
6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 1 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

DL4 Language Reference Guide
From Dynamic Concepts Wiki

Contents
1 Language Reference Guide
2 CHAPTER 1 - INTRODUCTION

2.1 TYPOGRAPHICAL CONVENTIONS
2.2 SYNTAX NOTATIONS

3 CHAPTER 2 - DATA TYPES
3.1 INTRODUCTION
3.2 NUMERIC DATA

3.2.1 Numeric Precision
3.3 CHARACTER STRING DATA
3.4 DATES
3.5 BINARY

4 CHAPTER 3 - VARIABLES
4.1 INTRODUCTION
4.2 VARIABLE NAMES
4.3 SUBSCRIPTED VARIABLES (ARRAYS)
4.4 AUTOMATIC DIMENSIONING
4.5 RE-DIMENSIONING VARIABLES
4.6 STRUCTURES
4.7 STRUCTURE (.) VARIABLES

5 CHAPTER 4 - INTRINSIC FUNCTIONS
5.1 INTRODUCTION
5.2 INTRINSIC FUNCTIONS

6 CHAPTER 5 - EXPRESSIONS
6.1 INTRODUCTION
6.2 OPERATOR PRECEDENCE
6.3 OPERATORS

6.3.1 Unary Operators + -
6.3.2 Arithmetic Operators ^ * / MOD + -
6.3.3 Concatenation Operators + ,
6.3.4 Assignment Operator: Colon Equal
6.3.5 Relational Operators = <> > >= < <=
6.3.6 Boolean Operators AND OR NOT
6.3.7 String Operator USING

6.3.7.1 Field Descriptors
6.3.7.2 Leading Characters
6.3.7.3 Floating Characters
6.3.7.4 Numeric Characters
6.3.7.5 Commas
6.3.7.6 Decimal Points

6.3.8 String Operator TO
6.3.9 Boolean Operators

6.4 BOOLEAN EXPRESSION
6.5 CHANNEL EXPRESSIONS



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 2 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

6.6 RULES GOVERNING STRING PROCESSING
6.7 STRING ASSIGNMENT

7 CHAPTER 6 - MNEMONICS
7.1 INTRODUCTION
7.2 MNEMONICS
7.3 MNEMONIC VALUES

7.3.1 Mnemonics for Keyboard and Auxiliary Port
7.3.2 Mnemonics to Clear and Reset the Terminal
7.3.3 Mnemonics Applied to the Cursor Position
7.3.4 Mnemonics to Control Attributes
7.3.5 Mnemonics to Control Color
7.3.6 Mnemonics to Transmit Data
7.3.7 Mnemonics for Drawing
7.3.8 Mnemonics to Define the Coordinate Grid
7.3.9 Miscellaneous Mnemonics
7.3.10 Special Mnemonics for I/O Control
7.3.11 Mnemonics for Graphic User Interfaces
7.3.12 Table of Extended Graphics Codes
7.3.13 Table of Mnemonic Codes

8 CHAPTER 7 - STATEMENTS
8.1 INTRODUCTION
8.2 STATEMENT STRUCTURE
8.3 STATEMENT DOCUMENTATION FORMAT
8.4 STATEMENT
8.5 STATEMENTS, LINE NUMBERS AND LABELS
8.6 LINE IDENTIFICATION
8.7 MULTIPLE-STATEMENT LINES
8.8 ADD
8.9 ADD INDEX
8.10 ADD RECORD
8.11 BOX
8.12 BUILD
8.13 CALL (BASIC PROGRAM)
8.14 CALL (PROCEDURE)
8.15 CASE
8.16 CHAIN
8.17 CHAIN READ
8.18 CHAIN READ IF
8.19 CHAIN WRITE
8.20 CHAIN WRITE IF
8.21 CHANNEL
8.22 CHDIR
8.23 CLEAR
8.24 CLOSE
8.25 COM
8.26 CONV
8.27 DATA
8.28 DECLARE
8.29 DEF FN
8.30 DEFINE RECORD
8.31 DEF STRUCT
8.32 DELETE INDEX
8.33 DELETE RECORD



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 3 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

8.34 DIM
8.35 DO
8.36 DO UNTIL
8.37 DO WHILE
8.38 DUPLICATE
8.39 EDIT
8.40 ELSE
8.41 END
8.42 END DEF
8.43 END FUNCTION
8.44 END IF
8.45 END SELECT
8.46 END SUB
8.47 END TRY
8.48 ENTER
8.49 EOFCLR
8.50 EOFSET
8.51 EOPEN
8.52 ERASE
8.53 ERRCLR
8.54 ERROR
8.55 ERRSET
8.56 ERRSTM
8.57 ESCCLR
8.58 ESCDIS
8.59 ESCSET
8.60 ESCSTM
8.61 EXIT DO
8.62 EXIT FOR
8.63 EXIT FUNCTION
8.64 EXIT SUB
8.65 EXTERNAL FUNCTION
8.66 EXTERNAL LIB
8.67 EXTERNAL SUB
8.68 FOR
8.69 FREE
8.70 FUNCTION
8.71 GET
8.72 GOSUB
8.73 GOTO
8.74 IF
8.75 IF ERR 0 | 1
8.76 INPUT
8.77 INTCLR
8.78 INTSET
8.79 JUMP
8.80 KILL
8.81 LET
8.82 LIB
8.83 LINE
8.84 LOOP
8.85 MAP
8.86 MAP RECORD



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 4 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

8.87 MAT =
8.88 MAT +
8.89 MAT *
8.90 MAT CON
8.91 MAT IDN
8.92 MAT INPUT
8.93 MAT INV
8.94 MAT PRINT
8.95 MAT RDLOCK
8.96 MAT READ
8.97 MAT TRN
8.98 MAT WRITE
8.99 MAT WRLOCK
8.100 MAT ZER
8.101 MEMBER
8.102 MODIFY
8.103 MOVE
8.104 NEXT
8.105 ON
8.106 OPEN
8.107 OPTION
8.108 PAUSE
8.109 PORT
8.110 PRINT
8.111 RANDOM
8.112 RDLOCK
8.113 READ
8.114 READ RECORD
8.115 RECV
8.116 REM
8.117 RESTOR
8.118 RETRY
8.119 RETURN
8.120 REWIND
8.121 ROPEN
8.122 SEARCH (STRING)
8.123 SEARCH (TRADITIONAL)
8.124 SEARCH (MODERN)
8.125 SELECT CASE
8.126 SEND
8.127 SET
8.128 SETFP
8.129 SIGNAL 1 | 2
8.130 SIGNAL 3
8.131 SIGNAL 5
8.132 SIGNAL 6
8.133 SIZE
8.134 SPAWN
8.135 STOP
8.136 SUB
8.137 SUSPEND
8.138 SWAP
8.139 SYSTEM



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 5 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

8.140 TRACE
8.141 TRY
8.142 UNLOCK
8.143 WEND
8.144 WHILE
8.145 WINDOW CLEAR
8.146 WINDOW CLOSE
8.147 WINDOW MODIFY
8.148 WINDOW OFF
8.149 WINDOW ON
8.150 WINDOW OPEN
8.151 WOPEN
8.152 WRITE
8.153 WRITE RECORD
8.154 WRLOCK

9 CHAPTER 8 - INTRINSIC CALLS AND FUNCTIONS
9.1 INTRODUCTION
9.2 FUNCTION ADDMD5?
9.3 FUNCTION ADDSHA1?
9.4 FUNCTION ADDSHA256?
9.5 CALL ASC2EBCDIC
9.6 FUNCTION ASCII$
9.7 CALL ATOE
9.8 CALL AVAILBLKS
9.9 CALL AVPORT
9.10 FUNCTION BASE64$
9.11 FUNCTION BASE64?
9.12 CALL BITMANIP
9.13 CALL BITSNUMSTR
9.14 CALL BUILDKEY
9.15 CALL BYTECOPY
9.16 CALL CALLSTAT
9.17 FUNCTION CALLSTAT$
9.18 CALL CHECKDIGITS
9.19 CALL CHECKNUMBER
9.20 CALL CHECKSPC2DATE
9.21 CALL CHSTAT
9.22 CALL CKSUM
9.23 CALL CLEARSTR
9.24 CALL CLOSEALL
9.25 CALL CLU
9.26 CALL CONVERTCASE
9.27 CALL CONVERTSPC2DATE
9.28 CALL COPYARRAY
9.29 CALL COPYFILL
9.30 CALL COPYSTR
9.31 FUNCTION CRC16
9.32 FUNCTION CRC32
9.33 CALL CUSTOMCHARACTERSET
9.34 CALL DATE
9.35 CALL DATETOJULIAN
9.36 FUNCTION DATEUSING$
9.37 CALL DBASE



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 6 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

