record lock, omit the optional ‘;’ at the end of a statement.  To
perform a read or write and unlock the record, include a trailing ';'.  To unlock any previously locked
information on a channel without performing a transfer, issue the statement:

UNLOCK #channel;

 or

WRITE #channel;;

The channel may be the only parameter if the statement requires no additional parameters, or if it is
followed by a semi-colon, i.e. PRINT  #3;.  Additional numeric parameters are parsed until the first semi-
colon is seen.  An error occurs whenever more than (4) parameters are processed prior to observing a semi-
colon terminator.



Channel I/O 8

dL4 Files and Devices Reference Guide

Channel Functions and Operations

Various parameters of an open file or device may be obtained with Channel Functions.  The argument xnn
must specify an operation (x) as listed in the tables and an open channel number (nn).

String Functions

CHF$(xnn)          Operation Performed                                                                                                                

1 Return Open Modes Selected. ("RWLE").

6 Return Driver Class

7 Return Driver title

8 Return Filename, portable if possible, based upon current working directory.

9 Return File owner

10 Return File group

11 Return File protection

Numeric Functions

CHF(xnn)            Operation Performed                                                                                                                

0 Return Current file size in records of 512-bytes

1 Return Current record within the file

2 Return Current byte position within the file

3 Return Record length in words (See File Unit Option)

4 Return File size in bytes

5 Return Record Length in bytes always returns 512

6 Return Header size always returns 0

7 Return error

8 Return error

9 Return File owner in numeric form - error if  the information cannot be expressed as a
numeric value

10 Return File group in numeric form - error if  the information cannot be expressed as a
numeric value

11 Return File protection or permissions, expressed in numeric form - error if  the
information cannot be expressed as a numeric value

dL4 Drivers and Classes

For each and every connection between an imbedded or external object and a channel, dL4 assigns a
specific internal program, written in C and called a driver, to have authority and responsibility for all
operations directed through that channel.  These drivers are, in fact, interfaces between dL4 and external



Channel I/O 9

dL4 Files and Devices Reference Guide

objects to which dL4 may communicate. The implementation of a driver defines the operations a program
may perform on any specific object.

Some examples of drivers include the Text File and Window Driver.  The Text File driver is a relatively
simple driver, responsible for reading and writing ASCII characters to simple, unformatted files, devices or
pipes.  However, the Window Driver is quite complex - its responsibilities include drawing complex output
and maintaining colors and multiple ‘windows’ on a dumb terminal.

Because there will likely be one or more objects which behave more or less identically, drivers are further
said to belong to a class.  The term class, when applied to a dL4 driver, is meant to describe a pre-defined
interface and expected behavior of a channel driver together with the object it drives, whether that object is
a file or a device or some other object, either physical or abstract.  Every dL4 driver identifies itself as
belonging to a particular class, represented by a simple ASCII string, such as "Text-File".  Each object
follows a set of rules, e.g., a specific Text file behaves in accordance with the rules governing Text files in
general, further defined by any unique rules imposed by a specific type of Text File, such as a Unix Text
file, DOS Text File, Macintosh Text File, IRIS Text File, etc.

Therefore, the driver implements a class-defined object according to a predefined set of rules.  For example,
consider a classification of Text files.  All the printers in this class follow certain rules and exhibit certain
behaviors and the dL4 programmer can operate on them.  “All Unix Text files” might be an implementation
of this class, so one or more Unix Text file drivers are included in the Unix text file class.

However, Macintosh text files, Unix Text Files and DOS Text files differ on how they represent an end-of-
line-break.  The dL4 programmer does not need to be concerned with whether to write a carriage return,
linefeed or both; the real issue is that an end-of-line-break is to be inserted.  The class rules for a text file
specify that a PRINT statement which is not terminated by a ; results in an end-of-line-break being inserted
in the file.  The programmer can then code with this model in mind.  The actual text-file class driver, Dos,
Mac, or Unix handles the actual writing of the characters.  Correspondingly, when reading a text file, the
READ or INPUT statements have rules when operating on a file in the Text-File class.  The programmer
codes to that standard and does not have to worry about the source material.

UniBasic programmers have essentially worked with the idea of driver-classes for years.  For example, it
has long been understood that in the statement:

Read #C,R,I;A$;

the parameter I is interpreted as a field number if the channel #C is linked to a Formatted File, but as a byte
displacement when channel #C is a Contiguous File.  Furthermore, it is known that if #C is a Contiguous
File, then the fact that the statement is READ causes reading to continue through null bytes.

dL4 recognizes the sum of these traditional characteristics of Contiguous (and Indexed-Contiguous) files as
a class of drivers, known as “Indexed-Contiguous”.  These characteristics are attributed by dL4 to a class,
not to a driver or the object itself.  This attribution allows dL4 to support more than one type of “Indexed-
Contiguous” driver.  In fact, there are currently three Indexed-Contiguous drivers:  the UniBasic Indexed-
Contiguous, the Portable Indexed-Contiguous, and the Full ISAM Bridge.

The dL4 BASIC Interpreter purposely remains ignorant about the actual effect or behavior of most channel
I/O statements.  Therefore, in:

Read #C,R,I;A$;

the Interpreter simply collects the arguments R, I, and A$ -- then passes them to the driver controlling
channel #C, requesting that the driver perform a READ operation.  What this operation does is unknown to
the Interpreter, and remains under the complete control of the driver.  Hence it may cause the reading of
bytes from a file, or it may cause megabytes to be FTP’ed from Switzerland.  Whatever its action is, the
BASIC programmer knows what class of object is open on channel #C, and what effect a READ from that
object has.



Channel I/O 10

dL4 Files and Devices Reference Guide

Benefits of Using dL4 Classes and Drivers

dL4 classes make applications development modular.  When an application for a specific class is created,
this application runs on all the drivers contained by that class.   The programmer writing code for a
particular class is writing code for all members of that class.  The modularity comes in being able to fit an
application into any software context where an application of that class is required.

In contrast, sometimes an application designer knows and desires to exploit some specific features,
available on a specific driver implementation within a class.  In such cases, the programmer is willing to
sacrifice class portability and may explicitly do so within the application.  The application becomes then
self-documenting, because the programmer specifies the “FoxPro Full-ISAM” driver, rather than a more
generic “Full-ISAM” class.  The programmer will receive an error if the specific driver is not available.

When programming to the specification of a class, rather than a specific driver of a class, the programmer
defers defining the default objects with which the application communicates.  For example, the programmer
simply requires that an end-user installation include a Full-ISAM database engine and Fax server, rather
than specifying a specific brand name database and fax server. As market and customer needs change, new
technologies may be substituted without any redesign or reprogramming.

 Again, in contrast, if the programmer specifies the Microsoft SQL Server Full-ISAM driver, the application
now requires that specific component be present, thereby restricting installations to NT and Windows 95
platforms.  While it may be possible to later change all hard-coded occurrences of the Microsoft SQL
Server to, say FoxPro, the application likely exploits special features only available on the Microsoft SQL
Server.  Careful planning and long-term objectives must be weighed when deciding to code to a specific
model.

More on Record Locking

The dL4 interpreter, and its supporting drivers, implement a robust locking system designed to eliminate
problems inherent in multi-user transaction processing systems.  To accomplish this, dL4 drivers place a
lock on the record being read or written at the start of a given statement.  The operation or data transfer is
performed in its entirety and the lock is only then removed if the statement terminates with a semi-colon.
This method ensures that only one user is transferring the information, in its entirety, at one time.  In those
cases where the programmer is not actually locking the information, the operation completes so quickly that
it has no apparent effect on other users who may also be requesting the same information.

To implement Record Locking, dL4 relies on the underlying operating system to place and maintain locks
in a manner consistent with networks and other applications. The differing of such locking implementations
across platforms leads to confusion only when the programmer designs with a specific operating system
model in mind.  The following discussion of locking is the expected dL4 behavior across all operating
systems, platforms and networks supported.

 Operating System Support for Record Locking

dL4 relies on the Operating System to properly implement local and remote file access, such as Open,
Close, position within a file, Read, Write and Lock.  These are standard system calls available on all
operating systems.  DL4  does not use any special network system calls.  The Operating System must be
properly configured.

The dL4 system is oblivious to any third-party software which is inserted between the Operating System and
a target object.  Any such software installed must provide a full and robust implementation and behave
according to the published interface documented by the Operating System API and the network service it is
supplying.  dL4 may not work with third-party network software that improperly implements locks.



Channel I/O 11

dL4 Files and Devices Reference Guide

For example, dL4 may request the Operating System to Open a file for access by a user program.  A call is
made to the NT Operating System to OPEN the file.  While dL4 does not know where the file is, or what
internal NT or third-party software is involved in the location and opening process, dL4 does expect only a
finite number of responses from NT and acts accordingly.  If, as a result of information supplied or returned
by third-party software, NT returns the incorrect, or some other condition, dL4 will likely fail to operate
correctly.

Implementations of Locking

Under both Posix and Win32 platforms, record locking is implemented by attempting to place a write lock
on the selected record at the beginning of any read or write operation. If another process, or user, has
already locked the record, the operating system rejects the request to lock the record and the operation
cannot be performed.  If the driver supports a record-lock-retry feature, the value specified as parameter3 in
the chn.expr is typically used to control the retry.

 0 Generate an immediate error if the record is locked.

-1 Wait indefinitely until the record is unlocked.  This is the usual default condition whenever
parameter3 is missing from a chn.expr, and the driver supports record-lock-retry.

+n Wait until the record is unlocked, up to a maximum of n tenth-seconds.  For example, a value of
150 would retry every few seconds for a maximum of 15 seconds.  If the record was still locked, an
error would be generated.

If no other process has already locked the record, the lock is placed and the read or write operation is
performed.  Upon completion, the record remains locked unless the statement is terminated with a ‘;’.
When a file is accessed as a RAW file with the statement OPTION FILE ACCESS RAW, the ';'
terminating feature is disabled.

NOTE: Any locked record on a channel is automatically removed on any of the following:
Closing the channel
Trailing semi-colon on the last operation unless OPTION FILE ACCESS RAW is in effect
Access to the same record without again locking
Attempted access to any other record.
Unlocking the channel using Write #c;; or Unlock #c;

Reading through Record Locks

Some drivers support the specification of <attributes> when the channel is first Opened.  The optional "L"
attribute, supported by some drivers, requests the driver to avoid placing or checking Record Locks prior
and after Read or Write operations. Because of the obvious problems introduced by an ability to disable
record locking, specification of the L attribute usually requires the inclusion of the "W" attribute to disable
writing to the channel.  The ROPEN statement uses the "L" and "W" attributes when it opens a file.

When operating with the"L" attribute, the driver will attempt to read data from a channel without checking
or placing a lock on the selected record.  The actual behavior of such an operation is driver and system
dependent.  Programmers must take note that Posix systems, which employ advisory locking, will typically
allow Reads through locked records, while Win32 systems, which use mandatory locking, may block a
Read operation.  It is therefore recommended that you utilize the timeout facility and not expect the ability
to read-past-locks on all operating systems.

When opening the same file on multiple channels, in either the same program or a Swap process never place
two simultaneous locks on the same record.  To do so will likely cause the operating system to combine



Channel I/O 12

dL4 Files and Devices Reference Guide

them and treat them as a single lock.  When one program unlocks the record on the one channel, the
operating system will likely unlock the record on the other.

Only a single record may be locked on any given channel.  If you need to lock several records at once, you
must open the file on separate channels.

You may not lock the same record on two or more channels simultaneously.  Any attempt by a program to
place a second lock on a record already locked on another channel by that program or its SWAPped
ancestor is an operating system dependent operation.  When opening the same file on multiple channels
(with or without SWAPping), a program should never try to place two simultaneous locks on the same
record.  Opening and then reading from a second channel is safe if locking was disabled on the second
channel with a statement such as:

OPEN #c,"<WL>filename"



Character Sets 13

dL4 Files and Devices Reference Guide

dL4 Character Sets
One of the unique design characteristics of dL4 is its independence from the largely restrictive, traditional
7-bit ASCII and 8-bit character sets.   Instead, dL4 considers character sets as one of the properties of the
embedded and external objects with which it interfaces. The implementation is both simple and elegant and
allows dL4 to operate upon virtually any character and symbol.

All data internal to dL4, whether encapsulated within a program or manipulated as data, is represented using
the industry-standard Unicode 16-bit character set.  This character set is more thoroughly defined in the
following pages, however it is a set capable of representing the worlds language and symbol characters.

Whenever data must be exchanged between dL4 and the outside world, it is converted to and/or from
Unicode and the usually more restrictive character set recognized by the object. Whereas, any 8-bit
character can always be converted to and from Unicode, obviously not all 65,536 Unicode characters can be
represented by a single 8-bit character.  Therefore, an error is generated when attempting to convert (write)
data to an object if the particular object does not support that character.

In most computer environments, an 8-bit character set (256-characters) is available to the programmer to
represent a set of characters.  In the USA and Europe, this set is usually the traditional alphabetic, numeric
and symbolic characters, along with some special-use local characters, which can be represented on a
variety of objects, such as terminals, printers and databases.  As one switches between various European
character sets for example, country dependent characters are substituted within the 8-bit model.  Given the
limited number of characters available, special-use characters maybe ‘forced’ into a set by manufacturers to
cater to local populations.  Without a standard, conversions may be required to ensure that a given character
is represented identically on a terminal screen and printer.

Taken further, every dL4 class and/or driver supports one or more character sets.  These are the defined set
of characters which may be correctly represented by or within an object.  In order to retain the integrity of
data within an object supported by a dL4 driver, it must remain knowledgeable about that character set and
perform any conversions consistently and, without error. A driver which improperly maintains an objects
character set, is improperly implementing that object.

Some drivers supported by dL4 are capable of supporting a number of  different character sets by actually
recording character set information within the object.  For example, a Portable Contiguous File may contain
virtually any standard or custom character set because this object is unique to dL4 and we have the
opportunity to write the rules concerning its behavior.  Changing or extending the rules (or character sets)
will have no impact on other software because all other access to this data is through a DCI gateway
software product, or development system and API supplied with dL4.

However, the FoxPro database system supports only the specific ANSI character set, meaning that only
characters within that set may be correctly read and written to a proper FoxPro database.  Whereas a
modified dL4 driver could allow the reading or writing of additional characters, doing so would likely
invalidate the file as a FoxPro database file.  More specifically, other applications would not understand the
now ‘custom’ character set being imposed on the FoxPro database by dL4.

Intrinsic Character Sets

dL4 includes a number of built-in character set translations.  As described, all data internal to dL4 is stored
and operated upon using the Unicode character set.  Conversion tables facilitate the translation between
Unicode and those character sets typically used for terminals, printers, databases and flat files.  The
standard dL4 character sets are:

• "ASCII" (synonyms "US-ASCII" and "ISO 646") which is standard 7-bit US ASCII.  Identical to
Unicode 0x0000 - 0x007f.



Character Sets 14

dL4 Files and Devices Reference Guide

• "ANSI" (synonyms "ANSI Latin 1" and "ISO 8859-1") which is ASCII plus the Latin 1 character set.
Identical to Unicode 0x0000 - 0x00ff

• "IRIS" (synonym "IRIS-ASCII") is IRIS ASCII (high bit set) plus the IRIS mnemonic characters.  In
this set, standard 7-bit ASCII characters are represented by adding 0x0080 to each character, therefore
placing printable ASCII characters in the range 0x0080-0x00ff.  The values 0x0000-0x007f are used to
represent a list of IRIS terminal and screen mnemonics.

• "uniBasic" (synonym "uniBasic-ASCII") is UniBasic ASCII (high bit zero) plus the UniBasic
mnemonic characters.  In this set, standard 7-bit ASCII characters are in the range 0x0000-0x007f.  The
values 0x0080-0x00ff are used to represent a list of UniBasic terminal and screen mnemonics.

• "IBM Code Page 437" is IBM code page 437.

• "IBM Code Page 850" is IBM code page 850.

• "Windows" (synonym "Windows Code Page 1252") is a Microsoft extended version of ANSI with
some extra characters.

• "EBCDIC" (synonym "EBCDIC 037") is one popular form of EBCDIC.

• "UTF-8" is a multi-byte encoding of Unicode.

In addition to Intrinsic Character Sets, dL4 supports user-defined character sets.  Users may dynamically
add and remove character set translation tables under application program control.  This feature allows
users to establish and map their own custom set of Unicode characters into a 8-bit character mapping table.
This feature is helpful when it is necessary, for example, to replace or add a local currency character,
mnemonics or graphic characters to a character set.  In order to be able to write and read custom character
sets to a driver, that driver must support multiple character sets.  For more information, refer to the
dL4 Language Reference Guide CALL CustomCharacterSet ( ), and the Portable Contiguous
documentation in this document.

Unicode Character Set

The first edition of the Unicode Standard contains over 28,000 characters from the world's scripts.  These
characters are more than sufficient for modern communication, as well as classical forms of languages such
as Greek, Hebrew, Latin, Pali, Sanskrit and literary Chinese.  Over 20,000 unique characters defined by
national and industry standards of China, Japan, Korea, and Taiwan are included.  The Unicode standard
also includes math operators and technical symbols, geometric shapes and dingbats.

Unicode is used internally for all text processing in dL4.  Externally, the various drivers at the I/O level
perform any necessary translation to the appropriate 8-bit character set for a given file or device.  Not all
hardware devices are capable of displaying or printing the full complement of Unicode characters.  The
techniques used to handle unrenderable characters vary in different drivers or contexts, for example,
consider the case:

Print "© 1997 Dynamic Concepts, Inc." ! If renderable
Print "\251\ 1997 Dynamic Concepts, Inc." ! If not

The copyright symbol is 2518 in Unicode.  In other words, what constitutes "non-printable" characters is
completely file-/device-dependent, and not determined until I/O time.

Note that while this Print operation may be perfectly valid to a terminal, window or printer, the © symbol
has no conversion or position within the older legacy IRIS and UniBasic character sets.



Supported Drivers 15

dL4 Files and Devices Reference Guide

Supported Drivers
A driver is a program, embedded within dL4, to provide for interaction and communication between an
application program and an embedded or external object, such as a file, database or device.

Default dL4 configurations include a number of driver classes and implementations which provide the
programmer with the ability to interface with a number of standard objects.  Some driver classes offer more
than one driver, giving the programmer a choice.  By designing programs according to the rules of a driver
class, dL4 facilitates a high degree of portability.  Applications may later communicate with other drivers in
the same class with little or no reprogramming required.

The following Classes of drivers are supported by dL4:

Class                                  Drivers and/or Comments                                                                                         

Window             Default Window, Phantom Window, Terminal Window, Default Terminal
Translation, Generic Terminal Translation, Win32 Window Terminal
Translation

Text Text, Unix Text, DOS Text, Macintosh Text, Pipe to Command, Pipe from
Command

Profile Profile Driver is used to process profile files, such as Terminal drivers and
Bridge files

Index c-tree Index.  Manages the Indexed portion of an Indexed-Contiguous file

Formatted Portable Formatted, UniBasic Formatted

Contiguous Portable Contiguous, UniBasic Contiguous

Indexed-Contiguous Portable Indexed-Contiguous, UniBasic Indexed-Contiguous, Full-ISAM Bridge

Full-ISAM FoxPro Full-ISAM, Restricted FoxPro Full-ISAM, Microsoft SQL Server Full-
ISAM.

Raw Raw File, Raw Regular File.  This lowest-level driver may be used by the
programmer and is used by other drivers to access a file.  No conversions of data
are performed when accessing data through the Raw driver.

Directory POSIX Directory, Directory.  Directory Driver provides access to the filenames
stored within a directory and supports the creation of a directory.

NOTE: In addition to the above driver list, dL4 includes the following internal drivers which, although not of
interest to the BASIC programmer, provide operating system functionality to the interpreter.

AutoSelect         POSIX AutoSelect, Win32 AutoSelect.  AutoSelect determines what driver
should be assigned to a channel to manage an opened object when the
application does not explicitly select the driver class or driver.

Driver List Intrinsic Driver List.  This driver provides directory-like access to the list of
drivers. The SCOPE DRIVERS command reads driver information from this
driver.

System             POSIX System, Win32 System.  Returns and manages operating system specific
information for dL4.



Supported Drivers 16

dL4 Files and Devices Reference Guide

Port Communication System V Message Queue Communication, Win32 WM_COPYDATA
Communication.  Implements and manages interprocess communications
between dL4 applications.

Program BASIC Program.  Used to load and link Basic Programs.

Shared Memory System V Shared Memory.

Driver Auto Selection Mechanism

Whenever Opening or Building an object on a channel, dL4 first assigns a specific driver responsibility for
all operations performed on the channel.  The method in which the driver selection is made is governed by
the following rules.

• If the OPEN or BUILD statement specifies an AS clause which specifies a driver class, such as “Full-
ISAM”, the default Full-Isam driver is selected.  The default is the first Full-Isam driver in the driver
list provided by the SCOPE DRIVER command.

• If the OPEN or BUILD statement specifies an AS clause which specifies a specific driver such as
“FoxPro Full-ISAM” or “Raw File”, that specific driver is selected.  An error is issued if the specific
driver is not available.  The AS clause is useful when the programmer wishes to override the auto-
selection mechanism and is required when creating new types of files.

• The driver is selected according to the name, attributes, or contents of the file.  The auto-selection
process is capable of determining many of the built-in driver types, such as UniBasic, Contiguous,
Formatted, Indexed and FoxPro Full-Isam.

• If the operation is to create a new object using BUILDand an AS clause isn't specified, then the value
of file.spec (such as the presence of a record length) is used to select the class.

• If the operation is to open an existing object and no AS clause is specified and the auto-selection
process cannot determine which driver to select, the file is opened as a Text file.

Introduction to Files

A flat-file or datafile is an area or areas of the disk, provided by the file system, to be considered a single
data storage entity.  Flat-files allow data to be stored and retrieved by programs, and retain their data indef-
initely.

A table is an organized  flat-file which provides a method of storage and retrieval of information in a more
precise manner.  Tables are similar to spreadsheets, made up of rows and columns of information.

A database is a group of one or more tables of information which are linked together based upon like
information.  An employee master table and employee history table might be part of a Payroll database.

A device is a physical external storage medium such as a hard-copy printer, magnetic tape, or terminal
screen.

A window is a logical device upon which a user may draw and represent information.

Files and Tables may be further divided into rows or records and columns or fields.

A record is a row of information in a table, often a fixed number of characters taken together which form a
logical ‘row’ of information.  A customer record, for example, might store a clients name, address, billing
information and other pertinent information about that customer.

Some file types require the programmer to supply a Record number usually origin zero, meaning a file with
five records has record numbers 0, 1, 2, 3, and 4.  Other file types permit operations only on the current,
previous or next record and a physical number is not required.



Supported Drivers 17

dL4 Files and Devices Reference Guide

A field is an individual column or logical ‘piece’ of information within a record.  A customer record, for
example, might specify a field to hold a customer name in string format with a maximum length of n
characters.  The type of file determines how a field may be referenced.  Some file types leave all field
management to the programmer, in which case specific character positions of a record are reserved by the
programs to hold the field.  All management of the data type, truncation, padding and size must be handled
by each and every program operating on the file to maintain data integrity.  Programming complexities are
apparent whenever a field requires changes to its length, type, etc.  Other types of files provide a numbering
or field naming mechanism to simplify field management.  These file types, including database files,
perform the necessary location of the data within the physical record and may even handle padding, case
conversion, truncation and data type maintenance, and conversion automatically.

Some file types require the programmer to supply a field number or byte-displacement, usually origin zero,
to specify the starting point within a record to transfer data.  dL4 statements allow access to specific fields
within a record by supplying the associated field number or a byte displacement.  For some tables, a logical
mapping of field names is accomplished by assigning a logical number to each named field.

A fixed-length-record is a type of record whereby each and every record of a file is identical in length.

A variable-length-record is a type of record whereby each and every record is possibly of a different length.
Text files are perfectly suited to a variable-length approach and terminate each record with a unique
character, such as a new-line or carriage return.  In a text file, each line could be considered a record.
Variable-length-record files are usually more difficult to manage as databases, since it is often necessary to
read through them sequentially.  Because records are not fixed in length, record 11 cannot be located until
one reads through the first 10.

A fixed-format record is a type of record whose organization is identical in every position of the file.  Used
extensively in databases, each record contains the same ‘fields’ as the others.  Every customer record has an
‘address’ field.  This ‘address’ field is the third field of the record.

There exist many combinations of the above record and field types within the file structures supported by
dL4.  The common file classes are:

• Text Files are variable length record files, separated by a line-break character, with a single string field
in each record.

• Formatted Item files are fixed-length, fixed-format, numbered fields with truncation and padding on the
field level.

• Contiguous files are fixed-length, variable format record formats.  All formatting of the record is left to
the programmer.  These files are well suited for databases where data diversity is required and the
programmer has needs or wants to maintain the data.

• Indexed Contiguous files are Contiguous files with a programmer maintained variable number of Keys
and indices.  All record and key management, such as inserting and deleting are left to the programmer.
Indexed Contiguous files offer the programmer fast lookup of records by key value and a high degree
of control over the entire format and content of the records, fields and keys.

• Full-ISAM database files are fixed-length, fixed-format, named or numbered fields with truncation and
padding on the field level.  Keyed access is provided as well as maintained automatically whenever
records are added or deleted.  The number and type of keys, made up of field elements, is defined when
the file is created.  Full-ISAM files are easier to program and less error prone than Indexed-Contiguous
files.

Text File Class

A Text object is a stream of 8-bit characters terminated by a zero-byte or the physical end-of-data.  Text
drivers are used to communicate with text objects, such as character terminals, printers and text files.  Text
files are files which contain characters, usually in human readable form, in a variety of character sets, such



Supported Drivers 18

dL4 Files and Devices Reference Guide

as ASCII, ANSI, EBCDIC, etc.  Word processing files, although they contain text data, include formatting
information and are not a true example of a text file.

For purposes of random access, Text Files are assumed to have a record length of 512 bytes.  Data begins in
the first byte of the file and there is no special header of information imposed by most operating systems.
Text files are good examples of variable length record files - each record of information is a line of text are
separated by an operating system specific line-separation character.

Note: When Text Files are created, the driver typically stores data in native format to ensure compatibility with
other local text editors, word processors and other programs.  It is important to note that the local format is
determined by the version of dL4 that you are running.  That is, running the Windows version results in
default Windows-style text files - even if those files are being created on a Unix server.  Be sure to include
an AS clause when specific formatting behavior is required.

Text objects are typically accessed sequentially.  When data is written to a Text driver, an operating-system
specific new-line identifier is written after each record.  On Unix systems, this is a line-feed.  Windows
systems utilize both a carriage return and a line-feed.  Macintosh systems use only a carriage return.

For programming convenience, a separate column counter is maintained for a channel connected to a text
driver.  Printable characters increment the column; new-line or form-feed operations reset the counter to
zero. When TAB functions are used to the open channel (ie writing to a device such as a printer), the
separate column counter forces the system to treat the local and channel devices exclusively.

When writing short to an existing file, i.e. in the middle of a file, a zero byte terminator is maintained at the
end of each write operation.  In such cases, a zero byte is written and the file pointer is decremented so that
each subsequent write operation overwrites the trailing zero byte, and appends a new zero-byte at the end-
of-file.  When a new file is being created, or an existing file is being extended, a zero-byte is not required or
added at the physical end-of-file.

Note: When data is being read from a Text File, End-of-File is signified by the occurrence of a zero byte,
regardless of whether data exists beyond the zero-byte.  Further Read operations will return null data.

Special Options with Text Files

Option File Access Raw

The File Access Raw option causes the text driver to generate an End-of-File error, rather than simply
returning a Null string on a read operation.  This option also generates the error during random access when
positioning or reading at or beyond the end-of-file.

Types of Text Files

For compatibility purposes, the standard character-set for all text files is the UniBasic character set.  This
default permits the writing and reading of special characters, control characters and UniBasic mnemonics to
a text driver.  To create or access other types of character sets, the Charset option must be supplied.

The default driver selected when no AS clause is specified is determined by the platform version of dL4
being executed.

• Unix Text driver uses the single new-line character to signify an end-of-line.

• DOS Text driver uses a carriage-return new-line pair to signify an end-of-line.



Supported Drivers 19

dL4 Files and Devices Reference Guide

• Macintosh Text driver uses a single carriage-return character to signify an end-of-line.

• Pipe to Command is used to write text to pipes, such as printers, driven through a program or script.
The platform determines the handling of the end-of-line character according to the above rules.

• Pipe from Command is used to read data generated by another process through a pipe. The platform
determines the handling of the end-of-line character according to the above rules.

Creating Text Files

BUILD

Create a new Text File.  The creation of a text file may be specified using the file.spec parameters, however
the number of records and record item length are ignored.  Even though a text file has no header per se, the
(option item) charset may be specified during open to select the type of character translation to invoke.  If
no charset option is specified, the native UniBasic character set is used.

To specify that BUILD is to create a text file, a + must precede the file.spec, or the BUILD statement must
contain an AS clause.

Build #channel, + “file.spec”
Build #channel, “file.spec” AS “Text”

The AS clause may specify the default Text, or may specify one of the other specific text drivers, such as
Macintosh Text.

Opening and Closing Text Files

CLOSE

Close the associated channel.  If the file was newly created, make it permanent.

CLEAR

Clear the associated channel.  If the file was newly created, delete the file.

OPEN, EOPEN, ROPEN, WOPEN

OPEN opens an existing text file.  Supplemental Open options L, W, R and E are supported on a limited
basis.  The charset option may be specified to select a specific character translation for the file.  Although
no auto-selection process is provided for character sets, the AS clause selects a specific driver which, to a
limited extent, specifies some translation of the handling of end-of-line.  For further information on the
specific drivers within the Text file class, see below.

EOPEN is equivalent to OPEN with <E> specified as part of the file.spec.str and opens the file for
exclusive access.  Exclusive Open is only supported when the underlying Operating System provides
mechanisms for exclusive access.  An error is generated if the support is not available under the host
operating system.

ROPEN is equivalent to OPEN with <WL> specified as part of the file.spec.str and opens the file for
read-only access.

WOPEN is equivalent to OPEN with <R> specified as part of the file.spec.str and opens the file for
write-only access.

The special pipe drivers may be opened explicitly, or through the inclusion of a single or double $ within
the filename portion of the file.spec.  Use the single or double $, such as $PRINTER or $$ls -l respectively,
to open a write-to or read-from pipe

Open #channel, “$file.spec”
Open #channel, “file.spec” AS “Pipe From Command”



Supported Drivers 20

dL4 Files and Devices Reference Guide

Positioning Within Text Files

A chn.expr for Text drivers supports the specification of all three optional parameters, in the general form:

#channel { , record {, byte-displacement {,  timeout }}} ;

The optional  record specifies a block of 512-bytes within a file.  A record cannot be specified for a Pipe
From or Pipe To text driver.  The following table illustrates the acceptable values when specifying a record.
For positioning purposes, all Text drivers assume that the object has a record-length of 512-bytes.

An optional byte-displacement specifies the starting byte position within a 512-byte block of data.  A byte-
displacement cannot be specified for a Pipe From or Pipe To text driver

Positioning within a text file is performed by taking the result of (record * 512) + byte-displacement and
using that to specify a specific byte within the file.  For example, the values record=1, byte-displacement=4
selects byte (512*1+4) or byte 516 within the file.

Typically, text files are accessed sequentially and positioning within a text file is not an issue.  When it is
desirable to position within such a file, it is usually required to read through the file in order to obtain
current position information for later use with a request to reposition.  This is especially important
whenever a multi-byte character set, such as UTF-8 is used.  A given byte-displacement is not a character
position in all cases.

Record number          Action Performed                                                                                                               

omitted Continue to access sequentially from the last operation.  Following Open, access the
first character.

-1 Same as omitted.  Continue the access sequentially.

-2 Special Read operation provides an ability to Read a specific number of characters
and not terminate on a newline.

-3 Illegal.

value Set the position to record value.   Taken with the byte-displacement, reposition the
file.  If no byte-displacement is specified, or it’s value is -1, assume a zero
byte-displacement.

Byte Displacement     Action Performed                                                                                                               

omitted Continue to access the text file from the current byte-displacement.  Sequential
Access.

-1 Same as omitted.  Sequential Access.

value No meaning if param1 is -1.  Taken as the byte-displacement if param1 is a value

The optional timeout is typically used when accessing devices, such as keyboards or com ports, to provide
for a period of time to wait for data.

Record Locking is not supported by Text drivers, however a timeout may be included for those cases where
an application, other than dL4 has placed locks on text data or a text device.

Rewind #c;

Reset the text file to the first character position within the file.

Setfp #c,p1,p2;

Set the file pointers to record p1 and byte displacement p2.  Text files are assumed to have 512-byte records
for positioning purposes.  Therefore, any given position, expressed as record p1, byte-displacement p2 is
computed as the byte-position within the file at p1*512+p2.

All positioning assumes an 8-bit character set.  If the text file contains a multi-byte character set, such as
UTF-8, arbitrary or computed file positioning with Setfp is impractical.  In such cases, you can position



Supported Drivers 21

dL4 Files and Devices Reference Guide

within the file to a specific character only when you are sure that position represents the start of a multi-byte
character sequence.

Setfp #c,Chf(400+c)/512, Chf(400+c) Mod 512
! Position to end of file (used to append to a text file.

Record Locking with Text Files

Record Locking is not supported by any dL4 text driver and a programmer may issue the following
statements without error.

Unlock #c;

Write #c;;

It is important to note that dL4 neither supports nor enforces locked text records.  This means that should
another third-party application place locks on a text file, you may still be able to read or write to the file or
device.  The success of such an operation is dependent upon the method of locking in place within the
operating system.  Advisory locking systems, such as Unix, will not prevent you from reading or writing to
the device or file, whereas a Windows system will block all operations to a locked resource.

If you plan on accessing text objects which might be accessed (locked) simultaneously by other
applications, care should be taken and the timeout option should be used to provide for recovery from a
lockout condition

Reading and Writing Data with Text Files

Input and Mat Input

Re-direct the normal Input statement to read characters or a line of data from the channel.  The specific text
file driver will always convert any operating system specific line termination to a single carriage return, as if
the data were entered from the keyboard and the return key pressed.  Therefore, as in keyboard input, a null
string represents a blank line within the text stream.

An End-of-file error is generated when all text has been read from the file.

Print and Mat Print

Following the rules of the Print and Mat Print statements, the arguments are prepared for display by
converting them to printable characters and then re-directing ‘lines’ of output to the channel.  The end-of-
line character(s) appended by Print and Mat Print statements are converted by the driver to the format
required by the specific type of text driver.