9.38 CALL DECTOOCT
9.39 CALL DEVCLOSE
9.40 CALL DEVOPEN
9.41 CALL DEVPRINT
9.42 CALL DEVREAD
9.43 CALL DEVWRITE
9.44 CALL DIFFSPC2DATES
9.45 CALL DRAWIMAGE
9.46 FUNCTION DTFORMAT$
9.47 FUNCTION DTPART
9.48 CALL DUPCHANNEL
9.49 CALL ECHO
9.50 CALL EDITFIELD
9.51 CALL ENV
9.52 FUNCTION ERRMSG$
9.53 CALL ETOA
9.54 CALL FIELDVAL
9.55 CALL FILEINFO
9.56 FUNCTION FINDCHANNEL
9.57 CALL FINDF
9.58 CALL FINDLEAST
9.59 CALL FLUSHALLCHANNELS
9.60 FUNCTION FMTOF
9.61 CALL FORCEPORTDUMP
9.62 CALL FORMATDATE
9.63 CALL GATHER
9.64 CALL GETGLOBALS
9.65 CALL GETREGISTRY
9.66 CALL GETSTRUCT
9.67 FUNCTION GETSTRUCT$
9.68 FUNCTION GMTDATEUSING$
9.69 CALL GRIDROW
9.70 CALL IMSCHECKDIGITS
9.71 CALL IMSCHECKNUMBER
9.72 CALL IMSCHKCH
9.73 CALL IMSMEMCOPY
9.74 CALL IMSPACK
9.75 CALL INITBUF
9.76 CALL INITERRMSG
9.77 CALL INPBUF
9.78 CALL INPEDIT
9.79 CALL IRISOS95
9.80 FUNCTION ISADL4KEYWORD
9.81 FUNCTION ISSQLNULL
9.82 CALL JULIANTODATE
9.83 CALL LOCK
9.84 CALL LOGIC
9.85 FUNCTION MD5?
9.86 FUNCTION MEMBERNUM
9.87 CALL MEMCMP
9.88 CALL MEMCOPY
9.89 CALL MISC47
9.90 CALL MISCSTR



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 7 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

9.91 CALL MISCSTR105
9.92 CALL NAMESTACK
9.93 CALL NCRC32
9.94 CALL NEXTAVPORT
9.95 CALL PKDEC20
9.96 CALL PKDEC45
9.97 CALL PKRDX5018
9.98 CALL PKRDX5048
9.99 CALL PKUNPKDEC
9.100 CALL PROGRAMCACHE
9.101 CALL PROGRAMDUMP
9.102 CALL PUTREGISTRY
9.103 CALL RDFHD
9.104 CALL READBUF
9.105 CALL READREF
9.106 CALL REDIR
9.107 CALL RENAME
9.108 FUNCTION REPLACE
9.109 FUNCTION REPLACECI
9.110 CALL RMVSPACES
9.111 CALL RMVSPACESI
9.112 CALL SCATTER
9.113 CALL SETECHO
9.114 CALL SETGLOBALS
9.115 CALL SETRESOURCE
9.116 CALL SETSTRUCT
9.117 FUNCTION SHA1?
9.118 FUNCTION SHA256?
9.119 CALL SORTINSTRING
9.120 CALL SPACESTR
9.121 CALL SPLITSTR
9.122 FUNCTION SQLD$
9.123 FUNCTION SQLDT$
9.124 FUNCTION SQLEQD$
9.125 FUNCTION SQLEQDT$
9.126 FUNCTION SQLEQV$
9.127 FUNCTION SQLN$
9.128 FUNCTION SQLNULL
9.129 FUNCTION SQLNULL#
9.130 FUNCTION SQLNULL$
9.131 FUNCTION SQLNV$
9.132 FUNCTION SQLSN$
9.133 FUNCTION SQLSND$
9.134 FUNCTION SQLSNV$
9.135 FUNCTION SQLV$
9.136 CALL STRING
9.137 CALL STRINGSEARCH
9.138 CALL STRSRCH1
9.139 CALL STRSRCH11
9.140 CALL STRSRCH44
9.141 CALL STRSRCH81
9.142 CALL STRUCTINFO
9.143 CALL SWAPF



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 8 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

9.144 CALL SYSRC
9.145 CALL TIME
9.146 CALL TRANSLATE
9.147 FUNCTION TRIM$
9.148 CALL TRIMMEDLEN
9.149 CALL TRXCO
9.150 FUNCTION UBASC
9.151 FUNCTION UBCHR$
9.152 CALL UBCKSUM
9.153 FUNCTION UBMEM
9.154 FUNCTION UBRND
9.155 CALL UBRNDSEED
9.156 CALL UBSTRING
9.157 CALL UNPKDEC21
9.158 CALL UNPKDEC46
9.159 CALL UNPKRDX5019
9.160 CALL UNPKRDX5049
9.161 CALL UNPKRECORD
9.162 CALL VERIFYDATE
9.163 CALL VOLLINK
9.164 CALL WHOLOCK
9.165 CALL WRITEBUF

10 CHAPTER 9 - FILE SPECIFICATION
10.1 FILE.SPEC DEFINITION

10.1.1 file.spec.str
10.1.2 file.spec.items

10.2 THE STANDARD LIST OF ITEMS
10.2.1 Filename Item
10.2.2 Option Item
10.2.3 Protection Item
10.2.4 Specifying Protection During BUILD
10.2.5 Protection by Attribute Letters
10.2.6 Protection by Two-Digit Number
10.2.7 Protection by Three-Digit Number
10.2.8 Specifying Protection During OPEN
10.2.9 Cost Item
10.2.10 Number of Records Item
10.2.11 Record Length Item
10.2.12 Example of file.spec

11 APPENDIX A - GLOSSARY
12 APPENDIX B - DL4 RESERVED WORDS
13 APPENDIX C - BASIC ERROR CODES
14 APPENDIX D - DL4 STATEMENTS (QUICK REFERENCE)
15 APPENDIX E - DL4 STATEMENT GROUPS

15.1 INTRODUCTION
15.2 GROUPS
15.3 FILE AND DEVICE HANDLING
15.4 USER SUBROUTINES AND FUNCTIONS
15.5 ERROR AND INTERRUPT HANDLING
15.6 ARRAYS AND MATRICES
15.7 DATA STRUCTURES
15.8 PROGRAM FLOW STATEMENTS
15.9 BLOCKS AND LOOPS



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 9 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

15.10 COMMUNICATIONS
15.11 WINDOWS
15.12 FORMATTING OUTPUT
15.13 MISCELLANEOUS STATEMENTS

16 APPENDIX F - UNICODE CHARACTER SET
16.1 INTRODUCTION

Language Reference Guide

dL4 Language

Reference Guide

Revision 10.5

Information in this document is subject to change without notice and does not represent a commitment on the part of
Dynamic Concepts, Inc. (DCI). Every attempt was made to present this document in a complete and accurate form.
DCI shall not be responsible for any damages (including, but not limited to consequential) caused by the use of or
reliance upon the product(s) described herein.

The software described in this document is furnished under a license agreement or nondisclosure agreement. The
purchaser can use and/or copy the software only in accordance with the terms of the agreement. No part of this guide
can be reproduced in any way, shape or form, for any purpose, without the express written consent of DCI.

© Copyright 2016 Dynamic Concepts, Inc. (DCI). All rights reserved

Dynamic Concepts Inc.

16501 Scientific

Irvine, CA 92618

http://www.dynamic.com or http://www.unibasic.com

UniBasic, BITS and Dynamic Windows are trademarks of Dynamic Concepts Inc.

IRIS is a trademark of Point 4 Data Corporation.

http://www.dynamic.com/
http://www.unibasic.com/


6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 10 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

c-tree is a trademark of Faircom.

Microsoft, MS, MS-DOS, Microsoft Access, and FoxPro are registered trademarks, and ODBC, Windows and
Windows NT are trademarks of Microsoft Corporation in the USA and other countries.

CHAPTER 1 - INTRODUCTION
This version (10.5) of the dL4 Language Reference Guide is based on Version 10.5 of the dL4 product and covers all
future releases, except for any new enhancements.

This guide is written for experienced BASIC programmers. It is a reference that describes the dL4 programming
language. Information concerning statements, functions, and objects supported by the language can be found on these
pages. This guide is divided into topical sections which describe the various components of the programming language.

TYPOGRAPHICAL CONVENTIONS
This guide uses the following typographic conventions:

Example of convention Description
GOSUB Capitalized words in bold indicate language-specified reserved words. Refer to

Appendix C.
KILL filename Variables are shown in italic type for clarity and to distinguish them from elements of

the language itself.
LIST Mono-spaced type is used to display screen output and example input commands and

program examples.
<letter> Information inside angle brackets <> must be from specified group, e.g., a single letter.
WHILE | UNTIL A vertical bar indicates that the user must choose one of the items.
[expr] Items inside square brackets are mandatory.
{expr} Items inside braces are optional.
stmt {\ stmt} ... A series of three periods (...) indicates that the item preceding them can be repeated one

or more times.