Read and Mat Read

Reading characters from the channel is performed by the Read and Mat Read statements.  Both statements
operate identically on Text drivers.

A read statement must specify a str.var, and terminates on the transfer of a null byte, end-of-file, end-of-line
(return), or when the {specified or dimensioned} length of the variable has been read.  If the read terminates
on an end-of-line character, a carriage return (‘CR’ or \015\) character is placed in the string as the last
character read.

An error is generated if you attempt specify a num.var or expr.

Multiple arguments may be specified, and the read operation is performed for each.  If the argument is a
string array, a Read operation is performed for each element of the array.  A structure variable (consisting
of all string members) is treated like a list of individual arguments.

You may read through any end-of-line characters and instead read a specified number of subscripted
characters, or the Dimensioned size if no subscripts are supplied, by specifying a record of -2.  In this case,



Supported Drivers 22

dL4 Files and Devices Reference Guide

all end-of-line characters are converted and represented as single carriage returns (CR \015\) within the
str.var.

Write and Mat Write

Writing characters to the channel is performed by the Write and Mat Write statements.  Both statements
operate identically on Text drivers.

A Write statement must specify a str.var, and terminates upon the transfer of the {specified or
dimensioned} length of the variable. Whenever writing in the middle of an existing file, a null byte is
written following each argument, unless the argument was subscripted.  Subsequent write operations
overlay the null byte, unless the file is being expanded.  This process ensures that the driver can maintain a
future ‘end-of-file’ position whenever re-writing over an existing file.

An error is generated if you attempt specify a num.var or num.expr, however, a str.expr may be specified.
To write a single null byte to the file, the str.expr “” may be specified.

Multiple arguments may be specified, and the write operation is performed for each.  If the argument is a
string array, a write operation is performed for each element of the array.  A structure variable (consisting of
all string members) is treated like a list of individual arguments.

Table of Text Driver Options Supported

A driver related statement to create or define the channel may specify optional items as indicated by italics
in the following general form:

STATEMENT #chan;"<protection>(option)$cost[record]filename" As "driver"

Statements Optional Items WIN32 UNIX
BUILD Y Y

<Protection Item>
(Option Items)
(charset=UTF-8) N - Syntax Error N - Syntax Error
$Cost Item
$9.99 Y (ignored) Y (ignored)
[Record Item]
[100:80] N - Syntax Error N - Syntax Error

OPEN Y Y
<Protection Item>
< R > Y Y
< W > Y Y
< E > Y N - mode not supported
< L > Y N - mode not supported
(Option Items)
(charset=UTF-8) Y Y
$Cost Item
$9.99 Y (ignored) Y (ignored)
[Record Item]
[100:80] Y Y

EOPEN Y N
<Protection Item>
< R > Y N/A
< W > Y N/A
< E > Y N/A
< L > Y N/A
(Option Items)
(charset=UTF-8) Y N/A
$Cost Item
$9.99 Y N/A
[Record Item]



Supported Drivers 23

dL4 Files and Devices Reference Guide

[100:80] Y N/A
ROPEN Y Y

<Protection Item>
< R > N - mode not supported Y
< W > Y Y
< E > Y N - mode not supported
< L > Y Y
(Option Items)
(charset=UTF-8) Y Y
$Cost Item
$9.99 Y Y
[Record Item]
[100:80] Y Y

WOPEN Y Y
<Protection Item>
< R > Y Y
< W > N - mode not supported Y
< E > Y N - mode not supported
< L > Y N - mode not supported
(Option Items)
(charset=UTF-8) Y Y
$Cost Item
$9.99 Y Y
[Record Item]
[100:80] Y Y

A driver related statement to access the channel may specify optional items as indicated by italics in the
following general form:

STATEMENT #chan,parameter1,parameter2,parameter3;passed_parameters;

Statements   Parameter1 Parameter2 Parameter3
READ
INPUT
MAT READ
RDLOCK

record number byte displacement timeout

WRITE
PRINT
WRLOCK

record number byte displacement timeout

Pipe Drivers

Pipe drivers are typically used to provide an interface to a device such as a printer.  But they are much more
than a printer driver.  Pipe drivers may be used to call operating system specific utilities to perform
operations that may be cumbersome for dL4 or other language programs.  They must be executable
programs or scripts and reside in a directory specified by the PATH.  An error is generated if the
commands they call do not exist or are not in the PATH if given as a relative filename.

Types of Pipe Drivers

An output pipe is opened by preceeding the filename with a single '$' in the file.spec.str of the OPEN
statement.  The AS clause of the OPEN statement may also be used.  For example:

Open #chan,"file.spec.str" As "Pipe to Command"

An input pipe is opened by preceeding the filename with '$$' in the file.spec.str of the OPEN statement.
The AS clause of the OPEN statement may also be used.  For example:



Supported Drivers 24

dL4 Files and Devices Reference Guide

Open #chan,"file.spec.str" As "Pipe from Command"

dL4 does not support bi-directional pipes.

Creating a Pipe Driver

On a UNIX system the pipe program may be a shell script or an executable program with parameters, such
as "ls -l".  The shell script may have an options line interpreted by the dL4 pipe driver.  To use pipe driver
options the first line of the script file must begin with "# dL4opts=".  Options use the format
"keyword=value".  The supported keywords are "charset" and "lock". The "lock" value is a
filename, for example:

# dL4opts=charset=utf-8,lock=/tmp/lpt2.lk

This options line specifies that the pipe driver should send all output to script file in the UTF-8 character
set.  It also specifies the filename of the lock file to be created.

Subsequent lines will contain the commands and parameters necessary to process the data.

The shell script file must have its permissions set to make it executable.

A Windows system pipe program may be an executable program (.exe or .com) or a script must be a batch
file with a filename extension of ".bat".  If an options line is required, it must be the first line and begin with
"rem dL4opts=".  Options use the format “keyword=value”.  The supported keywords are "output",
"translate", "charset",  and "lock".

Subsequent lines will contain the commands and parameters necessary to process the data.  Following is  an
example of an input shell script to pipe a directory list to a dL4 program:

# dL4opts=charset=utf-8
ls -l

Another example of an output shell script might be one to sort dL4 output to a file.  For example:

# dL4opts=charset=utf-8
sort -o sorted

takes the output of dL4, sorts it, and puts it in a file called sorted.

To use direct printing, the printer script must specify an "output" option to select the output device and a
"translate" option to select a printer definition file path.  For example, the following script outputs to
the device LPT1 after translating output using the printer definition file "c:\dl4\printers\hplj":

rem dL4opts=output=LPT1,translate=c:\dl4\printers\hplj,lock=true

A printer script using direct output should consist of a single options line; all subsequent lines will be
ignored.  A direct output script always uses the Unicode character set and ignores any "charset" options.

Opening and Closing Pipe Drivers

The OPEN, EOPEN, ROPEN, and WOPEN statements may be used to associated a channel with a pipe
driver. The general form is:

Open #chan,"$file.spec.str"

or

Open #chan,"file.spec.str" As "Pipe From Command"

for an output pipe and is:

Open #chan,"$$file.spec.str"

or



Supported Drivers 25

dL4 Files and Devices Reference Guide

Open #chan,"file.spec.str" As "Pipe To Command"

for an input pipe.  A character set option item may be specified as part of the file.spec.str of the OPEN
statement, but a character option in the pipe driver script will take precedence.  The default is the UniBasic
ASCII character set.  Record items,[100:10], and permissions items, <A>, are accepted in the file.spec.str,
but not a cost item, $cost.

The CLOSE and CLEAR statements may be used to close the associated channel.

Locking with Pipe Drivers

The pipe drivers do not support locking records, but a script or device being accessed by the pipe driver
script may be locked by including a lock option in the first line of the script.  For UNIX the lock option
must specify the absolute filename of a lock file.  The syntax of the lock option is:

# dL4opts=lock=/tmp/lpt1.lk

For Windows the lock option is expressed as a boolean value, for example:

rem dL4opts=lock=true

The lock prevents concurrent opens of the batch script file and thereby allows only one process to execute
the script at a time.  The default lock option for both Windows and UNIX is none.

Reading and Writing with Pipe Drivers

The READ, RDLOCK, and INPUT statements may be used to receive data from an input pipe driver.  The
record, byte-displacement, and  timeout entries are not accepted.  An example, using the input pipe shell
script described above to read a directory:

File "pipein" listing:

# dL4opts=charset=utf-8
ls -l

dL4 program using input pipe shell script "pipein":

Dim a$[512]
Open #2,"$$pipein"
Do
  Read #2;a$
  Print a$
Loop Until a$ = ""
Close #2
End

The WRITE, WRLOCK, and PRINT statements may be used to send data to an output pipe driver.  The
record, byte-displacement, and  timeout entries are not accepted.  An example, using the output pipe shell
script described above to sort data to a file:

File "pipeout" listing:

# dL4opts=charset=utf-8
sort -o sorted

dL4 program using output pipe shell script "pipeout":

Data "s","z","a","d","t"
Dim a$[5]
Open #1,"pipeout" As "Pipe to Command"
For i = 1 To 5
  Read a$
  Print a$



Supported Drivers 26

dL4 Files and Devices Reference Guide

  Print #1;a$ + "\12\"
Next I
Close #1
End

Profile Class

A driver within the Profile class provides facilities to process textual data stored within specially organized
text files.  Such special text files are called profile files.

Some examples of profile files include Posix tty terminal description files and Full-ISAM Bridge Profiles.
Profile files are well suited for the organization and retrieval of configuration information and are easily
maintained by a text-editor or word-processor.  Profile files are a portable feature of dL4.

A profile file contains one or more lines of text in the following general forms:

• blank lines

• ; Comments

• [Section Name]

• left=right

where blank line is any empty line.

; specifies a comment line.

Blank lines and comment lines are ignored during normal processing of the file.

Section Name is any set of valid characters stored within [  ].  All lines following a Section, up to either the
end-of-file or the start of [Another Section] are considered part of the named section Name.

left is any label, terminating with an '=' whose leading and trailing spaces are ignored.

right is any text, including spaces, to be returned as the value of the label specified by left.

The Profile Driver supports the following operations:  OPEN, ROPEN, READ, and SEARCH.

Types of Profile Drivers

The Profile class has the Profile driver.

Creating Profile Files

Profile files are just text files and may be created with the Text file driver or any text editor.  The only thing
special about Profile Files is the layout of the data as described above.

Opening and Closing Profile Files

In order to access a text profile file, it must first be opened for read-access.

OPEN #chan, "ProfileFile" AS "Profile"

Where chan is any valid channel number, ProfileFile is any valid Profile file. The "AS Profile" clause is
required to prevent the dL4 autoselection mechanism from opening the file as a standard text file.



Supported Drivers 27

dL4 Files and Devices Reference Guide

Use the CLOSE statement to close the channel associated with the Profile file.

CLOSE #chan

Where chan is the valid channel number on which the Profile file is OPENed.

Positioning within Profile Files

Following a successful OPEN or ROPEN, an initial SEARCH must be performed prior to using READ to
access data.

SEARCH #chan, str.var

SEARCH #chan, str.var1, str.var2, str.var3

The first form is used to perform a search for a specific Section Name.  str.var contains the named Section
Name to locate.  The search operation is case insensitive.  If str.var is null, a search is performed forward to
the next section.  str.var is returned with the name of the located section, if any.  An error is returned if the
section is not found, or the end-of-file was reached with a null string search.

The second search form is used to locate a specific left label within a section.  str.var1 contains the named
section, str.var2 the left label, and str.var3 is returned with the right value.

If the operation is successful, the file is positioned to the first element of the named section.  An error
occurs, if the named section is not within the file.  The search operation is circular, that is, the file is
searched from the current position forward.  If an end-of-file is reached, the search continues from the
beginning of the file up to the current position.  A search for the next section is not circular in nature,
resulting in an end-of-file error.

Record Locking with Profile Files

The Profile driver does not support any locking mechanism, due to the read-only implementation.

Reading Profile Files

Profile files are designed to be read-only.  The current implementation does not support writing to the file.

READ #chan,record,item;str.var {,str.var}

Where record (-2) specifies the current record, and (-1) selects the next record.  Following a SEARCH
operation, an initial record=-2 read is required to load the current record.  Subsequent records are read by
specifying record -1.

item selects the item to read, 0 or 1.  0 selects the left label, with leading and trailing spaces removed, and 1
selects the right label, with all data to the right of the = .

str.var is the name of any string variable into which to read data.

Only the Current (-2), or Next (-1) record may be accessed.  A Record Not Written error occurs at the end
of a Section, or physical end-of-file.

Open #0,"/usr/lib/dl4/term/wyse50" As "Profile"
Dim a$[100],b$[100],c$[100]
Search #0;a$ !Position to the first section
Print a$ !Display the name of the section
Read #0,-2;a$,b$ !Read the first record
Print a$;b$ !Display the items



Supported Drivers 28

dL4 Files and Devices Reference Guide

Formatted Files Class

The Formatted File drivers support a type of data file or table consisting of identically defined, fixed-length
records.  Formatted files are well suited to store application template information and information which is
user-specific or temporary in nature.

While usable in some database applications, Formatted File drivers provide random access only by record
number and offer no high speed lookup or searching capabilities.  Instead, they rely on the application
having its own high-speed mechanism to categorize and locate specific records within the file.  In fact,
Formatted File drivers are similar to, albeit low-level versions of, Full-ISAM Database drivers.  They
provide high speed access for applications which only require access to numbered records and fields and
require no high-speed search capabilities or record and field mapping.

Formatted Files are frequently used to store information based on such a unique record number, such as a
user account number, terminal device port number, or some other session identifier, such as a process id.

Each record of a Formatted File is identically formatted, that is it contains the same type and number of
fields. The format is initialized through creation and the writing of the first record and is then maintained
for the duration of the file's existence. Records are numbered, starting at zero.  During the creation process,
the writing of data to record zero in progressive item or field numbers results in the writing of data and the
definition of the record format.

Formatted File Drivers provide automatic truncation and padding when data is written whose length does
not exactly match the field definition.  Conversion services are not supported by the driver - it is the
programmers responsibility to correctly differentiate between string, numeric and binary information.  The
driver will, however, perform numeric type conversions for some precisions of numerics supported.

Each item or field is defined to be one of the standard dL4 data types, including string, numeric, date or
binary.

Special Options with Formatted Files

There are no special OPTION Statement directives which alter the behavior of Formatted files.

Types of Formatted File Drivers

Standard Unix versions of dL4 include two different Formatted File drivers, UniBasic and Portable.
However, on Windows systems only the Portable driver is provided.  Because UniBasic was never available
on Windows, no Formatted files were ever created on that platform and therefore, a dL4 program running
on Windows should not have a need to read or write to a local UniBasic Formatted file.  If such a need
arises, UniBasic version 6 and higher provides for creating Universal files, which are platform independent.
Existing files may be converted to Universal files if they meet certain requirements.

The UniBasic version of this driver is provided on those platforms on which a previous version of UniBasic
was released.  The primary purpose for including this version is to provide for sharing of files between
UniBasic and dL4, as well as eliminate the need to convert such files to dL4 portable format.

UniBasic Formatted File Driver

The UniBasic Formatted driver supplied on any given dL4 platform is limited to operating on UniBasic
Formatted files created on that same platform.  For example, a dL4 system supplied for platform 99 (SCO
Unix), is capable of creating, reading and writing SCO UniBasic Formatted Files.  Since UniBasic files are
not portable, the UniBasic Formatted driver on SCO cannot, by default, be used to read or create UniBasic
Formatted files for AIX.



Supported Drivers 29

dL4 Files and Devices Reference Guide

While the current offering does not include such drivers, the dL4 development system does permit the
creation of specific UniBasic Formatted drivers which are platform specific.  For example, a Windows or
SCO version of dL4 could include other Formatted drivers, such as UniBasic AIX Formatted File.  In the
current release of dL4, no such additional drivers are included, however the source code for the UniBasic
Formatted driver is included to facilitate later or customer addition of such drivers.

While the basic access methods are identical for both dL4 and UniBasic, existing and newly created
UniBasic Formatted files must remain compatible with UniBasic and therefore do not allow the reading or
writing of newer dL4 data types.  UniBasic Formatted files support String, Numeric and Binary types.  The
Binary type is forced by using the MAT statement to initially write a numeric array,  numeric variable or
string variable.

The record length in a UniBasic Formatted file can be up to 65534 bytes in length, with each record
containing from 1 to 128 items or fields.

A null record is returned when access is made to a record below the maximum record number, but not
physically in the file.

The UniBasic Formatted File driver in dL4 does not recognize any settings defined in the UniBasic
environment variable PREALLOCATE, namely:

• During expansion of the file, all intervening records are written (with zero bytes) from the file's current
physical size up to and including the record being accessed.   For example, writing record zero
followed by record 1000 causes all intervening (1-999) records to be written.  This may take several
seconds or minutes.

• No special Record-Not-Written error is returned when a record contains all null data.  Attempts to read
records which are less than the physical last record number, but not logically within the file results in
null records being returned.

All MAT operations must be to Binary field types and specify string variables only.

Portable Formatted File Driver

By default, all newly created files will be dL4 Portable Formatted.  Portable Formatted files do not have
limits on record size or the number of items or fields.

Universal Files

Universal Data files are IRIS BCD style Formatted files which are platform independent.  The files are
accessible across all Unix platforms.  In addition, they are usable on a Windows system with version 3.0
and higher of dL4 for Windows.  Packed data should be avoided for maximum platform independence.

Creating Formatted Files

Formatted ITEM files are created using the BUILD statement.

To create a Formatted Item file within an application, write to record zero a list of variables to sequential
item numbers.  The type and DIM of each variable is recorded in the format map.  When a numeric variable
is written, its precision is also stored in the format map.  When a string variable is written, its DIMensioned
size is incremented and then rounded up to an even number of bytes.  If a MAT operation is performed, the
items are created using the actual DIMensioned size.  Strings are rounded up (not incremented first), and
numerics occupy the entire size of the specified variable, array or matrix.  The actual data within the
variables is also written to the record after the item is defined in the format map.

An error is generated if items are written in other than sequential item number order starting at 0.  Once an
item is defined, its type, precision or length may not be changed.



Supported Drivers 30

dL4 Files and Devices Reference Guide

Opening and Closing Formatted Files

CLOSE

Close the associated channel.  If the file was newly created, make it permanent.

CLEAR

Clear the associated channel. If the file was newly created, delete it.

OPEN, EOPEN, ROPEN, WOPEN

Open an existing file.  Supplemental Open options L, W, R and E are supported on a limited basis.  The
charset option may be specified to select a specific character translation for the file.  Although no auto-
selection process is provided for character sets, the AS clause selects a specific driver which, to a limited
extent, specifies some translation of the handling of end-of-line.

Table of Formatted Driver Options Supported

A driver related statement to create or define the channel may specify optional items as indicated by italics
in the following general form:

STATEMENT #chan;"<protection>(option)$cost[record]filename" As "driver"

Statements Optional Items UNIX WIN32
OPEN Y Y

<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > Y Y
< E > Y Y
< L > N - mode not supported N - mode not supported

EOPEN Y Y
<Protection Item>
< R > N - Syntax Error N-Syntax Error
< W > Y Y
< E > Y Y
< L > N - mode not supported N - mode not supported

ROPEN Y Y
<Protection Item>
< R > N - Syntax Error N - mode not supported
< W > Y Y
< E > Y Y
< L > Y Y

WOPEN N N
<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > N - Syntax Error N - mode not supported
< E > N - Syntax Error N - Syntax Error
< L > N - mode not supported N - mode not supported

Positioning with Formatted Files

A Formatted file will return as its number of records (CHF/CHN functions), the first record not contained
within the file.  If your files grow dynamically using this function, no empty records exist in the file.  If you
READ a record beyond the current number of records in the file, an error is generated (Illegal Record or



Supported Drivers 31

dL4 Files and Devices Reference Guide

End-of-file).  When you WRITE a record beyond the current number of records, the file is expanded
automatically.

Reading and Writing Data with Formatted Files

Formatted files are accessed by supplying the record and field number.  Access cannot cross a logical
record boundary.

When transferring data to a Formatted Item file, the record, and item number are used to specify the starting
point for the transfer.  All items in the var list are transferred, and each must match the pre-defined record
layout in the format map.

If an Item is defined as string, only a str.var may be transferred.  If the Item is numeric or date, a conversion
is performed when the variable precision does not match the item's definition.  Data is converted to the
precision of the destination; var when reading, item when writing. An error occurs if the destination
precision is too small to hold the numeric value.

Binary items are accessible using MAT statements.  You can transfer any str.var, mat.var or array.var into
a binary field.  No conversion is performed.  Care must be exercised to ensure that numeric data is
transferred into variables of the same precision used when written or the resulting data will be in-
distinguishable to the application..

The following table illustrates the optional use of the supplied record.

RECORD            ACTION PERFORMED                                                                                                          

omitted The record number used for the last access to this channel is incremented and used to
select the record.   This mode reads sequential records of a file.

-1 Performs identically to 'omitted' except that it serves as a place holder so that a byte
displacement may be specified.

-2 The record is reset to the same record number used during the last access to this channel.
This accesses the same record.

Contiguous Data Files Class

Contiguous files utilize a fixed-length record, specified during creation.  Each record contains the identical
number of bytes.  The total number of records to be within the file is stored within the file's header during
creation.  Contiguous files are very similar to the BITS Tree-Structured Data files.

dL4 is compatible with applications designed to use Contiguous data files, even though the Unix systems do
not support Contiguous files in the traditional internal sense.

Special Options with Contiguous Data Files

OPTION FILE ACCESS RAW changes alignment rules to match the BITS rules.

Types of Contiguous File Drivers

Standard Unix versions of dL4 include two different Contiguous File drivers, UniBasic Contiguous and
Portable Contiguous.  However, on Windows systems only the Portable driver is provided.  Because
UniBasic was never available on Windows, no Contiguous files were ever created on that platform and



Supported Drivers 32

dL4 Files and Devices Reference Guide

therefore, a dL4 program running on Windows should not have a need to read or write to a local UniBasic
Contiguous file. If such a need arises, UniBasic version 6 and higher provides for creating Universal files,
which are platform independent.  Existing files may be converted to Universal files if they meet certain
requirements.

The UniBasic version of this driver is provided on those platforms on which a previous version of UniBasic
was released.  The primary purpose for including this version is to provide for sharing of files between
UniBasic and dL4, as well as eliminate the need to convert such files to dL4 portable format.

Creating Contiguous Data Files

Contiguous files are created with the BUILD statement. A Contiguous file may have any number of records
and there is no maximum record length.

Opening and Closing Contiguous Data Files

CLOSE

Close the associated channel.  If the file was newly created, make it permanent.

CLEAR

Clear the associated channel. If the file was newly created, delete it.

OPEN, EOPEN, ROPEN, WOPEN

Open an existing file.  Supplemental Open options L, W, R and E are supported on a limited basis.  The
charset option may be specified to select a specific character translation for the file.  Although no auto-
selection process is provided for character sets, the AS clause selects a specific driver which, to a limited
extent, specifies some translation of the handling of end-of-line.

Table of Contiguous Driver Options Supported

A driver related statement to create or define the channel may specify optional items as indicated by italics
in the following general form:

STATEMENT #chan;"<protection>(option)$cost[record]filename" As "driver"

Statements Optional Items UNIX WIN32
OPEN Y Y

<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > Y Y
< E > Y Y
< L > N - mode not supported N - mode not supported

EOPEN Y Y
<Protection Item>
< R > N - Syntax Error N-Syntax Error
< W > Y Y
< E > Y Y
< L > N - mode not supported N - mode not supported

ROPEN Y Y
<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > Y Y
< E > Y Y



Supported Drivers 33

dL4 Files and Devices Reference Guide

< L > Y Y
WOPEN N N

<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > N - Syntax Error N - Syntax Error
< E > N - Syntax Error N - Syntax Error
< L > N - Syntax Error N - Syntax Error

Positioning with Contiguous Data Files

As its number of records (CHF/CHN functions), a Contiguous file returns the greater value of its current
physical size, or the size in records specified during creation.

Contiguous files are accessed by supplying the record and byte displacement.  Access may cross a logical
record boundary.  Care must be taken to ensure that your transfers are within the specified record or data in
subsequent records may be damaged.

Reading and Writing Data with Contiguous Files

Access to any record within the valid CHF/CHN range with either READ or WRITE statements is
permitted.  If the record is beyond the current physical size, the file is extended.   To expand a Contiguous
file, simply write to any record higher than the current size.

During expansion of the file, all intervening records are written (with zero bytes) from the current physical
size up to and including the new record.  This automatic filling in of records is to prevent Unix from
reporting the file as sparse (i.e., containing gaps).  Sparse files are usually considered corrupted when the
file system is checked, although they are valid.

When transferring data to a Contiguous file, the record, and byte displacement are used to specify the
starting point for the transfer.  All items in the var list are transferred sequentially.  The following table
illustrates the optional use of the supplied record.

RECORD            ACTION PERFORMED                                                                                                          

omitted The record number used for the last access to this channel is incremented and used to
select the record.  This mode reads sequential records of a file.

-1 The record number used for the last access to this channel is incremented and used to
select the record .  This mode permits the selection of a new byte displacement within the
incremented record.

-2 The record is reset to the same record number used during the last access to this channel.
This accesses the same record.

Indexed Contiguous Data Files Class

An Indexed Data File is any Contiguous Data File which is defined to contain a companion ISAM Key file.
Access to data records is identical to a standard Contiguous Data File.  The companion ISAM (Indexed
Sequential Access Method) file holds keys and pointers to data within the Contiguous Data File.  The use of
an Indexed file allows an application to rapidly locate data in a large database.  Even when a file contains
several hundred thousand data records, a specific record can be located instantly.

Indexed files, consisting of optional data records and keys, are maintained by the application program.
When new data is to be added to the file, you request a new record.  Automatically, the system expands the



Supported Drivers 34

dL4 Files and Devices Reference Guide

file if there are no unused records.  After writing your new data to the supplied record of the file, you insert
a key, that is a unique piece of information tagged to the new record.  The key could be a customer name,
number; any unique information about the record.  Later, you retrieve the record by simply asking for the
record that contains the key.

Each file can have from 1 to 62 separate indices, and each index may have a different sized key (up to 122-
bytes).  This allows multiple keys (e.g. name, account number) to access the same data.  Each different
index provides a different way to locate a record.

Any given record may be located by its specific key.  When the entire key is not available, a group of
records matching a partial key may be displayed for final selection under program control.

Data records may be read from the file sequentially (in key order), forward or backward for as many
different indices as are in the file.  For example, a file keyed by customer name and number could produce a
sorted (ascending or descending)  report by those fields without any resorting.

When information is no longer needed in a file, the user application deletes the keys and returns the record
to the system for later reuse before extending the file.

Indexed Files are not required to contain data records.  A Contiguous Data File is always present with a
single data record, but may be unused.  This allows indices to exist separately from the data referenced, or
to build key-only files into existing data bases.

The index compression algorithm has the following benefits:

• Unused space in an index is kept to a minimum.  When an index block becomes empty, it is placed on
the delete list. It therefore be can be reused elsewhere in the index when required.

• An index that has keys systematically added to the end and deleted from the beginning does not require
the file to grow continuously.

• Since overall index size is reduced, overall access performance to the index is proportionally increased,
with very large indices benefiting the most.

Indexed Data Files are maintained within 2 separate Unix files.  These are a standard Contiguous Data File
utilizing a lower-case name (as built), and the ISAM (key) portion in a companion file.  The companion file
will be a file with the same name using upper-case characters  (i.e. payroll and PAYROLL) if it is a
UniBasic file or a file with the same name with an extension of .idx for dL4 files.

Types of Index Contiguous File Drivers

The drivers supplied in the Contiguous class are:

• Portable Contiguous driver.  Standard Unix versions of dL4 include two different Index Contiguous
File drivers, UniBasic Indexed-Contiguous and Portable Indexed-Contiguous.  However, on Windows
systems only the Portable driver is provided.  Because UniBasic was never available on Windows, no
Index Contiguous files were ever created on that platform and therefore, a dL4 program running on
Windows should not have a need to read or write to a local UniBasic Index Contiguous file. If such a
need arises, UniBasic version 6 and higher provides for creating Universal files, which are platform
independent.  Existing files may be converted to Universal files if they meet certain requirements.

• UniBasic Contiguous driver.  The UniBasic version of this driver is provided on those platforms on
which a previous version of UniBasic was released.  The primary purpose for including this version is
to provide for sharing of files between UniBasic and dL4, as well as eliminate the need to convert such
files to dL4 portable format.

• Full_ISAM Bridge driver.  The Full-ISAM Bridge driver is available on both UNIX and Windows
platforms.  This driver allows existing programs that were written to access Indexed Contiguous files to
also access Full-ISAM files.  This allows developers to gradually migrate to the Full-ISAM files and be
transparent to the existing application programs.



Supported Drivers 35

dL4 Files and Devices Reference Guide

Creating Indexed Files

Indexed files are created using the BUILD and SEARCH statements.  They are initially created with a
single data record.  The actual number of records supplied to the statement is stored in the file header.

BUILD #chan, "(countused=true)[10,40]filename" AS "Indexed-Contiguous"

The 'countused' option enables records-in-use counting.  By default, a count of the number of records
allocated is not maintained by the driver.  This default results in increased performance.

SEARCH #chan, 0, 0; "filename", recnum, status

Note: A UniBasic ISAM file is made up of (2) separate files; the lower-case filename holds the data portion and
an uppercase filename is created to hold the ISAM portion.  Filenames that do not contain at least one letter
cannot be used for ISAM data files.

During initial creation, you may specify the type of B-Tree balancing to apply to each index.  Proper
selection increases performance and minimizes the disk space required to hold keys.  The default is to
assume random key insertions into each index.  This results in a well balanced tree-structure with nodes
split when half full.  If your insertions into a specific directory are sequential (ascending or descending),
you may change this parameter to suit your application.  An example of a sequential index is an
order/invoice number file keyed by an increasing (decreasing) number or date.  By setting the proper
parameter, as much as 25% performance and a 50% reduction in disk space may be realized;  See SEARCH
Modes in the dL4 Language Reference Guide.

The ISAMSECT environment variable could be used with UniBasic to control the number of c-tree levels.
If undefined UniBasic used a default of 4.  This parameter is defined as a constant of 8 for the dL4 driver.

When allocating new records, the system first checks for any deleted records that can be reused.  If found,
they are used first.  When no deleted records exist in the file, the file is expanded by one record.

Similarly, when the ISAM portion of the file is full, it is expanded by 512 bytes.

To maintain a dynamically expandable file structure, c-tree maintains a linked list of deleted records in the
data portion of a UniBasic file.  When records are returned to the system, c-tree checks that you have not
returned the same record twice in a row.  It does not normally check to see if you have returned the record
in a previous operation.  It is therefore possible to corrupt the Deleted Record Chain if you arbitrarily return
records not actually allocated.

Deleted records in a UniBasic file are flagged with a single-byte delete-character (ff hex, 3778).  Next, a 4-

byte pointer is written linking deleted records together into a delete-list.  The top of the delete-list is
maintained in the header.  It is possible to corrupt this pointer system if you perform a WRITE # operation
to a record following its release as a free record.  Many applications write their own delete-flag into unused
records.  If your applications require this capability, set the environment variable ISAMOFFSET to a byte
location other than zero (default) such that c-tree has 5 contiguous bytes available for delete-list
maintenance.

C-tree requires internal arrays of data to maintain fast key operations such as search next.  For each Indexed
file your application opens, one array element is required for the data portion of the file, and one element
for each Index in the file.  A typical application opening 10 files with an average of 3 indices requires (3 +
1) * 10 or 40 positions.  If your application errors trying to OPEN too many ISAM files, change the default
value of the environment variable ISAMFILES.

Indexed files dynamically expand to meet the requirements of your application.



Supported Drivers 36

dL4 Files and Devices Reference Guide

Opening and Closing Indexed Data Files

CLOSE

Close the associated channel.  If the file was newly created, make it permanent.

CLEAR

Clear the associated channel. If the file was newly created, delete it.

OPEN, EOPEN, ROPEN, WOPEN

Open an existing file.  Supplemental Open options L, W, R and E are supported on a limited basis.  The
charset option may be specified to select a specific character translation for the file.  Although no auto-
selection process is provided for character sets, the AS clause selects a specific driver which, to a limited
extent, specifies some translation of the handling of end-of-line.

Table of Indexed Contiguous Driver Options Supported

A driver related statement to create or define the channel may specify optional items as indicated by italics
in the following general form:

STATEMENT #chan;"<protection>(option)$cost[record]filename" As "driver"

Statements Optional Items UNIX WIN32
OPEN Y Y

<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > Y Y
< E > N - Syntax Error N - Syntax Error
< L > N - Syntax Error N - Syntax Error

EOPEN Y Y
<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > Y Y
< E > N - Syntax Error N - Syntax Error
< L > N - Syntax Error N - Syntax Error

ROPEN Y Y
<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > Y Y
< E > N - Syntax Error N - Syntax Error
< L > N - Syntax Error N - Syntax Error

WOPEN N N
<Protection Item>
< R > N - Syntax Error N - Syntax Error
< W > N - Syntax Error N - Syntax Error
< E > N - Syntax Error N - Syntax Error
< L > N - Syntax Error N - Syntax Error

Accessing an Indexed Data File

An Indexed File is accessed using the SEARCH #statement.  The parameters select the operation mode,
index to operate upon, and data values passed both ways.



Supported Drivers 37

dL4 Files and Devices Reference Guide

Search #channel, mode, index; key.var, record.var, status.var

channel is any num.expr which, after evaluation is truncated to an integer and used to specify an opened
channel currently linked to an Indexed Data file.

mode is any num.expr which, after evaluation is truncated to an integer and used to specify a mode of
operation for the statement.  The following pages provide a detailed list of mode operations.

index is any num.expr which, after evaluation is truncated to an integer and used to specify an Index or
Directory (list of keys) for the operation.

key.var is any DIMensioned str.var which must be DIMensioned large enough to hold the key being
operated upon.  An error is generated on search type operations if a key from the file cannot fit into the
supplied str.var.

record.var is any num.var and contains (or returns) a value for the statement mode.

status.var is any num.var used to return a status (exception) value to the program.  Generally, a zero
indicates a successful operation; non-zero for an exception error.  When issuing mode 1 functions, the
status.var is set before the statement to select the miscellaneous information to be returned.

Mode 0 - Index Definition

Generally, Indexed Files are created and structured using the BUILD statement.  SEARCH mode 0 is used
to create an Indexed File during program execution.