SYNTAX NOTATIONS
The following notations are used to describe dL4 BASIC syntax:

NOTATION STANDS FOR MEANING
args Arguments Expressions or variables passed to a procedure, a function, or used with an

operator.
bin.expr Binary expression An expression yielding a binary string value.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 11 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

bool.expr Boolean expression An expression evaluated in a boolean context resulting in TRUE/FALSE.
chan.expr Channel expression An expression that combines a channel number followed by three optional

numeric parameters, commonly indicating a record number, a field position,
and a timeout value. It begins with a # and ends in a semicolon. e.g. 
      #9, r, c, d; 
      #9,5;

chan.no Channel number An integer value, between 0 and 99 inclusive, preceded by #, that the
program uses for a logical connection between a BASIC program and a file.
Refer to "Channel Expression" in Chapter 5 of this guide.

crt.expr CRT expression An expression used for cursor positioning, e.g. @x,y. Refer to "CRT
Expressions", Chapter 6 of this guide.

expr Expression A valid series of constants, variables, functions, and operators to define a
desired computation. Refer to Chapter 4 of this guide.

filename Filename A string literal or expression containing a name which is optionally preceded
by a relative or absolute directory pathname. Refer to Introduction to dL4.

file.spec.items File specification,
items

A file specification expressed as a list of items.

file.spec.str File specification,
string

A file specification expressed as a string expression.

func.name Function name The valid name of a function.
label : Label A user-defined name identifying a statement line number. Refer to

"Statements, Line Numbers and Labels", Chapter 7 of this guide.
num.const Numeric constant A numeric constant.
num.expr Numeric expression An expression yielding a number.
num.lit Numeric literal A numeric literal value, e.g. 1.23.
parm.list Parameter A list of variables associated with parameters passed, and optionally

followed by three dots (...).
proc.name Procedure name The valid name of a procedure. Refer to Chapter 4 and Chapter 8 of this

guide.
rel.op Relational operator A binary operator that compares its first operand to its second operand to test

the validity of the specified relationship. Refer to "Relational Operators",
Chapter 5 of this guide.

stmt.no Statement number Unique positive integer that identifies a statement line. Refer to "Statements,
Line Numbers and Labels", Chapter 7 of this guide.

stmt Statement A single BASIC instruction along with parameters, e.g. PRINT A
str.expr String expression An expression yielding a string value or a string variable.
str.lit String literal A quoted sequence of characters, e.g. "string".
struct.name Structure Name The name of a pre-defined, fixed grouping of variables defined at compile-

time. Refer to "Structure", Chapter 3 of this guide.
var.list List of variables or

expressions
An arbitrary number of comma separated variables of any dL4 data types.
Refer to "Variables", Chapter 3 of this guide.

var.mat Matrix Variable Any numeric matrix variable name. Refer to "Variables", Chapter 3 of this
guide.

var.name Variable Name A variable name. Refer to "Variables", Chapter 3 of this guide.
bin.var Binary variable A variable of binary data type. Refer to Chapters 2 and 3 of this guide.

num.var Numeric variable A variable of numeric data type. Refer to Chapters 2 and 3 of this guide.
str.var String variable A variable of string data type. Refer to Chapters 2 and 3 of this guide.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 12 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

struct.var Structure variable A variable of structure data type. Refer to "Structures", Chapter 3 of this
guide.

CHAPTER 2 - DATA TYPES
INTRODUCTION

In dL4 there are four basic data types and two aggregate data types. Each type has its own rules of operation. The four
basic types are Numeric, Character String, Date and Binary. The two aggregate, or derived, types are Array and
Structure. The four basic data types are first described briefly below, then in more detail in the following paragraphs.
Structures and arrays are described in Chapter 3 of this guide.

• Numeric data is made up of integers and floating-point numbers which can be manipulated by arithmetic
operators.

• Character string data is comprised of Unicode characters. Although string data can contain numeric characters,
there can be no direct arithmetic manipulation of string data without first converting the characters to numeric
data.

• Dates are internal representations of specific points in real-time. Special functions are provided to manipulate
and perform arithmetic-like operations on dates. Dates cannot be thought of as string or numeric data, but can be
converted to or from character strings for input and display operations.

• Binary data is raw information which is not to be interpreted by dL4 as string, numeric, date, or any other type.
It is often useful for the developer to manipulate data within a program while being guaranteed that the language
does not translate.

• Structures aggregate data are programmer-defined sequence of individual named data items of the same or
different data types, grouped together to form a single data item. Such a collection is most often used to describe
a "record" of information, as in a data file.

• Arrays are ordered collections of the same data type where each individual item is referenced by subscripting.
Multi-dimensional arrays are represented as arrays of arrays. The developer can also define arrays of structures,
or structures containing arrays. The DIM statement reallocates arrays to the exact size specified, preserving only
those array elements that remain within the new size of the array. An array can be enlarged to any size with new
elements initialized to zero.

NUMERIC DATA
Numeric data can be stored in a variety of internal formats, including Binary Integer, floating point Binary-Coded
Decimal (BCD), etc. The particular format used for a variable is called its precision. The valid range for all numeric
data is governed by the arithmetic library package used by dL4 and is approximately 10-507 through 10507 with 20-digit
precision. All arithmetic calculations are performed to this degree of accuracy, although results can be truncated
depending on the precision of variables used.

Numeric values supplied directly in statements are referred to as numeric constants. Very large or small constants can
be expressed using floating-point E-notation (scientific notation).

Numeric Precision



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 13 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Many numeric data precisions are supported, each with a different representation, accuracy and portability. Some
precisions are included only for support of existing programs or data files. The following table of numeric precisions
defines the storage requirements, significance and the approximate range of representation.

Table of Numeric Precisions

% Parameters Bytes Decimal
Digits Range of values supported

1 16-bit signed integer 2 4+ -32768 to +32767
2 32-bit signed integer 4 9+ -2,147,483,648 to +2,147,483,647
3 3-word BITS Base 10000 floating 6 9-12 ±.999999999999 E±63
4 4-word BITS Base 10000 floating 8 16 ±.9999999999999999 E±63
5 2-word BITS Base 10000 floating 4 6 ±.999999 E±63
6 6-word BITS Base 10000 floating 12 17-20 ±.99999999999999999E±63
7 16-bit signed BCD integer 2 4 ±7999
8 2-word IRIS BCD floating 4 6 ±.999999 E±63
9 3-word IRIS BCD floating 6 10 ±.9999999999 E± 63

10 4-word IRIS BCD floating 8 14 ±.99999999999999 E±63
11 5-word IRIS BCD floating 10 18 ±.999999999999999999 E±63
12 32-bit signed BCD integer 4 8 ±79999999
13 2-word IEEE BCD floating 4 6 ±.999999 E±63
14 3-word IEEE BCD floating 6 10 ±.9999999999 E± 63
15 4-word IEEE BCD floating 8 14 ±.99999999999999 E±63
16 5-word IEEE BCD floating 10 18 ±.999999999999999999 E±63
17 2-word IEEE floating scaled X 100 4 7 ≈ ±99999.99
18 3-word IEEE floating scaled X 100 6 11 ≈ ±999999999.99 E±35
19 4-word IEEE floating scaled X 100 8 ‡ ≈ ±999999999999.99 E±35

Programs declare precisions in either the form %n or n%. The former is used to specify an exact precision from the
above table; the latter maps to a precision within a general type of representation.

The mapping of n% to a real precision is based upon the Option Arithmetic declaration within each program. Unless
specified, the default is Decimal (alias IEEE Decimal).

CHARACTER STRING DATA

A string is defined as a series of Unicode characters. Unicode is a character-encoding standard using a 16-bit character
encoding scheme. It includes characters from the world's scripts, as well as technical symbols in common use. The
ASCII character set is a sub-set of the UNICODE character set, mirroring the first 128 characters, i.e. ASCII values
0x00 - 0x7F are identical to UNICODE values.
String constants within programs are of two basic kinds: quoted strings (string literals) and mnemonic strings. String
literals are enclosed by the quotation mark character and referred to as string literals. A binanry zero character is used
internally to denote the logical end of a string. A string literal is governed by the following rules:



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 14 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

1. Must begin and end with a quotation mark character (").

2.
Any character can be expressed by its octal or hexadecimal Unicode value enclosed within backslashes. For
example, carriage return can be given as "\15\" or "\x0f\". Special characters that perform an action on input
(commonly backspace, etc.) must be entered in this fashion to be accepted as data.

3. All printable characters represent themselves except backslash (\) and quotation mark (").
Backslash is represented as "\\" (or "\134\"); quotation mark is represented by two consecutive apostrophes (single
quotes) (' ').
Character mnemonic strings are helpful for referring to non-printable Unicode characters in a program. For example,
the horizontal tabulation character is 118, or "11 octal"; this can be more readably expressed with a mnemonic string as
'HT'. A mnemonic string is governed by the following rules:
1. Must begin and end with an apostrophe (single quote) character (').
2. Must contain one or more mnemonic codes separated by a space.