Each index in the file is defined using a mode 0 statement specifying the key length.  Indices must be
defined in sequential order, beginning with 1, up to a maximum of 62.  The index is selected with the index
expression.

The record.var  defines the key length (2-122 bytes) of the selected index in words unless OPTION FILE
UNIT IS BYTES is used.

status.var is set upon completion as follows:

0 Operation successful.

4 File is not a data file (type Data or Contiguous).

6 Selected index number is out of sequence.

8 File already indexed (May not be changed once defined).

9 Illegal parameter specified.  Key length can be 2-122 bytes.

10 Too many indices specified.  Maximum is 62.

To create an Indexed File with two indices of key lengths (bytes) of 6 and 24 requires two mode 0
statements.  The first to index 1 with record.var containing 6; the second to index 2 with record.var equal to
24.

As each index is defined, a mode 8 may be issued to the same index with record.var set to 0 for random
insertions, 1 for increasing keys, and 2 for decreasing keys.  If this step is omitted, random insertions are
performed.

The data portion of an Indexed File begins with data record one.  To force the first data record to be other
than one, issue a mode 1, with record.var set to the desired first record number and status.var set to 6.
Setting a First Real Data Record other than zero does not occupy space within a file.  The system simply
stores a starting record constant which is added or subtracted from all file operations.  If the First Real
Record is set to 200, then logical record 200 equals physical record 0; 210 record 10, and so on.  This
feature is included for compatibility when moving existing data files from a live IRIS system in order to
keep the record numbers and key pointers consistent.

Once all indices have been defined, the file structure must be locked.  This is accomplished by issuing a
mode 0 statement with index  equal to 0 and record.var set to the desired number of data records.

Once all indices are structured according to the information supplied,  the file is available for key insertion,
record allocation and other operations.



Supported Drivers 38

dL4 Files and Devices Reference Guide

No further mode 0 statements may ever be issued to this file without an exception status occurring.

Mode 1—Miscellaneous Index Information

SEARCH mode 1 is used to access structure information about an open Indexed File.  When the index
expression is non-zero, the key length of the selected index is returned in record.var.  This length is
expressed in words unless OPTION FILE UNIT IS BYTES is in effect.

Specify index zero and set status.var to select one of the functions listed below.  The value (if any) yielded
by the function is returned in record.var.

0 Return in record.var the First Real Data Record as defined during creation.

1 If built with (countused=true) option, return in record.var the available record count.  This is
computed by taking the current size of the file and subtracting the actual number of active records.
Otherwise return in record.var the number of records in the file.

 2 Allocate a new record in the file returning its value in record.var. Possible exception status:

3 = No free records remaining and insufficient disk space prevents expansion of  the file.

3 De-allocate (return) a record to the file.  Available record count is incremented, active records is
decremented.  record.var supplies the record number to mark as ‘available’.  Possible exception
status:

1 = Record number already de-allocated.  If you attempt to return the same record twice 
in a row, this condition is returned.

 4 Return in record.var the number of physical records within the file.  Does not include the addition
of the First Real Data Record value.

 5 Same as mode 4.

 6 Set the First Real Data Record to the value supplied in record.var.  This function is used by the
Conversion Programs, and whenever having a record zero is undesirable.  This option may only be
set prior to freezing the structure with mode 0.

 7 If built with (countused=true) option, return the current (actual) number of records in use within
the file in record.var.  This number is maintained as records are allocated and de-allocated (See 2
and 3 above).  Otherwise return  a -1 in record.var.   

Mode 2—Search for a Specific Key

SEARCH mode 2 is used to search an index for an exact match to the supplied key.var.  If found,
record.var receives the data record number associated with the key, and the status.var is set to zero.  If no
match is found, record.var is unchanged and status.var is set to one.

A match is indicated when the supplied key.var is equal to an entry in the index up to the end of key, even if
the entry in the file is longer.  When the entry is longer, its value is returned in key.var.

For example, a search for key ABC produces a match with the first entry whose first three characters are
ABC.  If the first such entry is ABC Company East, then a match is indicated, key.var is set to contain
ABC Company East, record.var is set to the associated record number, and status.var is set to zero.  A
match is not produced if the entry in the index is shorter than the key supplied.  For example, the entry AB
is not considered a match.

Note: The actual keys are case-sensitive.  This means that "ABC" does not equal "abc."

Mode 3—Search for the Next Highest Key

SEARCH mode 3 is used to access data records alphabetically, or to search forward from a selected point
in the index.  The selected index is searched for the first entry logically greater than the supplied key.var.  If
found, record.var receives the data record number associated with the key, and status.var  is set to zero.
When no more entries are found, record.var is unchanged and the status.var  is set to two (End of Index).



Supported Drivers 39

dL4 Files and Devices Reference Guide

For example, a search with key ABC returns the first entry logically exceeding ABC, such as ABC
Company East.  Subsequent mode 3 searches using the same key might yield entries such as ABC
Company West, Dynamic Concepts, and Dynamic Conversions.

To search an entire index, start by setting key.var to a null string, and perform mode 3 commands until
status.var is set to 2.

Note that a mode 3 search yields the first entry greater than key; a mode 3 with the key ABC does not return
ABC itself if it exists.  It is best to perform a mode 2 search first when you want to include the starting key
in your search.

Mode 4—Insert a New Key into an Index

SEARCH mode 4 insert new keys into an index.  The selected index is first searched for an entry exactly
matching key.var.  If found, record.var  is set to the record number associated with the key and status.var is
set to one.

If no match is found, and sufficient space exists within the selected index, key.var is inserted in the index
using the record number supplied in record.var  as a pointer to the data record.  Successful insertion is
indicated by a zero in the status.var .  If no space exists within the selected index,  the status.var  is set to
two (End of Index).

Mode 5—Delete an Existing Key from an Index

SEARCH mode 5 deletes existing entries from an index.  The selected index is searched for an entry
exactly matching key.var.  If found, the key is removed from the index, record.var  is set to the record
number associated with the key and the status.var  is set to zero (successful deletion).

If the exact entry is not found, the record.var  is unchanged and status.var is set to one.

Following successful deletion of a key, the record should be returned for re-use using mode 1 with
status.var set to 3.

Mode 6—Search for a Previous Lower Key

SEARCH mode 6 is used to access data records in descending order, or backward from a selected point in
the index.  The selected index is searched for the first entry logically less than the supplied key.var.  If
found, record.var  receives the data record number associated with key, and status.var  is set to zero.  If not
found, record.var  is unchanged and status.var  is set to two (End of Index).

For example, a search with the key XYZ returns the first key found logically less than XYZ, such as
Solution Systems.  Subsequent mode 6 searches using the same key might yield keys such as Solution
Concepts, Resources International, etc.

Note that a mode 6 search yields the first entry less than key.var, so a mode 6 executed with XYZ will not
yield the XYZ  itself if it exists.  It is best to perform a mode 2 search first when it is desirable to include
the starting key in your search.

To search an entire index, start by setting key to "\377\", and perform mode 6 commands until 2 is returned
in status.var .

Mode 7—Reorganize Index

SEARCH mode 7 provides for compatibility with older IRIS applications performing an index
reorganization.  This mode is a non-operation and always returns a status.var of zero indicating success and
allowing the older program to run without error.

Mode 8—Specify B-Tree Insertion Algorithm

SEARCH mode 8 retrieves or changes the B-Tree insertion algorithm for an index.  If record.var is greater
or equal to zero, it's value is truncated to an integer and used to select the new insertion method for index.
If successful, the file's header is changed, and status.var is set to zero.  If the record.var is outside the ac-
cepted range, status.var is set to one, and no change is made.

If record.var is any negative value, the current insertion algorithm used for index is returned in record.var
and status.var is set to zero.



Supported Drivers 40

dL4 Files and Devices Reference Guide

Value     Type of Insertion Algorithm Invoked                                                                                                   

0 Default.  Selects random insertions and is used when keys in the index are inserted in any order.

1 Selects increasing insertions and is used when each key inserted in the index is greater than the
previous insertion.  Types of keys in this category include sequential order numbers or date keys.

2 Selects decreasing insertions and is used when each key in the index is less than the previous
insertion.

Changes are stored in the file's header and become effective immediately for the user storing the change.
Other users must first CLOSE and OPEN the file before the change takes effect.

By default, files are created for random insertions.  Random insertions split B-Tree nodes when they are
half full.  This provides a better balancing and room for future insertions.

When sequential keys are inserted (ascending or descending), the nodes should be split only when full.
Extra space is not required for later insertions between sequential key values.

The benefits of adding a mode 8 to your Application code include saving up to 50% on disk space; 25%
increase in performance on insertions, deletions and searches.

Indexed File Errors & Recovery

If you accidentally delete the ISAM portion of an Indexed file, you can rebuild the file by the following
steps.

1 Create a new Indexed file with a different name using the same parameters for number of Indices and
Key Lengths.

2 Write a small program to rebuild and insert the keys into the new temporary file.  Only insert keys and
records, do not copy the existing data.

3 Use the Unix mv command or DOS rename to rename the new temporary files ISAM portion as the old
files ISAM file, ie:  mv TEMPFILE MYFILE or rename tempfile.idx myfile.idx.  This command must
be performed at the shell.  Do not use any utilities designed to operate on both the lower and upper case
portions of UNIX ISAM files or DOS files with idx and dbf extensions.

If an error is encountered during ISAM file access, an exception (V2=5) status may be returned. Check to
see if your string DIM is at least the size of the Key.

Full-ISAM Bridge Driver

A new driver in the Indexed file class.

Designed to provide developers gradual incorporation of Full-ISAM.

Transparent to applications.

Gives restricted access to a Full-ISAM file as if that file were Indexed.

Simplify the transition into non-proprietary database systems.

No immediate reprogramming.

Adapt on a file by file basis rather than program by program.

Develop new Full-ISAM applications over time.

Interface immediately with industry-standard tools.

Ability to map to any underlying Full-ISAM database.



Supported Drivers 41

dL4 Files and Devices Reference Guide

Requirements When Using The Bridge Driver

Emulated Indexed File must have a single, fixed record layout.

All indices must be balanced.

Each directory must have one and only one key per record.

Data fields must be numeric or character.

Other types (packed) not supported.

Character fields cannot have significant data past first null.

Accessing Emulated Indexed-Contiguous Files

Cannot BUILD a full-ISAM file using the Bridge driver;  A normal indexed-contiguous file is always built
by default.

File operations on a given channel must be grouped into consecutive operations on a single record - a
Transaction.

Transactions begin with a SEARCH which returns a record number.

Transactions end with either:

• All indices balanced and consistent values present between key and record fields, where applicable.

• All keys removed and the associated record deleted.

Record numbers are not physical within the Full-ISAM file:

• Valid within a single transaction.

• May vary the next time the same record is accessed.

Bridge Profile - a "data dictionary"

Maps certain Full-ISAM fields to selected byte displacements of an emulated contiguous file.

Maps certain Full-ISAM fields to selected parts of emulated Index keys.

Dictionary stored in a text "profile" file, termed a Bridge Profile.

Profile is stored under the same name as the emulated Indexed File.

Application opens a profile believing it to be an Indexed file.

Profile contains the filename, and optional driver, of underlying Full-ISAM database file.

Sample Bridge Profile File
[FullISAMBridge]
File=taxcodes
OpenAs=FoxPro Full-ISAM

[Record]
Field=TAX_LOCALE,0,15
Field=TAX_RATE,16,2%
Field=MTDTAXABLE,20,3%
Field=MTDNONTAX,26,3%
Field=MTDSLSTAX,32,3%
Field=QTDTAXABLE,38,3%
Field=QTDNONTAX,44,3%
Field=QTDSLSTAX,50,3%
Field=YTDTAXABLE,56,3%
Field=YTDNONTAX,62,3%
Field=YTDSLSTAX,68,3%



Supported Drivers 42

dL4 Files and Devices Reference Guide

[Index1]
Name=TAXCODE
KeyPart=TAXCODE,0,8,"~","0123456789"

Index Files Class

The Index class driver may be used to manage the indexed portion of an Indexed-Contiguous file.

Types of Index Drivers

The Index class driver supported is c-tree Index.  This is a low level driver used by various higher level
drivers, such as in the Indexed-Contiguous class, to manage the index portion of the file.  As such, the dL4
BASIC programmer will not have a need to use this driver.

Full-ISAM Database Files Class

Full-ISAM database files are designed to offer the developer an alternative to Indexed Contiguous files.
Immediate benefits of Full-ISAM include:

• Providing a structured approach to data storage and retrieval.

• Access to a file is field-oriented using named fields.

• Indices are maintained automatically.

• Fields may be expanded, added or deleted with little or no programming.

• Directly accessible by industry-standard third-party applications and programming languages.

• Capable of supporting a number of underlying data-base engines without reprogramming.

Full-ISAM database files represent a new class of object with which applications may interact.  An
extensive set of language components, interface and statements are included for applications {and drivers}
supporting Full-ISAM files.

• Record access to Full-ISAM files is field-oriented and operates on principles similar to formatted files.
Each field has an associated type and an error results should an application attempt to read or write the
wrong type of data.  Fields are numbered, starting at zero.

• Full-ISAM files include a data dictionary which defines field names, types and sizes.  Access to a given
field is performed by specifying its item number, or alternately a structure variable which may be
mapped by field name to the dictionary definition.

When operating on full ISAM files, the application is responsible for adding, deleting, reading and writing
records.  Record allocation/deallocation and key maintenance is performed by the file structure.  For the
designer, it is no longer necessary to modify applications when adding a new index to the file, or when
changing the size of a data field.

Data fields may be added to or deleted from a file with little or no rewriting of application code.

Full-ISAM database files rely extensively on the use of structure variables.  They are the preferred method
of communication with the file structure.

! TESTREC defines the record structure as it will
! actually exist in the FoxPro file.

Def Struct TESTREC
Member 1%,A   : Item "A"



Supported Drivers 43

dL4 Files and Devices Reference Guide

Member 1%,B   : Item "B"
Member C$[10] : Item "C"

End Def

!Declare structure variables of the type TESTREC

Dim TheRec. As TESTREC, ReadRec. as TESTREC

! Assign values to the structure variable

TheRec.A = 19
TheRec.B = 23
TheRec.C$ = "record 1"

! Create the Full-ISAM file using the record definition

Build #1,"fi-file!" As "Full-ISAM"
Define Record #1;TheRec.
Close #1

! Add the record

Open #1,"fi-file" As "Full-ISAM"
Add Record #1;TheRec.
Close #1

! Read a record into a structure variable

Open #1,"fi-file" As "Full-ISAM"

! Set current record to beginning of file

Search > #1,1;

! Read the record into a structure variable

Read Record #1;ReadRec.
Print ReadRec.A
Print ReadRec.B
Print ReadRec.C$
Close #1

Using 'item' Designations in Structure Variables

Structure definitions may also include supplemental designations, typically recognized by various system
file and device drivers.  While most statements ignore these designations, the drivers might utilize such
information for record and key definitions as well as file positioning.

Def Struct tagname  {: Item | Key structoption }

Member varname   {: Item memberoption | Key memberoption | Decimals constant }

tagname is the unique name tagged to this structure template.

Item and Key designations are synonomous.  However, Item typically refers to record specifications,
whereas Key refers to index information.  Decimals is used to define the number of significant fractional
decimal digits for Full-Isam database files.

structoption  and memberoption must be either numeric or string constants.  constant must be a numeric
constant.

A colon (:) is used to separate Item, Key, and Decimals specifiers.

Multiple Item or Key specifications are concatenated with +.

When specifying an Item or Key designation on the structure definition itself, one is specifying information
which relates to the entire structure definition.  For example, one might name the structure such as Item
"Cust Record", or specify information pertaining to a key, such as Key "ByZip".



Supported Drivers 44

dL4 Files and Devices Reference Guide

When defining individual Members within a structure, Item typically refers to data field information,
whereas Key refers to index key-part definitions.  When specifying Item or Key designations for individual
members, one is specifying information which relates to that member only.  For example, one might specify
a byte-displacement, such as Item 70, or database field name, such as Item "Addr".

Item and Key structoption and memberoption may be any of the following:

string Name of record or key definition when included on the structure definition statement.

string Name of database fieldname when included with a Member definition.  Names a field
within a record, or the field to use as a key part.

number Undefined when specified with structure definition.

number Byte displacement for Contiguous and Indexed data files

UNIQUE Define a directory of Unique keys - when specified with the structure definition.

DUPLICATES Define a directory of possibly duplicate keys - when specified with the structure
definition.

ASCENDING Define a directory stored in ascending order

DESCENDING Define a directory stored in descending order

UPPERCASE Uppercase a Member when specifying a key part.

DECIMALS x Specify the number of fractional decimal digits for a member when specifying a key part
or database field.

Map Record provides for the mapping of database fieldnames to your structure Members.

To access database files, the structure definition may define items using 'fieldnames', such as:

Def Struct Customer     Item "CustRecord" ! Define using 'fieldnames'
  Member Name$[25]    : ITEM "Name" ! supply database fieldnames.
  Member Address$[25] : ITEM "Addr"
  Member City$[25]    : ITEM "City"
  Member State$[2]    : ITEM "State"
  Member Zip$[10]     : ITEM "PostCode"
  Member 3%,Balance   : ITEM "CurrBal" : DECIMAL 2
End Def

Directories may also be defined and managed using structure definitions.  By defining the named key
CustKey as a unique, packed directory named ByDate, one can define a structure as follows:

Def Struct CustKey1   : KEY "NameCtyBal" + Unique + Descending
  Member Name$[25]    : KEY "Name" + Uppercase
  Member City$[25]    : KEY "City$"
  Member 3%,Balance   : KEY "CurrBal" + Descending : Decimals 2
End Def

Types of Full-ISAM File Drivers

The Full-ISAM class drivers available are:

• FoxPro Full-ISAM driver supported on UNIX and Windows platforms.

• Restricted FoxPro Full-ISAM driver supported on UNIX and Windows platforms.

• Microsoft SQL Server Full-ISAM driver supported only on the Windows platform.



Supported Drivers 45

dL4 Files and Devices Reference Guide

Creating Full-ISAM Database Files

Creating a full ISAM file is performed by first building the file, followed by the definition of the record
layout and indices.  The Build statement is used to create a Full-ISAM database file.  The General form of
the Build statement for this class of object is:

Build #channel, filename As "Full-ISAM"

Build #channel, filename As "FoxPro Full-ISAM"

channel is any numeric expression which, after evaluation is truncated to an integer specifying an unopened
channel on which to build a new Full-ISAM database file.

filename is any filename expression including the name of the file.

The string given in an As clause is interpreted either as a driver-class name or a specific driver-description,
whichever is found first in the main driver table.  When a specific driver is desired, it should be specified.
Otherwise, specification of the class only results in the selection of the default driver assigned to the class.

If no error occurs, the file is created.

Defining a Full-ISAM Record Definition

The Define Record statement is used to establish the record definition and data dictionary of a newly built
Full-ISAM database file.  The general form is:

Define Record # channel ; structvar

channel is any numeric expression which, after evaluation is truncated to an integer specifying an opened
channel with a newly built Full-ISAM data file.

structvar is the name of a structure variable including Item "Fieldname" specifications for each member of
the structure template.

The record layout of the file is structured according to the members of the given structure, i.e. types, sizes,
and fieldnames.

No data records are written to the file by the Define Record operation.

For example, given the following structure template:

Def Struct Customer  ! Define using 'fieldnames'
  Member Name$[25]    : ITEM "Name" ! supply database fieldnames.
  Member Address$[25] : ITEM "Addr"
  Member City$[25]    : ITEM "City"
  Member State$[2]    : ITEM "State"
  Member Zip$[10]     : ITEM "PostCode"
  Member 3%,Balance   : ITEM "CurrBal" : Decimals 2
End Def

Dim Cust. As Customer
Build #5, "Customers" As "Full-ISAM"
Define Record #5; Cust.

If no errors result, the record definition was accepted and written to the file.

Adding an Index to a Full-ISAM File

Indices may be added and deleted to a Full-ISAM file at any time until data has been written to the file.
One way to define an index is defining a structure which identifies the various parts of the key.  The general
form is:



Supported Drivers 46

dL4 Files and Devices Reference Guide

Add Index # channel, index; structvar

channel is any numeric expression which, after evaluation is truncated to an integer specifying an opened
channel with a newly built Full-ISAM data file.

index is any numeric expression which, after evaluation is truncated to an integer and used to select the next
unused index (directory) number within the opened Full-ISAM database file.

structvar is the name of a structure variable including Key "Definition" specifications for each member of
the structure template.

Options for the entire Key include:  Unique, Duplicates and Packed.

Options for Key members include:  Ascending, Descending, Uppercase.

Def Struct CustKey1   : KEY "NameCtyBal" + Duplicates + Descending
  Member Name$[25]    : KEY "Name" + Uppercase
  Member City$[25]    : KEY "City" + Uppercase
  Member 3%,Balance   : KEY "CurrBal"
End Def

Dim Key1. As CustKey1
Add Index #5,1;Key1. ! Directories must be defined in order

In this example, the structure CustKey1 is named "NameCtyBal" and represents an index of possibly
duplicate keys in descending order.

The member Name$ is an 25-character string from the data field with the same name.  It is to be uppercased
and stored in descending order.  The field City$ is a 25-character string from the data filed with the same
name.  It is also to be uppercased and stored in descending order.  The last part of this key, Balance, is a 3%
numeric field from the field named "CurrBal" which is to be collated in descending order.

Once the structure is defined, a new directory is added by the statement and all active records are keyed
immediately.  If no errors result, the selected index was successfully defined.

Deleting an Index from a Full ISAM File

When an index is no longer required, it may be deleted.  It is driver dependent whether deleting an index is
supported or results in savings of disk space.  In most cases, it is assumed that the file structure will reuse
the empty portion of the file.  The general form is:

Delete Index # channel, index;

channel is any numeric expression which, after evaluation is truncated to an integer specifying the channel
of an opened Full-ISAM data file.

index is any numeric expression which, after evaluation is truncated to an integer and used to select an
existing index (directory) number within the opened Full-ISAM database file which is to be deleted.

If no errors result, the selected index was successfully deleted.

Logically Mapping Full-ISAM Records & Indices

Often it is necessary to work with a subset of fields within a database or provide for later changes in the
field content or order  within the file.  The Map statement allows a program to 'marry' a structure definition
to the current file's data dictionary.  It is recommended that applications use Map Record whenever a
Full-ISAM file is opened so that the file field layout can be changed without effecting the program.
Similary, Map should be used with index names to avoid dependence on particular index numbers.  The
general form is:

Map Record #channel As struct



Supported Drivers 47

dL4 Files and Devices Reference Guide

Map #channel , index ; string expression

channel is any numeric expression which, after evaluation is truncated to an integer specifying the channel
of an opened Full-ISAM data file.

struct is the name of a template Def Struct structure definition which is to be aligned with the fieldnames of
the database, or named index within the database.  struct members must have Item fieldname or directory
name definitions.

index is any numeric expression which, after evaluation is truncated to an integer specifying the logical
directory of an opened Full-ISAM data file.

string expression is any string which evaluates to a named directory within the file.

Map Record defines an alternate item number mapping at run-time.  This statement allows a custom (sub-)
record schema for record access, but does so dynamically by the item's fieldname.

Map defines the logical index or directory number used within the application.  This statement allows a
program to be written using a hard-coded directory number, which is then logically mapped to the physical
directory number within the file.

The fieldnames given within the Customer structure are used to align each member to its current item
number within the file.  For example, if the field "Addr", which is item 1 in the structure, is currently item 4
in the physical record, a Map Record would cause the driver to perform the necessary item-number
translation so that any further access to item 1 will actually access item 4.

This kind of dynamic record access not only insulates the application from certain modifications to the file
structure, but also could be used by individual programs to limit record accesses to only those fields which
are directly used.  Depending on the format of the underlying record data (which is subject to the rules of
the actual file being driven; FoxPro, etc.), this may circumvent unnecessary data conversion and thereby
boost performance.

Adding a new Record to a Full-ISAM File

A new record is added to a full ISAM file using the Add Record statement.  The general form is:

Add Record #channel ; structvar

channel is any numeric expression which, after evaluation is truncated to an integer specifying an opened
channel with a newly built Full-ISAM data file.

structvar is the name of a structure variable containing the new record.

A new record is allocated, written and all keys associated with this record are inserted.  When the add
operation is complete, the new record becomes the current record.

If no errors result, the selected record was successfully added to the file.

Deleting a Record within a Full-ISAM File

A record may be deleted from a full ISAM file using the Delete Record statement.  The general form is:

Delete Record #channel ; structvar

channel is any numeric expression which, after evaluation is truncated to an integer specifying an opened
channel with a newly built Full-ISAM data file.

structvar is the name of a structure variable containing the current record to be deleted.

The current record is deallocated, and all keys associated with this record are removed.  The current record
must be locked in order to be deleted.



Supported Drivers 48

dL4 Files and Devices Reference Guide

If no errors result, the current record was successfully deleted.

Locating Records within a Full-ISAM File

To access full ISAM files, the Search statement is used to specify an index and set a current record position
within the file for further Read and Write Record statements.  It is not necessary to issue repeated Search
statements unless a random repositioning is required.

When performing a search operation on a Full-ISAM file, the arguments to the Search statement represent
the parts of the selected key, rather than the familiar "<key$>,<record>,<status>" of Indexed-Contiguous
files.  A structure, such as the one used to actually create the index, can also be used; supplying a structure
is equivalent to explicitly supplying each of its members.

Def Struct CustKey1   : KEY "NameCtyBal", Duplicates
  Member Name$[25]    : KEY "Name", Ascending, Uppercase
  Member City$[25]    : KEY "City$", Ascending, Uppercase
  Member 3%,Balance   : KEY "CurrBal" : Decimals 2
End Def

Dim Key. as CustKey1
Key.Name = "Acme" ; Key.City = "Toledo" ; Key.Balance = 0
Search  = #C, I; Key. !Exact search
Search  > #C, I; Key. !Search Greater
Search  < #C, I; Key. !Search Less
Search  >= #C, I; Key. !Search Greater or Equal
Search  <= #C, I; Key. !Search Less than or Equal
Search  < #C,1;   !Position to last key of Index 1
Search  > #C,1;   !Position to first key of Index 1

If the Search succeeds, the current record position is set accordingly and the index used becomes the
current index.  Relative record access forward or backward is then performed using this index.

When used in conjunction with Full-ISAM files, the application would perform an initial SEARCH and
read the current record.  A loop, such as WHILE or DO can then used to read next or previous through the
file.

When SEARCH is used with older-style indexed files, structure variables can still be used by defining a
structure containing the traditional parameters supplied to a SEARCH statement.  Only the modes  =, >, <
are supported for Indexed files.

Def Struct Key ! Old-style Key structure
  Member Key$[20] ! Contains string for Key
  Member 3%,V1 ! V1 for record number
  Member 1%,V2 ! V2 for returned status
End Def

Dim K. AS Key
SEARCH = #1,4;K. \ IF K.V2 ... ! etc.

Managing Records within a Full-ISAM File

The management of data records within a Full-ISAM database file is accomplished by simply reading and
writing a record.  The indices are updated automatically.  The general forms are:

Read Record # channel , record {, item {, timeout } } ; structvar

Write Record # channel , record {, item {, timeout } } ; structvar

channel is any numeric expression which, after evaluation is truncated to an integer specifying the channel
of an opened Full-ISAM data file.



Supported Drivers 49

dL4 Files and Devices Reference Guide

record is any numeric expression which, after evaluation is truncated to an integer specifying a numbered
record or record selection choice.  Full ISAM files may only select one of the following:

-1 Read next record relative to the index ordering.

-2 Read current record.

-3 Read previous record relative to the index ordering.

item is any numeric expression which, after evaluation is truncated to an integer specifying the item number
within the record to begin the transfer.

timeout is any numeric expression which, after evaluation is truncated to an integer specifying the number
of tenth-seconds to wait for a record which is locked.

structvar is the name of a structure variable the contents of which is to be read or written.

The Read and Write Record statements are similar to normal Read and Write of a record except for the
requirement that a structvar is supplied and the computation and override of the item number for each
member.

Full-ISAM file access is provided by supplying an item number, therefore a structure to be used for
accessing such files must define the items in the order that they exist in the file.

To provide an even greater degree of database-style flexibility, the Map Record # statement can be used to
align a defined structure with an open file.  Most applications would be wise to use this statement upon
opening all Full-ISAM files to "marry" the current file definition to the expected structure.  In this way,
changes to the order of fields, or the addition of new fields, will have minimal impact on existing
application code.

Def Struct DRCR
  Member 3%, Debit  : ITEM "Debit" ! By Field Name
  Member 3%, Credit : ITEM "Credit"
End Def

Def Struct Cust : Item "Customer Record"
  Member Number$[8] : ITEM "Number"
  Member Name$[30]  : ITEM "Name"
  Member Addr$[30]  : ITEM "Addr"
  Member Balance. As DRCR : ITEM "Balance"
  Member 1%,LastOrderNumb# : ITEM "LastOrDate
End Def

Dim Customer. As Cust

Open #5, "Customers" "As Full-ISAM"
Map Record #5 As Cust
Map #5,1; "ByName"
Search > #5,1;
Read Record #5,-2; Customer. !Read entire structure
Write Record #5,-2; Customer.

When used in conjunction with full ISAM and Search, the application performs an initial Search and reads
the current record.  Specific sets of records can then be processed by reading/writing the next or previous
record.  A loop, such as While or Do could be used to traverse the file.

FoxPro Full-ISAM Driver

The following parameters outline the capabilities of the FoxPro compatible Full-ISAM database driver
supplied with dL4.

An index cannot be added unless the file is empty.  Deleting an index is not supported.

!    MAXIMUM LENGTH OF FIELD NAME = 10 CHARACTERS
!    MAXIMUM NUMBER OF FIELDS PER RECORD = 128
!    MAXIMUM LENGTH OF A CHARACTER FIELD = 254 CHARACTERS
!    MAXIMUM NUMBER OF DIRECTORIES = 47



Supported Drivers 50

dL4 Files and Devices Reference Guide

!    NUMBER OF DECIMAL PLACES IN NUMERIC FIELDS IS REQUIRED
!    RECORD NAME ITEM PARAMETER IS IGNORED IF SUPPLIED
!    BINARY FIELDS NOT DEFINABLE IN BASIC
!    KEY PART OPTIONS ALLOWED:  UPPERCASE (FOR STRING FIELDS)
!                               DECIMALS  (FOR NUMERIC FIELDS)
!    DIRECTORY OPTIONS ALLOWED: ASCENDING SEQUENCE (DEFAULT)
!                               DESCENDING SEQUENCE
!                               UNIQUE KEYS REQUIRED (DEFAULT)
!                               DUPLICATES ALLOWED
!    DEFAULT DIRECTORY NAMING CONVENTION:
!   'Keyxxx' WHERE XXX IS THE DIRECTORY NUMBER, IE KEY001 IS DIRECTORY 1
!   'DelRC64782' IS THE NAME OF A SPECIAL DIRECTORY USED TO MANAGE FREE
!    RECORDS

Note: When supplying names for FoxPro directories, the actual directory number is based upon the sorted order of
named directories.  This is true regardless of the order of definition, or the directory number specified
during creation.  When using named directories, use the Map statement within your applications to logically
number a named directory.

Microsoft SQL Server Full-ISAM Driver

The Microsoft SQL Server Full-ISAM driver is available only with dL4 for Windows.  It provides a Full-
ISAM interface to SQL Server tables, which appear to a dL4 BASIC program as a Full-ISAM file.  The
dL4 BASIC program makes requests using indices, although the SQL Server may or may not use indices.

The SQL table must have at least one index with unique keys and allow NULL values in all fields that are
not used as keys.

The dL4 BASIC program can only do SQL queries, therefore it cannot:

• create nor delete tables.

• open database views.

• create nor delete databases.

• create nor delete indices.

• issue SQL statements.

• do database administrator functions.

The driver cannot be selected with the dL4 Auto Select Mechanism and does not support the record
number, record size, or file size channel functions provided with the CHF statement.

Window Class

A "Window" class driver in dL4 attempts to implement an abstract object called a "window", whose
capabilities are:

• A superset of those typically found in an ASCII terminal.

• A subset of those typically found in most Graphical User Interfaces (GUI).

The two objects mentioned, an ASCII terminal and a GUI window, have a great many similarities.  The
purpose of the "Window" class is to define an object which:

• can be reasonably implemented on both serial terminals and graphic displays.



Supported Drivers 51

dL4 Files and Devices Reference Guide

• is largely upward-compatible with the expectations of software written to work with ASCII terminals
under IRIS and uniBasic.

This allows most dL4 BASIC code to run unmodified in both terminal and GUI environments.

Dynamic Windows support is provided for UniBasic compatibility, but the dL4 BASIC programmer is
encouraged to use the Window driver statements described in the following section of this manual,
Controlling Windows from BASIC.

The Underlying Principles of a Window

A window object in dL4 includes three important components:

1 The "Canvas".  This is a virtual, rectangular area onto which all drawing is done.  For example, the
output of a string to a window results in text being virtually "drawn" onto its canvas.

2 The "Display Region".  This is a rectangular area, constrained within the boundaries of the canvas, that
controls which portion of the canvas is displayed as the contents of the window on the physical device.
If the display region is smaller than the canvas, then only that portion of the canvas contents are
displayed.  Moving such a display region in any direction results in "scrolling" through the canvas.

3 The "Output Region".  This is a another rectangular area, constrained within the boundaries of the
canvas, that serves as an output "mask".  Drawing on the canvas can occur only within the bounds of
the current output region.  The remaining portions of the canvas are thus protected.  Output regions are
primarily used for compatibility with uniBasic applications using Dynamic Windows (i.e. the
WINDOW statement).

An important property of these three rectangles is that they do NOT consist of a "grid" of character cells.
Nothing in the design of a window limits it to textual display only, or to text of a fixed size.  The canvas is
considered a continuum, and the display and output regions can (conceptually) be resized by arbitrary
increments.

In addition, a window has several other settings that affect its behavior:

• Title display on/off.  A window always has a title string associated with it.  This setting controls
whether or not the title is displayed with the window.

• Wrapping mode on/off.  Controls whether horizontal movement off the right/left edge of the output
region wraps to the next/previous line.

•  Scrolling mode on/off.  Controls whether certain vertical motion off the bottom of the output region
causes the contents of the region to scroll up by a line, or not.

• Hide mode on/off.  Controls whether the window is visible on the display device on not.

• Echo mode on/off.  Controls whether input characters are also output to the window canvas.