3.

Each code can be optionally preceded by a list of one or more numeric constants, separated by commas, to be
interpreted as "character parameters". Character parameters are themselves embedded as special characters
preceding the main mnemonic code, and applying to it. The exact effect of any parameters is outside the scope
of the language and determined by the I/O drivers. A single parameter value is often interpreted as a repetition
count, such as '10GH' to output ten forms light horizontal characters.

The PCHR$ function provides for the runtime construction of character parameters using expressions rather than
constants. In addition, the special notation @X,Y; can be used as an abbreviation for Pchr$(X,Y)+'MOVETO'.

DATES
Dates serve as a standard storage method for date and time data, allowing date manipulation and culture-independent
input and output of dates. Numerous functions are provided for the manipulation and conversion of dates. Dates are a
distinct type of data different from string or numeric.

Table of Date Precisions

% Parameters Bytes Minimum value Maximum value
1 Days 2 2 Jan 1900 00:00:00 GMT 6 Jun 2079 00:00:00 GMT
2 Minutes 4 1 Jan 0001 00:01:00 GMT 16 Feb 8167 04:15:00 GMT
3 Milliseconds 6 1 Jan 0001 00:00:00.001 GMT 3 Aug 8920 05:31:50.655 GMT

Date arithmetic is always performed in terms of seconds, which can be fractional if a date variable has sufficient
precision. The precision of date variables is determined exactly like numeric variables, with the n% or %n specification
controlling the currently-selected precision. Unlike numeric precisions however, there is no mapping from n% to %n
controllable by the Option statement; e.g., 1% always means %1, etc.

There is no default value assigned to a newly-allocated date variable. An uninitialized date variable uses a special
value, indicating not a date. An error is generated if an attempt is made to access an uninitialized date variable. See
Appendix B, Error Messages.

Please check the expression section in this manual for legal operations using date variables.

BINARY



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 15 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Binary data behaves the same as string data in some respects, except its contents are not translated. Binary strings give
the developer a way to communicate "raw" data to/from a file or device and ensure that no translation or processing of
any kind is performed.

CHAPTER 3 - VARIABLES
INTRODUCTION

This chapter describes variable-naming conventions, subscripted variables (arrays), automatic dimensioning, re-
dimensioning variables, structures , and structure variables. For a definition and basic discussion of variables, refer to
Introduction to dL4.

VARIABLE NAMES
A variable name consists of up to 32 characters which can be letters, digits or the underscore (_). The name cannot
begin with a digit. Lower-case letters are equivalent to their upper-case counterparts.

Except for numeric variables, all variable names end with a type identifier character. This suffix is part of the name and
must be specified in each reference to that variable within a program. String variables end with $; dates end with #;
structures with .; and binary variables end with ?. Arrays end with the type of their base element. Variable names
differing only in suffix refer to distinct variables, e.g., MyVar, MyVar$, and MyVar? are all separate variables.

Some examples of variable names include:

A
A$
payday#
SoundWave?
DATA_VALUE
PHONE_NUMBER$

Up to 4096 different variables can be used within a program. If this limit is exceeded, Error 8 is displayed:

Too many variable names

SUBSCRIPTED VARIABLES (ARRAYS)

References to array, character, and binary variables can include the specification of a subscript to identify a specific, or
specific range of, data stored in them. A subscript is given in the form:

expr{, expr}...

Each expr is any numeric expression which, after evaluation, is truncated to an integer. The subscript(s) are then
evaluated based upon the type of variable to which they are applied:
• When applied to a character string, up to two subscripts are used; these represent starting and ending character

positions inclusive, with positions numbered from 1. If the second subscript is not given, the end of string is
assumed.

• When applied to a binary string, up to two subscripts are used; these represent starting and ending byte positions
inclusive, with positions numbered from 1. If the second subscript is not given, the end of string is assumed.

• When applied to an array, a single subscript is used; this represents the element number of the array, with
elements numbered from 0. If an array is referenced without a subscript, element zero is assumed (except for



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 16 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

MAT statements, which process entire arrays).
Multiple subscripts can be concatenated; each is evaluated in turn from left to right. This notation can be used to index
into each successive level of a nested aggregate such as an array of strings or an array of arrays (i.e., multi-
dimensional arrays). For example:

Print A[2][3]

prints the 4th element of the third array of A. For historical reasons, multiple subscripts can also be enclosed together
with brackets, as in:

Print A[2,3]

String subscript values of zero are normally illegal and generate errors at runtime. If OPTION STRING
SUBSCRIPTS IRIS is used, then zero subscripts will be normalized such that a starting subscript of 0 becomes 1 and
an ending subscript of 0 is treated as if no ending subscript was specified.

AUTOMATIC DIMENSIONING

New local variables are normally allocated by a program using the DIM statement; numeric, date, and some array
variables can be implicitly dimensioned by their initial usage, through a feature called Auto-Dimensioning. A simple
reference to such a variable causes it to be allocated, if not already allocated. Auto-dimensioning occurs subject to the
following rules:
• Auto-dimensioned numeric and date variables take on the current precision (i.e., last precision specified) of the

running program-unit.
• Auto-dimensioned array variables take on a dimension of 10 with the current precision. Only arrays of numbers,

dates, or further arrays of same can be auto-dimensioned. Therefore, even multi-dimensional arrays can be
allocated in this way:   M[3][9] = 123.45

• If OPTION AUTO DIM OFF is used, an error 25 (“variable not dimensioned”) will be generated wherever
auto-dimensioning would be required.

RE-DIMENSIONING VARIABLES

Once a variable is allocated, its precision cannot be changed with one exception: an array variable can be re-
dimensioned to a different size or a different number of dimensions. A re-dimension remains in effect for the
remainder of the program, or until changed again. A change in dimension does not affect the precision or value of the
base array elements.
In addition, whenever a numeric array specified in a MAT statement is followed by subscripts, the subscript values are
interpreted as a new dimension size for the selected array:

Mat X = Zer[32,5]

is identical to:
Dim X[32,5]

Mat X = Zer

STRUCTURES

A structure is a dL4 data type that groups several data elements or variables of identical or different data type. Each
individual data element is called a structure member. Each member must be declared in advance of its use along with
its data type.
The group of related members is combined and is collectively identified by a unique name known as the structure tag
name or simply the structure name.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 17 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

The structure data variable uses the structure name to associate itself with the group of members.
Structure variables provide numerous benefits to the application designer. For example:
• Defining a data record layout
• Operating on a large amount of organized data by referencing a single name
• Organizing related data into a form which simplifies programming and eliminates errors

STRUCTURE (.) VARIABLES

Structure variables are indicated by a "." suffix and must be explicitly defined before use. To define a structure
template, use one of the following general forms:

DEF STRUCT struct.name name {, ... }

DEF STRUCT struct.name

MEMBER name {, ... }

...

END DEF

struct.name is a unique name tagged to this template. The name can be from one to thirty-two characters in length, and
contain letters, digits, and underscores. DEF STRUCT does not actually allocate a structure using the supplied name;
rather, it informs the compiler to define a unique structure template tagged with this name.
MEMBER name is any legal variable name, or precision declaration in the form:  %p or p%. name can be any type of
variable, string, numeric, date, binary or another structure. Any given member can also be an array. The syntax and
function of MEMBER statements are nearly identical to that of DIM.
If the first general form is used, all MEMBER names must be contained on a single program line. The second general
form can be used for readability, or when all of the members cannot be defined on a single line. The two general forms
cannot be mixed within a single struct.name definition.
The END DEF statement defines the end of a structure definition.
Prior to using a structure, you must dimension one or more variables as a specific struct.name. The following general
form is used to dimension a structure:

DIM variable. { [expr {, ... }] } AS struct.name

variable. is an actual variable in the program which is to be referenced as a structure. The variable can include array
subscript dimensions, if the variable. is to be an array of structures.
As struct.name informs the compiler which compiled structure definition is to be used for variable.
A structure definition itself can contain one or more structures, or arrays of structures. To define a structure which
includes a structure, a MEMBER is expressed as follows:

MEMBER name. { [expr {, ... }] } AS struct.name2

name. is the name within struct.name whose members are defined by the structure definition struct.name2.
struct.name2 must be an existing struct.name which has been previously defined.
The names of structure members are distinct from any other names outside the structure. For example, Data.Q$ is
distinct from Q$ which is distinct from Data1.T.Q$.
The members of a structure are physically contiguous in memory, and are ordered in memory as defined by DEF
STRUCT. Individual structure members cannot be re-dimensioned.
For syntactical reasons, a separator is needed between a structure variable and a member name; this is also represented
by a ".". The separator becomes necessary for:

LET B.[3].S$="HELLO"

"B." is the variable name, [3] is the third array element and the second "." is the structure/member separator. In fact, a
simple reference such as "A.Q$" is really "A..Q$" internally, but the second "." is assumed where it is redundant.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 18 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

The order in which members of a structure are declared is important because this determines the order in which values
are read from a DATA statement, or transferred to/from a file, etc. For example:

DEF STRUCT TEST=Q$[20],1%,R,S

DIM A. AS TEST

WRITE #1;A.   ! This WRITE is exactly

WRITE #1;A.Q$,A.R,A.S   ! like this one

Indeed, many older-style statements which operate upon a fixed number of parameters can now be supplied a structure
instead. Supplying the structure is interpreted as if you supplied each member as a single variable, separated by
comma. As discussed later, SEARCH is another statement where the Key, Record Variable and Status Variable can be
passed within a structure.
Structures benefit from all the enhancements to arrays and strings (and follow the same rules), so:

DIM B.[10]

LET B.E=5   ! is equivalent to B.[0].E=5

DEF STRUCT TestInfo

MEMBER StartTime$[25],StopTime$[25]

MEMBER 4%,TotalSeconds,Seconds[128]

MEMBER %1,MasterPort,FileClass

MEMBER %1,NoOfTests,NoOfPorts,Iteration

MEMBER %1,MinPorts,MaxPorts

MEMBER %1,StepValue,SampleSize,1%,date#

MEMBER %1,Timearray[5,5,5]

END DEF

CHAPTER 4 - INTRINSIC FUNCTIONS
INTRODUCTION

This chapter lists and briefly describes all dL4 intrinsic (pre-defined) functions.

INTRINSIC FUNCTIONS
All intrinsic (predefined) functions are documented below in alphabetical order.

Predefined Functions

Name Parameters of Function
ABS(n) Absolute value.
ASC(s$) Unicode value of first character in string.
ATN(n)4 Arctangent.
BSTR$(n,b) Returns the a string representation of the value n converted to the specified base b. The base

must be 2, 8, or 16. Examples: BStr$(15,2) = "1111" ; BStr$(15,8) = "17" ; BStr$(15,16) = "F"
BVAL(n$,b) Returns a numeric value for the string representation n$ of a number to the base b. The base

must be 2, 8, or 16. Examples: BVal("1010",2) = 10 ; BVal("12",8) = 10 ; BVal("A",16) = 10



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 19 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CHF(n) Various numeric parameters of an open channel. The argument must be the channel number
(0-99) of an open channel plus a constant which is a multiple of 100 to select mode.
Interpretation of each mode is driver-dependent.

CHF(000 + c) Driver dependent: typically number of records in the file open on channel c. This count will
include any base record number such as used in Indexed-Contiguous files.

CHF(100 + c) Driver dependent: typically current record number in the file open on channel c.
CHF(200 + c) Driver dependent: typically current item number or offset in the file open on channel c.
CHF(300 + c) Driver dependent: typically record length in words (16 bit) or bytes (if OPTION set) for the

file open on channel c.
CHF(400 + c) Driver dependent: typically file size in bytes for the file open on channel c.
CHF(500 + c) Driver dependent: typically record length in bytes for the file open on channel c.
CHF(600 + c) Driver dependent: typically file header length in bytes for the file open on channel c.
CHF(900 + c) Driver dependent: typically file owner id number, if any, for the file open on channel c.
CHF(1000 + c) Driver dependent: typically file group id number, if any, for the file open on channel c.
CHF(1100 + c) Driver dependent: typically file permissions for the file open on channel c.
CHF(1200 + c) Driver dependent: typically current column number for the file open on channel c.
CHF(1300 + c) Driver dependent: typically current row number for the file open on channel c.
CHF(1400 + c) Driver dependent: typically an operating system defined unique identifier for the file open on

channel c.
CHF(1500 + c) Driver dependent: if implemented, returns the number of characters read by the last input

operation on the channel c. This function is normally used when performing binary input on a
device or a network socket.

CHF(1600 + c) Returns the last Oracle or MySQL specific error code. These error codes provide more detailed
information than the standard dL4 error codes, but the error codes are specific to the database
and may even vary between versions of Oracle or MySQL.

CHF(1700 + c) Has been implemented in the Oracle SQL and MySQL SQL drivers to return one if the current
result set has one or more rows and zero if the result set is empty. When using Oracle, this
function is faster than CHF(cc) if the exact number of rows is not needed.

CHF(1800 + c) Return one if the current record is locked and zero if the record is not locked. (Release 10.5)
CHF#(n) Various date/time parameters of an open channel. The argument must be the channel number

(0-99) of an open channel plus a constant which is a multiple of 100 to select mode.
Interpretation of each mode driver-dependent.

CHF#(100 + c) Driver dependent: typically creation date/time for the file open on channel c. On systems, such
as Unix, that do not support a creation date/time, the oldest available file date attribute will be
returned.

CHF#(200 + c) Driver dependent: typically last access date/time for the file open on channel c.
CHF#(300 + c) Driver dependent: typically last modification date/time for the file open on channel c.
CHF$(n) Various string parameters of an open channel. The argument must be the channel number (0-

99) of an open channel plus a constant which is a multiple of 100 to select mode.
Interpretation of each mode is driver-dependent.

CHF$(100 + c) Open mode (“R”, “W”, “E”, and “L”) for the file open on channel c.
CHF$(600 + c) Driver class name for the driver open on channel c.
CHF$(700 + c) Driver name for the driver open on channel c.
CHF$(800 + c) Filename (including relative or absolute path) or equivalent for the file open on channel c.
CHF$(900 + c) Driver dependent: typically file owner name for the file open on channel c.
CHF$(1000 + c) Driver dependent: typically file group name for the file open on channel c.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 20 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CHF$(1100 + c) Driver dependent: typically file permissions for the file open on channel c.
CHF$(1200 + c) Driver dependent: typically last input termination character for the file open on channel c.
CHF$(1300 + c) Absolute path for the file open on channel c.
CHR(n) Returns the decimal characteristic of the argument. This is an integer exponent X such that:

10X-1 <= n < 10X
CHR$(n) Returns the Unicode character whose value is n. Note: when converting BITS programs,

CHR() must be manually converted to CHR$().
CHR?(n) Returns a one character binary string where the first character has the value n.
COS(n)4 Cosine.
DAT#(y,m,d) Combines the given numeric year, month, and day values into a single date/time value.
DAT#(y,m,d,h,m,s) As before but includes hour, minute, and second values.
DET(n) Determinant of the last matrix inverted. See the MAT INV statement.
ERM$(n) Supplies a descriptive text message for error number n..
ERR(n) Various values pertaining to error, ESCAPE and interrupt branching.
ERR(0) Number of last error.
ERR(1) Line number of last error.
ERR(2) Line number of last ESCaped statement.
ERR(3) Line number of last interrupted statement.
ERR(4) Statement number on line of last error, ESCAPE, or interrupt.
ERR(5) Statement number on line of last error.
ERR(6) Statement number on line of last ESCaped statement.
ERR(7) Statement number on line of last interrupted statement.
ERR(8) -1
EXP(n) Exponential, the constant e to the power given (en)
FRA(n) Fractional portion. For example: FRA(4.5) yields 0.5.
GMT(date_expression) (Release 7.3)   Extracts the GMT time of date in seconds from the date expression.
GMT$(d#)5 Converts the given date/time value to an equivalent character string representation, using

Greenwich Mean Time (i.e., Universal Time Coordinated) as the time zone.
GMT#(d$)5 Converts the given character string to an equivalent date/time value, using Greenwich Mean

Time (i.e., Universal Time Coordinated) as the time zone.
HEX?(s$) Returns a binary string containing the converted contents of s$, which is assumed to contain a

hexadecimal representation of binary data.

HEX$(b?) Returns a character string containing the hexadecimal representation of b?.
INT(n) Returns the greatest integer less than or equal to n. For example: INT(4.5) yields 4, while

INT(-4.5) yields -5.
INT(s$) Returns the Unicode value of the first character in the string. This is functionally identical to

the ASC function.
IXR(n) Decimal radix 10 to the power of n. For example: IXR(3) returns 1000.
LBOUND(a,0) Number of dimensions of array a. Trailing brackets ("[ ]") must follow array a.
LBOUND(a,n) Lower subscript bound of dimension n of array a. Trailing brackets ("[ ]") must follow array a.
LCASE$(s$) Converts all upper-case letters to lower-case.
LEN(s$) Length of string in characters.
LOG(n) Logarithm base e of n. Logarithm in any base B can be achieved using the theorem:

logBX=logeX/logeB
LTRIM$(s$) Removes leading white-space characters.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 21 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

MAN(n) Decimal mantissa of n in base 10.
MONTH(d#) Numeric month value from d#; 1 - 12.
MONTH$(n)5 Name of month from n, 1 - 12.
MONTHDAY(d#) Day number of month from d#; 1 - 31.
MSC Miscellaneous numeric functions
MSC(0) Current port number.
MSC(1) Last logical input element accepted.
MSC(2) -1 or the value of the SPC4 runtime parameter.
MSC(3) Line number of last GOSUB executed. Value is returned and removed from the GOSUB stack.
MSC(4) -1
MSC(5) Current column counter on default output channel. When MSC(5) is used in a PRINT

statement, the initial value of the column counter is returned.
MSC(6) Returns current unused variable space as a large integer constant (INT_MAX), typically 231-1.
MSC(7) Current user and/or group ID number.
MSC(8) -1
MSC(9) -1
MSC(10) -1
MSC(11) -1
MSC(12) -1
MSC(13) -1
MSC(14) -1
MSC(15) -1
MSC(16) -1
MSC(17) -1
MSC(18) The constant p (3.141592653589793).
MSC(19) The constant e (2.718281828459045).
MSC(20) Maximum channels per user; returns 100.