• Input pending mode on/off.  Controls the behavior when reading from a window and the destination
string is filled.  With pending mode off, the input is terminated; with pending mode on, a terminator
character must still be entered.

There are a large assortment of other mode states which a window driver may or may not support, most of
which affect text output (underline mode, blink mode, etc.).

Differing Implementations

The fact that ASCII terminals naturally impose many restrictions on the abilities of a window is simply an
issue of implementation on ASCII terminals, reflecting their own capabilities.  The underlying model of a
window still applies, even on terminals with very limited capabilities.



Supported Drivers 52

dL4 Files and Devices Reference Guide

The matter is comparable to the situation where some terminals can display color and others can't.  A
program which requires certain capabilities may be limited to using devices which have such capabilities.
For any given request to execute some feature, a window driver may decide to approximate the request,
ignore the request, or refuse the request, depending on the actual capabilities of the implementation.

So, although the window model defines e.g. how a program can draw text in differing fonts and sizes or
even simple graphics, it does not imply that all programs using such features will operate identically (or at
all) on all possible window devices.  As in the past, the application developer must consider his target
system(s) and/or peripherals when deciding what features to use.

Types of Window Drivers

The Window class drivers available are:

• Default Window driver supported on UNIX and Windows platforms.  This is the high level driver that
dL4 BASIC programmers should use in all but special cases.  It is the driver that is used when the AS
clause specifies the Driver Class, i.e. As "Window".  This driver calls the following lower level
drivers as necessary.

• Phantom Window driver supported on UNIX and Windows platforms.  This driver is used in processes
that are not associated with a terminal and keyboard for input and output.

• Terminal Window driver supported on UNIX and Windows platforms.  This driver is used in processes
that use a terminal and keyboard for input and output.

• Default Terminal Translation driver supported on UNIX and Windows platforms.  This driver selects
the driver (such a Generic Terminal Translation) used to support the physical terminal.

• Generic Terminal Translation driver supported on UNIX and Windows platforms.  This low level
driver controls the platform specific terminal.

• Win32 Window Terminal Translation driver supported only on the Windows platform.  This low level
driver controls the platform specific terminal.

Controlling Windows From BASIC

A driver related statement may specify parameters and optional items as indicated by italics in the following
general form:

STATEMENT #chan,parameters;items,variables

Windows are controlled from BASIC through the following statements:

Statement Parameter
s

Items Summary

OPEN Title$ none String to use as the window title
Style$ Keyword toggles - TITL,WRAP,SCRL,HIDE
Width Initial width in columns as per the font
Heigth Initial heigth in rows as per the font
Parent Makes child of the window on channel #parent
StartX Relative starting position within parent window
StartY Relative starting position within parent window

CLOSE none none Removes window from display and close channel
CLEAR none none Removes window from display and close channel
READ param3 none Provides timeout for input of string data

param1 set to -1 as placeholder if using param3 (timeout)
param2 set to -1 as placeholder if using param3 (timeout)

WRITE none none Display begins at current position
ERASE none none Clears output region



Supported Drivers 53

dL4 Files and Devices Reference Guide

SIZE param1 0 - display region; 1 - canvas; 2 - output region
width,heigth Size in current coordinate system

MOVE param1 0 - child window; 1 - display region; 2 - output region
width,heigth New upper left corner position

CHANNEL param1 none 11 - Display window
12 - Hide window

param1 14 - Horizontal scroll
15 - Vertical scroll

hamount Positive - right; Negative - left
vamount Positive - up; Negative - down

These statements are described in more detail on the following pages.



Supported Drivers 54

dL4 Files and Devices Reference Guide

OPEN

Synopsis
Creates a window according to the given parameters accessible on channel #C

Syntax

Open #C,{title$,style$,width,height,parent,startX,startY} As "Window"

Parameters
title$ is a str.expr that becomes the title of the window.

style$ is a str.expr that can contain keywords controlling the initial settings for the window.

width is a num.expr that is the window's initial width in columns.

height is a num.expr that is the window's initial height in rows.

parent is a num.expr that is the channel number of another open window.

startX and startY are num.exprs that are a child window's relative starting position within the parent
window.

Remarks
title$ strings are usually restricted to those characters which are "listable" in the window itself.  That is, if a
window lists a character in \ooo\ notation, it probably won't be allowed in the window title.

The style$ keywords are each four letters, not case-sensitive, and are separated by commas.

• TITL Set title display on.  Default is off.

• WRAP Set wrapping mode on.  Default is off.

• SCRL Set scrolling mode on.  Default is off.

• HIDE Hide the window.  Default is to show the window.

The width is in columns where, in a window, a column is defined as the average width of a text character in
the window's current font.

height is the window's initial height in rows.  In a window, a row is defined as the height of a text character
in the window's current font.

parent is the channel number of another open window.  The new window will be a "child" window, whose
display is constrained within the boundaries of the parent, moves with the parent, etc.  If not supplied, the
window is an "independent" window, whose initial position is chosen by the window driver.

startX and startY are a child window's relative starting position within the parent window.  The position
coordinates are interpreted according to the parent window's current coordinate system.



Supported Drivers 55

dL4 Files and Devices Reference Guide

CLOSE/CLEAR

Synopsis
Window object on channel #C is removed from display.

Syntax

Close #C

Clear #C

Parameters
None.

Remarks
For a window, CLOSE and CLEAR function identically.  The window object is removed from display and
the channel is closed.  Other window areas obscured by the closed window are redrawn.

If the window contained child windows, those channels are closed first before closing the parent window.



Supported Drivers 56

dL4 Files and Devices Reference Guide

READ

Synopsis
Input a character string from the window on channel #C at the current position.

Syntax

Read #C;str.var

Read #C{,-1,-1,param3};str.var

Parameters
str.var is a variable of string data type which returcs the input character string.

param3 is a numeric expression that specifies the timeout.

The -1 values preceding param3 are place holders.

Remarks
Input a character string from the window at the current position.  Input from a window makes it the "top"
window and, if needed, adjusts the display region to make the cursor visible during input.  If echo mode is
on, the entered characters are displayed on the window.  Input terminates when a termination character is
received and placed in <string.var> or when the destination string is filled (if Input Pending mode is off).

The INPUT statement in dL4 is always executed in terms of READ, so all variations of INPUT (INPUT
LEN, INPUT TIM, etc.) are supported for a window.



Supported Drivers 57

dL4 Files and Devices Reference Guide

WRITE

Synopsis
Display a character string on the output region of the window on channel #C beginning at the
current position.

Syntax

Write #C;str.var

Parameters
str.var is a variable of string data type which returcs the input character string.

Remarks
Display a character string on the output region of the window beginning at the current position.  The cursor
position is advanced beyond the last character output.  Special output characters, such as non-textual, are
supported as described in the section Special Output Characters.

The PRINT statement in dL4 is always executed in terms of WRITE, so all variations of PRINT (PRINT
USING, etc.) are supported for a window.



Supported Drivers 58

dL4 Files and Devices Reference Guide

ERASE

Synopsis
Erases the output region of the window on channel #C.

Syntax

Erase #C

Parameters
None.

Remarks
ERASE clears the output region of the window.



Supported Drivers 59

dL4 Files and Devices Reference Guide

SIZE

Synopsis
Changes the size of the various window components on channel #C.

Syntax

Size #C,param1;width,height

Parameters
param1 is a numeric expression.

width  is a numeric expression.

heigth is a numeric expression.

Remarks
The record number parameter (parm1) controls which component is being resized:

0 Display region (default if not supplied).

1 Canvas.

2 Output region.

The width and height arguments are interpreted according to the current coordinate system of the window.
The default is text columns and rows.



Supported Drivers 60

dL4 Files and Devices Reference Guide

MOVE

Synopsis
Moves the various components of a window on channel #C.

Syntax

Size #C {,param1}; @width,height

Parameters
param1 is a numeric expression.

width  is a numeric expression.

heigth is a numeric expression.

Remarks
The record number parameter (param1) controls which component is being moved:

0 Window, relative to it's parent window (default if not supplied).  Only a child window can be moved in
this fashion.

1 Display region, relative to the canvas.

2 Output region, relative to the canvas.

The coordinate expression (@width,heigth) gives the new position of the upper-left corner of the
component.

If 0 is selected, the coordinate expression is interpreted according to the current coordinate system of the
parent window.  If 1 or 2 are selected, the coordinate expression is interpreted according to the current
coordinate system of the affected window.



Supported Drivers 61

dL4 Files and Devices Reference Guide

CHANNEL:SHOW/HIDE

Synopsis
Show or hide a window on channel #C.

Syntax

Channel param1, #C

Parameters
param1 is a numeric expression.

Remarks
There is no dedicated statement in dL4 BASIC  for the ShowWindow or HideWindow operations on a
channel, therefore the general-purpose CHANNEL statement must be used.  param1 is a num.expr, the
value of which determines the operation:

param1  Operation            

11 Show the Window
12 Hide the Window

A window which is hidden can still be otherwise modified and accept output while remaining hidden.  A
read from a hidden window causes an implicit ShowWindow to occur.



Supported Drivers 62

dL4 Files and Devices Reference Guide

CHANNEL:HSCROLL/VSCROLL

Synopsis
Scrolls the display region within the canvas of the window on channel #C.

Syntax

Channel param1, #C; hamount

Parameters
param1 is a numeric expression.

hamount is a numeric expression.

vamount is a numeric expression.

Remarks
There is no dedicated statement in dL4 BASIC for the HScroll or VScroll operations on a channel, therefore
the general-purpose CHANNEL statement must be used.  Scrolling is the equivalent of the MOVE
command in mode 1: moving the display region relative to the canvas by the indicated amount.  param1 is a
num.expr, the value of which determines the operation:

param1  Operation            

14 Horizontal scroll the Window
15 Vertical scroll the Window

Positive values for hamount move to the right, and negative values move to the left.

Positive values for vamount move down, and negative values move up.

The movement amount is interpreted in units that correspond to the current coordinate system of the
window.



Supported Drivers 63

dL4 Files and Devices Reference Guide

Special Output Characters Defined for Windows

The set of characters which can be output to a window is defined as all characters which are either:

1 A "listable" character for that window, or

2 One of the supported "special" characters documented herein.

In addition, some window drivers may support only a subset of the special characters.  For each special
character, a window driver is obligated to either support the operation as defined here, or fail on output.

 Special Output Characters Controlling I/O modes

'IOBE' Begin input echo mode.

'IOEE' End input echo mode.

'IOTE' Toggle input echo mode.

'IOBD' Enable destructive backspace mode.

'IOED' Disable destructive backspace mode.

'IOBC' Enable activate-on-control-character mode.

'IOEC' Disable activate-on-control-character mode.

'IOB\' Enable echo "\" on escape mode.

'IOE\' Disable echo "\" on escape mode.

'IOBI' Enable binary input mode.

'IOEI' Disable binary input mode.

'IOCI' Clear the input type-ahead buffer.

'IORS' Reset all I/O modes to default state.

Special Output Characters Controlling the Cursor

Note:  In all cases, the cursor cannot be positioned within a protected field.

'ML' Move cursor left 1 column.  If movement exceeds the left edge of the output region, the
result depends on the status of wrapping mode.  If wrapping mode is on, the cursor is
moved to the last column of the previous row.  If already at the top row, the bottom row is
considered the previous row.  If wrapping mode is off, no motion occurs.

'MR' Move cursor right 1 column.  If movement exceeds the right edge of the output region, the
result depends on the status of wrapping mode.  If wrapping mode is on, the cursor is
moved to the first column of the next row.  If already at the bottom row, the top row is
considered the next row.  If wrapping mode is off, no motion occurs.

'MU' Move cursor up 1 row.  If movement exceeds the top edge of the output region, the result
depends on the status of wrapping mode. If wrapping mode is on, the cursor is moved to
the same column of the bottom row.  If wrapping mode is off, no motion occurs.

'MD' Move cursor down 1 row.  If movement exceeds the bottom edge of the output region, the
result depends on the status of wrapping mode. If wrapping mode is on, the cursor is
moved to the same column of the top row.  If wrapping mode is off, no motion occurs.

'MH' Move cursor to first column of first row.



Supported Drivers 64

dL4 Files and Devices Reference Guide

'xMOVETO' Move cursor to position x of current row.  Also accessible in BASIC as "Tab(x)".  The
result of attempting to position outside the current output region is undefined.

'x,yMOVETO' Move cursor to position x,y.  Also accessible in BASIC as "@x,y;".  The result of
attempting to position outside the current output region is undefined.

'CR' Move cursor to first column of next row.  If movement exceeds the bottom edge of the
output region, the result depends on the status of scrolling mode, format mode, and
wrapping mode.  If scrolling mode is on and format mode is off the output region is
scrolled up by one row, else if wrapping mode is on the cursor is moved to the first
column of the first row, else no motion occurs.

'LF' Move cursor down to next row.  If movement exceeds the bottom edge of the output
region, the result depends on the status of scrolling mode, format mode, and wrapping
mode.  If scrolling mode is on and format mode is off the output region is scrolled up by
one row, else if wrapping mode is on the cursor is moved to the same column of the first
row, else no motion occurs.

'BK' Move cursor to first column of current row.

'TF' Move cursor right to next tab stop.  If movement exceeds the right edge of the output
region, the result depends on the status of wrapping mode.  If wrapping mode is on, the
cursor is moved to the first tab stop of the next row.  If wrapping mode is off, no motion
occurs.

'TB' Move cursor left to previous tab stop.  If movement exceeds the left edge of the output
region, the result depends on the status of wrapping mode.  If wrapping mode is on, the
cursor is moved to the last tab stop of the previous row.  If wrapping mode is off, no
motion occurs.

'xALIGN' Move cursor right to next horizontal boundary of x columns.

'K0' Set cursor display off.

'K1' Set cursor display to a blinking block.

'K2' Set cursor display to a steady block.

'K3' Set cursor display to a blinking underline.

'K4' Set cursor display to a steady underline.

'BS' Backspace.  Equivalent to 'ML'.

'RI' Reverse index.  Equivalent to 'MU'.

'NEL' Next line.  Equivalent to 'CR'.

'LINESEP' Line separator.  Equivalent to 'CR'.

'PARASEP' Paragraph separator.  Equivalent to 'CR LF'.

'IND' Index.  Equivalent to 'LF'.

'HT' Horizontal tab.  Equivalent to 'TF'.

Special Output Characters Controlling Text Drawing

The description of each of the text drawing modes is as notable for what is said as for what is not said.  For
example, the description of 'BB' merely states that it begins blink mode.  It does not specify what effect the
setting of blink mode may have on any of the other text drawing modes.  It is the nature of certain ASCII
terminals that only one mode may be in effect at a time. A (1) in the table denotes a mnemonic that is not
yet supported.

'BB' Begin blink mode.

'EB' End blink mode.



Supported Drivers 65

dL4 Files and Devices Reference Guide

'BBOLD'  Begin bold mode.

'EBOLD' End bold mode.

'BC' Begin compressed mode. (1)

'EC' End compressed mode. (1)

'BX' Begin expanded mode. (1)

'EX' End expanded mode. (1)

'BD' Begin dimmed intensity mode.

'ED' End dimmed intensity mode.

'BG' Begin graphics mode.  Graphics mode has no defined effect.

'EG' End graphics mode.  Graphics mode has no defined effect.

'BI' Begin italic mode.

'EI' End italic mode.

'BR' Begin reverse video mode.

'ER' End reverse video mode.

'BSO' Begin strike-out mode.

'ESO' End strike-out mode.

'BSUB' Begin subscript mode. (1)

'ESUB' End subscript mode. (1)

'BSUP' Begin superscript mode. (1)

'ESUP' End superscript mode. (1)

'BU' Begin underline mode.

'EU' End underline mode.

'BLACK' Set foreground color to black.

'BL' Set foreground color to blue.

'CY' Set foreground color to cyan.

'GN' Set foreground color to green.

'MA' Set foreground color to magenta.

'RE' Set foreground color to red.

'WH' Set foreground color to white.

'YE' Set foreground color to yellow.

'RESETCOLOR' Restore default colors.

Special Output Characters Controlling Canvas Editing

'BP' Begin protected field drawing.  All areas of the canvas subsequently drawn with text or
graphics are eligible to be "protected fields". Such areas actually become protected fields
by entering format mode ('FM').

'EP' End protected field drawing.

'FM' Enter format mode.  Format mode has the effect of inhibiting scrolling mode and causes
all eligible areas to become protected fields.  See also, 'DL' and 'IL' characters.



Supported Drivers 66

dL4 Files and Devices Reference Guide

'FX' Exit format mode.

'CE' Clear all unprotected fields from cursor to end of output region.

'CL' Clear all unprotected fields from cursor to end of row in the output region.

'CU' Clear all unprotected fields in the output region.

'CS' Clear entire output region.  This also causes format mode to be disabled and all protected
fields to revert to normal fields.

'DC' Delete 1 character space beneath the cursor and insert empty space at the last column of
the row or field (as delimited by a protected character).  The intervening contents are
shifted left by one column.

'IC' Insert 1 space character beneath the cursor and discard 1 character space at the last
column of the row or field (as delimited by a protected character).  The intervening
contents are shifted right by one column.

'DL' Delete 1 row beneath the cursor and insert an empty row at the last row of the output
region.  The intervening contents are shifted up. If format mode is on, 'DL' is ignored.

'IL' Insert 1 empty row beneath the cursor and discard the last row of the output region.  The
intervening contents are shifted down by one row.  If format mode is on, 'IL' is ignored.