MSC(21) -1
MSC(22) -1
MSC(23) -1
MSC(24) -1
MSC(25) -1
MSC(26) -1
MSC(27) -1
MSC(28) -1
MSC(29) -1
MSC(30) Current line number.
MSC(31) Current statement number on line.
MSC(32) Port type number
MSC(33) Number of columns on the default I/O channel.
MSC(34) Number of rows on the default I/O channel.
MSC(35) Input buffer size in characters.
MSC(36) -1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 22 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

MSC(37) Maximum number of ports supported.
MSC(38) Total number of ports currently in-use.
MSC(39) Current OPTION DATE FORMAT setting; 0 = Standard, 1 = Native.
MSC(40) Number of columns for Dynamic Windows display device.
MSC(41) Number of rows for Dynamic Windows display device.
MSC(42) Window nesting level in Dynamic Windows.
MSC(43) Current row counter on default output channel. When MSC(43) is used in a PRINT statement,

the initial value of the row counter is returned.
MSC(44) Dynamic Window system state. One if the window system is active, zero if it is not active.
MSC(45) Element number of the GUI element (‘WCxxxx’) last read by an INPUT or READ statement
MSC(46) Original line number of last error. If an error occurs in a subprogram or procedure and the

error is not handled within that subprogram or procedure, the error will be reported to the
caller and ERR(1) and SPC(10) will report the line number at which the subprogram or
procedure was invoked. MSC(46) reports the line number within the original subprogram or
procedure.

MSC(47) Grid column
MSC(48) Grid row
MSC$(n) Miscellaneous string functions.
MSC$(-3) dL4 revision string.
MSC$(-2) dL4 revision formatted as RRLLBBSS.
MSC$(-1) “” or the value of the SPC4 runtime parameter formatted as “RRLLBBSS”.
MSC$(0) System date and time in international format: dd mon year hh:mm:ss
MSC$(1) Current working directory path
MSC$(2) Text description of last error.
MSC$(3) System date and time in US format: mon dd, year hh:mm:ss
MSC$(4) Filename of the current program.
MSC$(5) Filename of the parent program, when the current program was invoked by SWAP.
MSC$(6) Return the current LIBSTRING value.
MSC$(7) Return hot-key character used to invoke current swap program or " ".
MSC$(8) Return operating system dependent directory separator string ("/" for Unix and "\" for

Windows).
MSC$(9) Absolute path of the directory containing the current program.
MSC$(10) (Release 9.1)   Returns the path of the program, if any, that CHAINed to the current program.
MSC$(264) “”
NOT(n) Logical NOT. Returns 1 if n is zero, or zero if n is not zero.
NOT(s$)
PCHR$(n{,...}) Convert numeric or string value(s) to "character parameters", suitable for prefacing certain

command characters.
POS(s$,op
t${,s{,o{,e}}})

First position in s$ where op t$ is true. s is an optional position step value; o is an optional
occurrence value (default 1). op can be any relational operator < <= > >= = <> or a set
operator IS or EXCEPT. The IS operator searches for the first character in s$ that is in t$. The
EXCEPT operator searches for the first character in s$ that is not in t$. s can be negative to
indicate backwards searching from the end of string.

(Release 7.2)   An optional fifth numeric parameter can be used to specify the number of
elements in the array. Example, if this parameter is 3, then only the first 3 elements are



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 23 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

checked.
REP$(s$,n) Repeats s$ n times.
RND(n) A pseudo-random number X is generated in the range 0 < X < n.
ROUND(n,d) Rounds n to d decimal places.
RTRIM$(s$) Removes trailing white-space characters.
SGN(n) Signum function. Returns the sign of n; -1 if n < 0, 0 if n = 0, or 1 if n > 0.
SIN(n)4 Sine.
SPC(n) Special numeric functions.
SPC(0) CPU time used in tenth-seconds.
SPC(1) Connect time used in minutes.
SPC(2) Hours since the system base date. This value is computed assuming all months have 31 days.
SPC(3) Current tenth-second of the hour.
SPC(4) -1 or the value of the SPC4 runtime parameter.
SPC(5) Current user and/or group ID number.
SPC(6) Current port number.
SPC(7) User-defined.
SPC(8) Last error number.
SPC(9) Current line number.
SPC(10) Line number of last error.
SPC(11) Current directory name represented as a number, if possible.
SPC(12) Directory of the current program represented as a number, if possible.
SPC(14) Line number of last GOSUB. Value is returned and removed from the stack.

SPC(15) Return and clear the last error number.
SPC(16) Line number of last GOSUB. Value is returned and left on the stack.
SPC(17) Length of last character-limited input.
SPC(18) Constant base year; always returns 1980.
SPC(19) The system license id in the form of a 32-bit unsigned integer.
SPC(20) Current base year.
SPC(21) Input buffer length.
SPC(22) Returns available program space in words: a large integer constant (INT_MAX), typically

2^31-1.
SPC(23) Current library directory from last LIB statement. -1 is returned if no current library or if it

cannot be represented as a number.
SPC(24) Line number of last END, STOP or SUSPEND statement.
SPC(264) -1 or the value of the SPC264 runtime parameter.
SPC(272) -1 or the value of the SPC272 runtime parameter.
SPC(n) Return the numeric value of the environment variable “SPCn”. Environment variables do not

override the standard SPC values and applications should use values of N greater than 99 to
avoid possible conflicts.

SQR(n) Square root.
STR$(n) Convert the numeric value n into a character string. Unlike direct assignment, no white-space

is included.
TAN(n)4 Tangent.
TIM(n) Returns miscellaneous time-related numeric values.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 24 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

TIM(0) CPU time used in seconds.
TIM(1) Connect time used in minutes.
TIM(2) Hours since base date.
TIM(3) Current tenth-second of the hour.
TIM(4) Current date in the form: MMDDYY where MM is the month (1-12), DD is the day of the

month (01-31) and YY is the year such as 89.
TIM(5) Current date in the form YYDDD where DDD is the day of the year (1-366).
TIM(6) Number of days since 0 January 1968.
TIM(7) Current day of week (0=Sunday, 6=Saturday).
TIM(8) Current year in the form YY, such as 89.
TIM(9) Current month; 1=January, 12=December.
TIM(10) Current day of the month; 1-31.
TIM(11) Current hour of the day; 0-23.
TIM(12) Current minute of the hour; 0-59.
TIM(13) Current second of the minute; 0-59.9.
TIM(14) Current date in the form: MMDDYYYY where MM is the month (1-12), DD is the day of the

month (01-31) and YYYY is the year, such as 2001.
TIM(15) Current date in the form YYYYDDD where DDD is the day of the year (1-366) and YYYY is

the year, such as 2001.
TIM(16) Current year in the form YYYY, such as 2001.
TIM(date_expression) (Release 7.3)   Extracts the local time of date in seconds from the date expression.
TIM#(n) Returns miscellaneous date/time values.
TIM#(0) Current real-time.
TIMEZONE(d#) Local time-zone offset from GMT in seconds in effect as of d#.
TRUNCATE(n,d) Truncates n to d decimal places.
UBOUND(a,0) Number of dimensions of array a. Trailing brackets ("[ ]") must follow array a.
UBOUND(a,n) Upper subscript bound of dimension n of array a. Trailing brackets ("[ ]") must follow array a.
UCASE$(s$) Converts all lower-case letters to upper-case.
VAL(s$) Convert the string value s$ to a number.
WEEKDAY(d#) Day of week number from d#; 1 = Sunday, 7 = Saturday.
WEEKDAY$(n)5 Day of week name for day n; 1 = Sunday, 7 = Saturday.
YEAR(d#) Year number from d#.
YEARDAY(d#) Day of year number from d#; 1 - 366.

Footnotes:
4 Angles are interpreted as either radians or degrees depending on setting of the OPTION ANGLE statement.
5 Exact character representation of date components depends on setting of the OPTION DATE FORMAT statement.