Special Output Characters for Graphic Drawing

'x,yLINETO' Draw a line from the cursor to position x,y.  The cursor is then positioned at x,y.

'x,yRECTTO' Draw a rectangle from the cursor to position x,y.  The cursor is then positioned at x,y..

'a,b,c,dRECT' Draw a rectangle from position a,b to position c,d.  The cursor is then positioned at c,d.

Miscellaneous Special Output Characters

'BEL' Ring bell.

'RB' Ring bell.

'XX' Initialize hardware.  The effect of this character is completely implementation-defined.

Form and Chart Drawing Characters

Note that the form and chart drawing characters 'G1', 'G2', etc. are absent from the above list of special
characters.  This is because in dL4 these mnemonics each have been assigned to the Unicode character
value that directly corresponds to the equivalent character glyph.  For example,

'G1' = 'U+250C' = "\22414\" = FORMS LIGHT DOWN AND RIGHT

in other words, the upper-left corner character in Unicode.

Whether or not this character is supported falls under rule 1 within  Special Output Characters Defined for
Windows above, i.e. it fully depends on whether or not it is present in the character set of the underlying
device.  A window class driver handles such characters no differently than it handles alphabetic text.

As a consequence of this fact, the "graphics mode" normally required to output such characters is
superfluous in a dL4 window, therefore 'BG' and 'EG' are typically ignored.  If the device requires a change
of mode in order to display the character, the driver itself will manage it.

Special Output Characters Which Support Repeat Counts

Of the special output characters documented above, those listed below interpret any single parameter passed
to them as a repeat count.  For example:

Print 'MR'  ! Move right once



Supported Drivers 67

dL4 Files and Devices Reference Guide

Print '5MR' ! Move right 5 times

The characters in this category are the window's entire set of listable characters plus the following:

'ML' Move cursor left 1 column.

'MR' Move cursor right 1 column.

'MU' Move cursor up 1 row.

'MD' Move cursor down 1 row.

'CR'     Move cursor to first column of next row.

'LF'     Move cursor down to next row.

'TF'     Move cursor right to next tab stop.

'TB'     Move cursor left to previous tab stop.

'BS'     Backspace.

'RI'     Reverse index.

'NEL'    Next line.

'LINESEP' Line separator.

'PARASEP' Paragraph separator.

'IND'  Index.

'HT'    Horizontal tab.

'DC'    Delete 1 character.

'IC'     Insert 1 character.

'DL'    Delete 1 row.

'IL'     Insert 1 row.

'BEL'   Ring bell.

'RB'    Ring bell.

Cursor Tracking Mode

dL4 does not support Cursor Tracking Mode, but the keyboard input translation can be configured to pass
the cursor keys to the application as data with the value of the movement mnemonics ('ML', 'MR').  If this is
done, the program will always be in Cursor Tracking Mode

Using Dynamic Windows

Each window behaves as a full screen of the dimensions specified.  Data automatically wraps within the
boundaries of the window and many of the mnemonics are supported.  Cursor positioning is relative, such
that position 0,0 is the first character of the window.  Scrolling within a window is allowed.

Window Zero is the full screen before any windows are open



Supported Drivers 68

dL4 Files and Devices Reference Guide

Raw Class

The Raw class may be used for low level access to files and devices.  Internally, dL4 represents all data as
16-bit Unicode.  When presenting data to the outside world, the rawfile drivers convert the Unicode as 8-bit
binary data in the least significant bits (LSB) and the most significant bits (MSB) are all set to zero.

The raw drivers treat the data as binary and no conversions are performed, therefore character sets are not
supported.

Types of Raw Drivers

The Raw class drivers available are:

• "Raw File" driver supported on the UNIX and Windows platforms.

• "Raw Regular File" supported on the UNIX and Windows platforms.

The two drivers differ in that "Raw File" (the default) will open both files and devices.  The "Raw Regular
File" driver will only open files.

Creating Files

The BUILD statement is used to create a file with the Raw class drivers.  The file.spec.str items: option
item, (charset=character-set), and  cost item, $cost, are accepted but ignored. A protection item, <A>, is
accepted and applied.  A record length must be specified in the record item, [num-of-records:record-len], of
the file.spec.str. The number-of-records expression of the record item is ignored.  An exclamation point, (!),
may be used at the end of the filename item to replace filename if it already exists.  For example:

Build #channel,"[10:40]rawfile!" As "Raw Regular File"

Opening and Closing Files and Devices

The OPEN statement is used to Access a file with the Raw class drivers.  The file.spec.str items: option
item, (charset=character-set), and  cost item, $cost, are accepted but ignored. A protection item, <A>, is
accepted and applied.  A record length must be specified in the record item, [num-of-records:record-len], of
the file.spec.str. The number-of-records expression of the record item is ignored.

dL4 does not have the UniBasic statements RDREL and WRREL which read-from or write-to files in
blocks of 512 bytes.  This functionality may be achieved with the READ and WRITE statements if the file
is opened with a record length of 512 specified.  For example:

Open #channel,"[10:512]rawfile" As "Raw Regular File"

The EOPEN statement is supported in the WIN32 driver, but not in the UNIX driver.

The ROPEN and WOPEN statements are supported and used to open files in read-only and write-only
modes respectively.

The CLOSE statement is used to close the file associated with the channel.  If the file was newly created ,
make it permanent.  If no channel is given, all open channels are closed.

The CLEAR statement is used to close the file associated with the channel.  If the file was newly created , it
is deleted.  If no channel is given, all open channels are closed.   



Supported Drivers 69

dL4 Files and Devices Reference Guide

Positioning Within Files

A chn.expr for Raw drivers supports the specification of all three optional parameters, in the general form:

#channel { , record {, byte-displacement {,  timeout }}} ;

The optional  record specifies a block of bytes, the number of which is specified with  record-length in the
OPEN statement, within a file.  The record must be zero or greater.  A record cannot be specified for a
device.

An optional byte-displacement specifies the starting byte position within a block of data. It must be zero or
greater.  A byte-displacement cannot be specified for a device.

Positioning within a file is performed by taking the result of (record * record-length) + byte-displacement
and using that to specify a specific byte within the file.  For example, the values record=1, record-length
=20, byte-displacement=4 selects the (1*20+4) or the 25th byte within the file.

The optional timeout is typically used when accessing devices, such as keyboards or com ports, to provide
for a period of time to wait for data.

Record Locking is not provided automatically by Raw drivers and a timeout may be included for those
cases where an application, other than dL4 has placed locks on a file or a device.

Record Locking with the Rawfile Driver

The Raw class drivers do not provide record locking on a READ or WRITE statement, but records can be
locked using dL4 Channel statements.

Channel 21, #C,r,o,t;v  !Set shared lock for size of variable v

Channel 22, #C,r,o,t;v  !Set exclusive lock for size of variable v

Channel 23, #C,r,o,t;v  !Remove lock for size of variable v

Read and Writing with the Rawfile Driver

Use the INPUT or READ statements to receive data from the channel.  There is no line termination
conversion performed  The  record, byte-displacement, and  timeout entries are accepted if zero or greater.

Use the PRINT or WRITE statements to output data to the channel.  The  record, byte-displacement, and
timeout entries are accepted if zero or greater.

Channel Functions and Operations

String Functions

CHF$(x)              Operation Performed                                                                                                                

1 Return Open Modes Selected. ("RWLE")

6 Driver Class

7 Driver title

8 Filename, portable if possible, based upon current working directory.  If you change
cwdir, this value changes



Supported Drivers 70

dL4 Files and Devices Reference Guide

Numeric Functions

CHF(x)                Operation Performed                                                                                                                

0 Current file size in records of 512-bytes

1 Current record within the file

2 Current byte position within the file

3 Record length in words (See File Unit Option)

4 File size in bytes

5 Record Length in bytes always returns 512

6 Header size always returns 0

7 error

8 error

9 File owner in numeric form - error if  the information cannot be expressed as a numeric
value

10 File group in numeric form- error if  the information cannot be expressed as a numeric
value

11 File protection or permissions, expressed in numeric form- error if  the information cannot
be expressed as a numeric value

Directory Class

The Directory class driver provides access to the filenames stored within a directory of the file system of the
platform.

Types of Directory Drivers

The Directory class drivers available are:

• POSIX Directory driver supported on the UNIX platform.

• Directory driver supported on the Windows platform.

Accessing Directories

The Directory driver is used to create a new directory or open an existing directory. For example:

Build #1,"c:\\dl4train" As "directory"

Open #1,"c:\\dl4train" As "directory"

Reading and Writing with Directory Drivers

Writing to a directory is not allowed.

Sequential reading from the directory is performed and only filenames are returned.  Random access is not
available, but the record number parameter can be set to zero to rewind to the beginning.  For example:



Supported Drivers 71

dL4 Files and Devices Reference Guide

! Read the filenames in a directory
Dim FileName$[80]
Dim DirName$[48]
Input "Enter the directory name: ",DirName$
Print
Try
  Open #1,DirName$ As "directory"
Else
  Print "Could not open the ";DirName$;" directory. Error ";Spc(8)
  End
End Try

Read #1,0;FileName$ ! rewind to beginning

Do
  Read #1;FileName$
  Print FileName$
Loop Until FileName$ = ""
Close #1
End

Use the returned filename to open the file and the CHF or other functions to get specific file information.

! Read the filenames in a directory
Dim FileName$[80]
Dim DirName$[48]
Input "Enter the directory name: ",DirName$
Print
Try
  Open #1,DirName$ As "directory"
Else
  Print "Could not open the ";DirName$;" directory. Error ";Spc(8)
  End
End Try

Read #1,0;FileName$ ! rewind to beginning

Do
  Read #1;FileName$
  Open #2,DirName$ + "\\" + Filename$
  Print FileName$
  Print "Size: ";Chf(2)
  Print "Rec-Len: ";Chf(502)
  Print "Driver Class: ";Chf$(602)
  Print "Driver Title: ";Chf$(702)
  Print "File Name: ";Chf$(802)
  Close #2
Loop Until FileName$ = ""
Close #1
End

Driver List Class

The Driver List driver is used by SCOPE to provide a list when the DRIVERS command is issued.

Types of Driver List Drivers

The Intrinsic Driver List is the driver in this class.  It is used by SCOPE, when the DRIVERS command is
issued from the SCOPE Interactive Development Environment, to display a list of the driver classes and the



Supported Drivers 72

dL4 Files and Devices Reference Guide

individual drivers available from those classes.  This is the dL4 BASIC programmer's only interface to the
Intrinsic Driver List driver.

System Class
The System driver returns and manages operating system specific information for dL4.

Types of System Drivers

The individual driver in the System Class is determined by the operating system.  Under the UNIX OS it is
POSIX System.  For WIN32 it is WIN32 System.  The dL4 BASIC programmer should never access this
driver.

Port Communication Class

The Port Communication driver implements and manages interprocess communications between dL4 and
applications.

Types of Port Communication Drivers

The individual driver in the Port Communication Class is determined by the operating system.  Under the
UNIX OS it is System V Message Queue Communication.  For WIN32 it is WIN WM_COPYDATA
Communication.  The dL4 BASIC programmer should not access this driver.

Program Class

The BASIC Program driver is used to load and link Basic programs.  The dL4 BASIC programmer should
not access this driver.



Appendix A 73

dL4 Files and Devices Reference Guide

Appendix A - Whether A Statement Is Used
With  A Driver-Class

The table on the following pages shows whether a given statement is used with the driver-classes.  “Y”
indicates that the statement is used with the indicated driver-class, while “n” indicates it is not.

For example, the DEFINE RECORD statement is used only with the Full-ISAM driver-class, and not with
any of the others.

The driver-class names are abbreviated as follows:

ABBREVIATION DRIVER-CLASS
As Auto Select
Co Contiguous
Di Directory
Dl Driver List
Fo Formatted
FI Format Index
In Indexed
IC Indexed Contiguous
PC Port Communication
Pr Profile
Pg Program
Ra Raw
Sy System
Tx Text
W Windows



Appendix A 74

dL4 Files and Devices Reference Guide

STATEMENT As Co Di Dl Fo FI In IC PC Pr Pg Ra Sy Tx W
ADD n n n n n Y n n n n n n n n n
ADD INDEX n n n n n Y n n n n n n n n n
ADD RECORD n n n n n Y n n n n n n n n n
BOX n n n n n n n n n n n n n n n
BUILD Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
CHANNEL
CLEAR
CLOSE
DEFINE RECORD Y
DELETE INDEX Y
DELETE RECORD Y
DUPLICATE
GET
INPUT
KILL
MAP Y
MAP RECORD Y
MAT INPUT Y
MAT PRINT Y
MAT RDLOCK Y
MAT READ Y
MAT WRITE Y
MAT WRLOCK Y
MODIFY
OPEN
PRINT n n n n n n n n n n n n n n n
RDLOCK
READ Y Y Y Y
READ RECORD Y
RECV
REWIND
ROPEN
SEARCH Y
SEND
SET
SETFP
SIGNAL
SIZE
TRACE
UNLOCK
WINDOW
WOPEN
WRITE Y Y Y
WRITE RECORD Y
WRLOCK



Appendix A 75

dL4 Files and Devices Reference Guide

Index
A

arguments..........................................................................6

B

Bridge Driver ..................................................................40
byte displacement..............................................................6

C

channel .........................................................................3, 6
operations......................................................................4

channel expression ............................................................6
Channel Functions ............................................................8
chn expr ............................................................................6
class ..................................................................................9
CLOSE, file header changes ...........................................40
Conventions ......................................................................2
c-tree Index .....................................................................42
CustomCharacterSet .......................................................14

D

data dictionary ................................................................41
database..........................................................................16
Device.............................................................................16
Directory .........................................................................70
Driver List.......................................................................71
Dynamic Windows..........................................................51

E

End-of-File......................................................................18
end-of-line-break...............................................................9
Environment Variable

DXTDSIZ ...................................................................35
ISAMOFFSET............................................................35

error
driver...........................................................................10
parameters.....................................................................7

expr list .............................................................................6

F

field .................................................................................17
File ..................................................................................16

Record Locking.............................................................3
Record Locking

Unlock a Locked Record ..........................................7
File Access Raw..............................................................18
Files

Contiguous
Accessing ................................................................33
Creation...................................................................32
Defined ...................................................................31

Formatted Item
Accessing................................................................31
Creation ..................................................................29
Defined ...................................................................28

Index
Structuring with Mode 0 .........................................37

Indexed
B-Tree Balancing,...................................................35
B-Tree Insertion with Mode 8 ................................40
Creation ..................................................................35
Data Expansion.......................................................35
Defined ...................................................................34
Deleted Record Maintenance..................................35
Deleting a Key with Mode 5 ...................................39
First Real Data Record IRIS ...................................37
Insert a Key with Mode 4........................................39
Miscellaneous Information with Mode 1 ................38
Recovery & Rebuilding ..........................................40
Search Exact with Mode 2 ......................................38
Search Next with Mode 3 .......................................39
Search Previous with Mode 6 .................................39

Text
Accessing................................................................18
Defined ...................................................................17

flat-file ............................................................................16
FoxPro Full-ISAM Driver ..............................................50

I

INDEX Statement
Mode 0 - Initial Definition & Creation .......................37
Mode 1 - Miscellaneous Functions .............................38
Mode 2 - Search for Exact Key...................................38
Mode 3 - Search for Next Highest Key.......................39
Mode 4 - Insert a New Key.........................................39
Mode 5 - Delete an Existing Key................................39
Mode 6 - Search for Previous Lower Key ..................39
Mode 7 - Unused ........................................................40
Mode 8 - Specify B-Tree Insertion Algorithm............40

INDEX Statement:..........................................................37
Introduction ......................................................................1
italic type ..........................................................................2
item number ....................................................................31

L

lock
simultaneous ...............................................................12

Locked Records ................................................................3
locking

advisory ......................................................................11
mandatory ...................................................................11



Appendix A 76

dL4 Files and Devices Reference Guide

N

new-line ..........................................................................18

O

OPEN, file header changes .............................................40

P

parameters.........................................................................6
pipe drivers

input ............................................................................23
locking ........................................................................25
output ..........................................................................23

Port Communication .......................................................72
Profile .............................................................................26
Program ..........................................................................72

R

Raw.................................................................................68
read-past-locks ................................................................11
record..........................................................................6, 16
record lock after reading ...................................................7
Record Locking.................................................................3

Deadly Embrace............................................................4
implement ...................................................................10
profile..........................................................................27
Time-out .......................................................................4

S

SEARCH Statement

Mode 0 - Initial Definition & Creation .......................37
Mode 1 - Miscellaneous Functions .............................38
Mode 2 - Search for Exact Key...................................38
Mode 3 - Search for Next Highest Key.......................39
Mode 4 - Insert a New Key.........................................39
Mode 5 - Delete an Existing Key................................39
Mode 6 - Search for Previous Lower Key ..................39
Mode 7 - Unused ........................................................40
Mode 8 - Specify B-Tree Insertion Algorithm............40

SEARCH Statement:.......................................................37
SQL Server Full-ISAM Driver .......................................50
Statement

INDEX........................................................................37
SEARCH ....................................................................37

Syntax ...............................................................................1

T

table ................................................................................16
Terminal

Window
Zero.........................................................................67

time-out.............................................................................6
Tree-Structured Data files...............................................31

U

Unicode...........................................................................14
Universal.........................................................................29

W

window............................................................................16