CHAPTER 5 - EXPRESSIONS
INTRODUCTION

This chapter describes dL4 operator precedence, by which dL4 evaluates expressions, and the operators themselves:



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 25 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

• Unary
• Arithmetic
• Concatenation
• Assignment
• Relational
• Boolean
• String Operator USING
• String Operator TO

In addition, Boolean Expressions, Channel Expressions, and String Assignment are described.

OPERATOR PRECEDENCE
The operations within an expression are evaluated according to the precedence shown in the Operator Precedence Table
below. Operators on the same level are evaluated from left to right in the expression. Parentheses can be used, however,
to override this hierarchy. Predefined functions and procedures are evaluated before any operators are executed.

Operator Precedence Table

Operator(s) Parameters Evaluation Order
+ - Unary + - (negation) Right-to-Left
^ Exponentiation Left-to-Right
* / MOD Multiply, Divide, Modulo Left-to-Right
+ - Add, Subtract Left-to-Right
TO String searching: all characters of target string are significant Left-to-Right
USING Numeric formatting Left-to-Right
, + String concatenation Left-to-Right
< <= > >= <> Comparison Left-to-Right
AND Logical AND Left-to-Right
OR Logical OR Left-to-Right
:= Assignment Right-to-Left

For example:

Operator(s) Evaluates as Evaluates as
3+4*5 3+(4*5) 23
(3+4)*5 (3+4)*5 35
14/7*10/2 ((14/7)*10)/2 10
3^2*4 (3^2)*4 36



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 26 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

"3"+"B" "3" concatenate "B" "3B"

OPERATORS
The dL4 operators are described in the following paragraphs.

Unary Operators + -

The unary operators (+ -) are used to change the sign of an argument. They are evaluated from right-to-left and have the
highest precedence. The + is a non-operation, and the - changes a negative value positive or a positive value negative.

Arithmetic Operators ^ * / MOD + -

Arithmetic operators follow unary operators in the precedence of an expression. The highest precedence is given to (^)
invoking exponentiation, which is essentially repeated multiplication. A value yx is read, "take the value y raised to the
power x." In simpler terms, multiply y by itself x times. Exponentiation has the highest precedence of all of the
arithmetic operators and is evaluated Left-to-Right.

Next, (* / MOD) which selects multiplication, division and modulo. The MOD operator returns the remainder of a
division of the two operands. This is calculated as (x - INT(x/y)*y). 10%2 yields 0, 10%3 yields 1, etc. These operators
are evaluated from left-to-right after exponentiation.

Finally, (+ -) addition and subtraction are the lowest precedence of the arithmetic operators. These are also evaluated
from Left-to-Right.

Concatenation Operators + ,

Concatenation operators are used to link string expressions together. The result of concatenating two string expressions
is the combination of both expressions into a single string expression. Each concatenated string is appended to the end
of the result of the current expression. The concatenation of "This" +" That" results in the string: "This That", etc.

The (+) concatenation operator can be used in any expression involving strings; the (,) concatenation operator is
equivalent but can only be used in LET and IF statements.

Assignment Operator: Colon Equal

The assignment operator, Colon Equal, with ":=" is different from "=" which is compare-for-equality. Compare-for-
equality indicates that dL4 is attempting to determine if the values are equal. The word "assignment" comes from the
way this operator assigns values to the variables. The following two statements are considered equivalent:

LET A = B
LET A:= B

But the next two statements are not considered equivalent:

LET A:= B:=C:=1
LET A=B=C=1

Regarding ":=", see the LET statement.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 27 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Relational Operators = <> > >= < <=

All relational operators are evaluated on an equal precedence and all group left-to-right. Their result is said to be true
(one) if the relation is true, and false (zero) if the relation is false. Relational operators can be used in IF statements or
as part of a boolean expression. The format is:

expression relation expression
where relation can be any of the following:

= Equal
<> Not Equal
> Greater Than
>= Greater Than or Equal To
< Less Than
<= Less Than or Equal To

String data are compared using the Unicode value of each character, one character at a time. If the strings are not
subscripted to control their length, then they are evaluated using the current logical length (from any optional starting
position up to the first zero-byte terminator). Strings are equal only when they are exactly equal in length and contents.
When a shorter string is compared to a longer one, and they are equal up to the length of the shorter string, the shorter
string is said to be less than the longer string. If, during comparison, two characters do not match, the left string is said
to be less than the right string if the Unicode value of the left character is less than the Unicode value of the right
character.

Boolean Operators AND OR NOT

The Boolean operators are described in "Boolean Expressions and Operators", Chapter 5 of this guide.

String Operator USING

The USING operator groups from left-to-right and results in a formatted string result from a numeric expression. The
format of this operator is:

numeric expression USING string expression.
The numeric expression is evaluated first. Next the string expression is evaluated and used to 'format' the numeric
expression into a string result.
The format string is scanned, and any characters which are not field descriptors are copied to the destination until a
format field is seen. Characters which can begin a format field are $ # + - and *. Other field descriptors are treated as
text and are copied until a starting character is seen. After formatting a result, the remaining characters in the format
string (up to the start of another format field) are copied to the destination.
Each format field is made up of certain characters describing the formatting to be done. These are called field
descriptors. Numeric items are formatted according to the rules governing each descriptor. If an item cannot be
formatted according to the field given, the field is output filled with asterisks (*). This generally occurs when a number
is too large to be expressed with the number of digits available in the field.

Field Descriptors

Field descriptors for a format field fall into five categories:



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 28 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

1. Leading characters
2. Floating characters
3. Numeric Characters
4. Commas
5. Decimal Points

Leading Characters

A field can begin with one or two leading characters. The available leading characters are:
LEADING OUTPUT
$ $ always
+ + if item >= 0; - if item < 0

- space if item >=
0; - if item < 0

The $ can be combined with either + or - for a two-character leading group. Note that all three leading characters are
also valid as floating characters. A group of two or more identical characters is considered a floating character
designation.

Floating Characters

A field can contain groups of floating characters. This character "floats" and is eventually executed just before the first
digit output. The available floating characters are the same as the leading characters ($, +, -) and are processed the
same.

Numeric formatting outputs a sign (+ or -) only if one is specified within the format field. If none is given in the format,
all items are output as positive, regardless of sign.

One extra floating character should be given in the format field in addition to the number given for the highest digit
count desired. One space is required for the execution of the floating character itself. The remaining floating characters
can be occupied by digits. For example, the format string "$$$$" can accommodate no number larger than 999, because
one space is required for the dollar sign itself.

Numeric Characters

A field can contain groups of numeric characters. The available numeric characters are:
# Digit or space if leading zero
& Digit, leading zeroes not suppressed
* Digit or "*" if leading zero

Every numeric character given in a format field can contain a digit. For example:
Format: #### &&&& ***# ***#

17 0017 **17 **17

247 0247 *247 *247

6140 6140 6140 6140

0 0000 ***0 ***0

Commas



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 29 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

A field can contain one or more commas which are output when significant. For example:
Format: ##,### #,###,### &,&&&,&&&

768 768 0,000,768

2,147 2,147 0,002,147

****** 1,034,957 1,034,957

The use of commas and decimal points in format masks is controlled by the OPTION USING DECIMAL and
OPTION NUMERIC FORMAT statements.
OPTION USING DECIMAL IS COMMA effectively interchanges the meaning of periods and commas in format
masks, not which character is output.
OPTION NUMERIC FORMAT NATIVE controls the output character.

Decimal Points

A field can contain a period for the fractional portion of an item. The fractional portion then follows and is truncated to
the number of digits specified. Only numeric descriptors (#and*) can follow the period, and all are processed as a
character. For example:
Format: ##.### ##.# ##.&& **.**

74.000 74.0 74.00 74.00

16.408 16.4 16.40 16.40

The use of commas and decimal points in format masks is controlled by the OPTION USING DECIMAL and
OPTION NUMERIC FORMAT statements.
OPTION USING DECIMAL IS COMMA effectively interchanges the meaning of periods and commas in format
masks, not which character is output.
OPTION NUMERIC FORMAT NATIVE controls the output character.

String Operator TO

The TO operator is evaluated from left-to-right and is used to specify part of a string expression. The general form is:
string expression TO string expression

The string expression on the left is evaluated first and referred to as the source. Next the right string expression is
evaluated and is referred to as the pattern. The resulting string expression is generated by copying all characters from
the source up to and including the pattern string. If the pattern is not found within the source, then all characters of the
source become the resulting string expression.
For example, if you have a large block of text and wish to copy the first sentence, you might use this operator to find
the result of:
S$ TO ". "    ! Locate first period followed by 2 spaces

Boolean Operators

The Boolean operators are AND and OR. Closely associated is the function NOT. They are used to convert normal
expressions into Boolean operations. A Boolean operation yields a True/False condition.
• NOT reverses the condition; True becomes False and False becomes True.
• AND is used to compare the result of two expressions, yielding True only if both expressions are true.
• OR is used to compare the result of two expressions, yielding True if either of the expressions are true.
AND, OR, and NOT are processed left-to-right, and their precedence order is NOT, AND, OR. You may use



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 30 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

parentheses to change precedence order.
The parameters of a boolean operator are evaluated as a boolean expression.

BOOLEAN EXPRESSION
A boolean expression, or bool.expr, is a context dependent interpretation of an expression which is used by boolean
operators, or in IF, DO WHILE, DO UNTIL, and WHILE statements. The interpretation of the expression produces a
boolean, i.e. TRUE/FALSE, result according to the following rules:

Data Type TRUE (1) FALSE(0)
Numeric non-zero zero
String non-zero length zero length
Date is a date not a date
Binary Not allowed Not allowed

The following two sample programs illustrate usage of boolean expressions:

Rem this is a sample program

a = 5
While a + 5

Print a
a = a - 1

Wend

Rem end of sample program

Rem this is another sample program
a = 0
While a + 5

Print a;
If a > 0

Print "is a positive value"

Else If a < 0

Print "is a negative value"

Else

Print "is a zero value"

Endif
a = a - 1

Wend

Rem end of sample program

CHANNEL EXPRESSIONS
Most Input/Output (I/O) statements in dL4 use a channel expression. A channel expression consists of a channel
number followed by three optional numeric parameters. The three optional numeric parameters commonly indicate a



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 31 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

record number, a field position, and a timeout value. However, it is possible for these parameters to indicate something
else as the meaning of these parameters are driver-class dependent.

The generic format and specific examples of the channel expression follow:

#chan.no, {num.expr1{, num.expr2{, num.expr3 }}} ;
#9,5,2,1;
#9;
#9,record,byte_displ;

A channel expression begins with a #, and ends in a semicolon (;). The channel number follows "#", and must be in the
range 0 to 99. Many statements will also accept channel number -3 or -4 which select the current standard input or
standard output channels rescpectively. The final semicolon (;) indicates the end of a channel expression.

The parameters must be specified in its proper order. In other words, both the first and second parameters must also be
specified in order to specify the third parameter. A value of negative one is used as a default parameter value. Thus, an
expression requiring only the last parameter can be written as:

#9, -1, -1, 35;

RULES GOVERNING STRING PROCESSING

During the use of character strings within a program, the following rules are applied to operations:
• string can contain any of the Unicode values from 0 to 65534. 65535 is explicitly not a Unicode character.
• A zero character is used to terminate any string segment.

•
String variables can be subscripted to select a starting and ending character position within a string. A single
subscript selects a starting point only. All strings terminate upon the occurrence of a zero terminator, the second
subscript, or the physical dimension of the string.

• A full string is defined to be any reference to a string variable in which a single or no subscripts are supplied.
• A sub-string is defined to be any reference to a string variable using 2 subscripts.

STRING ASSIGNMENT

When assigning data to a full string, the following rules are applied:
• The source is truncated to the size of the supplied destination.
• A zero terminator is inserted in the destination if the source is shorter than the destination.
• A zero terminator can be placed within a string by specifying a single subscript in the form:

S$[x] = "".

When you are assigning data to a sub-string, behavior of the sub-string is dependent on the setting of the OPTION
STRINGS statement. If OPTION STRINGS STANDARD is set, the following rules apply:

• When the source is shorter than the destination, the remaining characters within the subscripts are deleted.
Characters following the subscripted portion are shifted down to immediately follow the shorter source.

• When a zero terminator is overlaid in the destination, it is pushed forward to the first character position
following the length of the source copied. This can cause a zero to be placed into the first character
position beyond the second subscript if the source exactly fills or is larger than the destination.

If OPTION STRINGS RAW is set, the following rules apply:
• When the source is shorter than the destination, the second subscript is ignored. Only the number of



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 32 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

characters supplied in the source are copied to the destination.
• When a zero terminator is overlaid in the destination, it is pushed forward to the first character position

following the length of the source copied if and only if the source string does not completely fill the
destination. No characters outside the supplied subscripts are altered.

Other special string functions are available to the application:

1. A string can be completely filled with a single character (or group of characters) except zero-byte
terminators using the form:
A$=" ",A$  ! to space fill A$

2. Characters beyond the zero terminator can be operated upon by specifying a starting subscript beyond the
zero. Use the LEN function to determine the length of any string.

3. Numeric data can be converted to string and vice-versa using the LET Statement, or the functions STR
and VAL.

CHAPTER 6 - MNEMONICS
INTRODUCTION

This chapter describes dL4 mnemonics, listing:
• CRT mnemonics
• Graphic User Interface (GUI) mnemonics
• ASCII character mnemonic values
• General punctuation mnemonic values
• CJK symbols and punctuation
• Unclassified mnemonics
• Mnemonics for keyboard and auxiliary port
• Mnemonics to clear and reset the terminal
• Mnemonics applied to the cursor position
• Mnemonics to control attributes
• Mnemonics to control color
• Mnemonics to transmit data
• Miscellaneous mnemonics
• Special mnemonics for I/O control
• Table of extended graphics octal codes

MNEMONICS

A mnemonic provides a way to specify special character values via a meaningful name instead of the exact octal or
hexadecimal values. They are commonly used to control screen or printer attributes. The usage of mnemonics provides
program portability.
Mnemonics can take one or more parameters as numeric integers preceding the mnemonic name. Most mnemonics
take an optional parameter which signify a repeat count.
Many mnemonics take a 24-bit RGB color value as a parameter. The parameter value is formed as follows: RED *



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 33 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

65536 + GREEN * 256 + BLUE where RED, GREEN, and BLUE are color intensity values between 0 and 255. When
used in dL4 for Windows or with dL4Term, the color value also has standard color values expressed as negative
numbers. The standard values are:

-1 Dialog text color
-2 Dialog background color
-3 Window text color
-4 Window background color
-5 Highlighted text color
-6 Highlighted text background color

The support of a mnemonic is driver-class dependent. In the case of the terminal translation driver, it is also terminal
description file dependent.

The following are some examples of mnemonics usage.

PRINT 'CS';     ! Clear screen
PRINT 'CS 10ML';     ! Clear and move left 10 positions.
PRINT @5,5;’CL';     ! Position to column 5, row 5 and clear line
PRINT @10,L;     ! Position cursor to column 10, row L.

MNEMONIC VALUES

Mnemonics for Keyboard and Auxiliary Port

Mnemonic Explanation
AE Enable the Auxiliary port on the terminal. This mnemonic enables the Auxiliary Printer port until

the AD mnemonic is sent.
AD Disable the Auxiliary port on the back of the terminal.

BA
Begin Transparent output to Auxiliary printer port. Enabling Transparent output causes all output
characters (and input echoing) to be directed to the Auxiliary Port of the terminal until the
mnemonic EA is sent.

BO Begin non-Transparent output to Auxiliary printer port. This mnemonic operates similarly to the
'BA' mnemonic except that data is transmitted to both the Auxiliary port and the screen until an EO
mnemonic is sent.

CONTINUEAUX Continue output to the auxiliary printer. This mnemonic is used with the SUSPENDAUX
mnemonic to intersperse auxiliary output with normal output while maintaining the continuity of
the auxiliary output.

EA End Transparent output to Auxiliary port.
EO End non-Transparent output to Auxiliary port.
EF End Function Key Definition. This code terminates all characters being sent to down-load function

keys using the mnemonics P1 through P8.
LK Lock Keyboard. The keyboard is locked and no further characters are accepted from the terminal.

All keys are locked out until the UK mnemonic is sent or until the terminal is reset.
P1 Begin Programming downloadable function key 1. All further characters are sent to the terminal's

function key until the mnemonic EF is sent.
P2 Begin Programming downloadable function key 2. All further characters are sent to the terminal's

function key until the mnemonic EF is sent.
P3 Begin Programming downloadable function key 3. All further characters are sent to the terminal's

function key until the mnemonic EF is sent.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 34 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

P4 Begin Programming downloadable function key 4. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

P5 Begin Programming downloadable function key 5. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

P6 Begin Programming downloadable function key 6. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

P7 Begin Programming downloadable function key 7. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

P8 Begin Programming downloadable function key 8. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

PGMFN Program the function key specified by the numeric parameter 1 with the string specified by the
string parameter 2. Example: Print PChr$(1,”Help\15\”);’PGMFN’

PGMHELPFN Program the function key specified by the numeric parameter 1 with the string specified by the
string parameter 2. When typed, the function key will send both the string and the action string of
the current selected GUI (‘WCxxxx’) element. This mnemonic is normally used to support a
context dependent help key in a GUI application. Example: Print
PChr$(1,”Help\15\”);’PGMHELPFN’

RF Reset Function keys to their default values.
SUSPENDAUX Suspend output to the auxiliary printer. This mnemonic is used with the CONTINUEAUX

mnemonic to intersperse auxiliary output with normal output while maintaining the continuity of
the auxiliary output.

UK UnLock Keyboard. Characters and functions can now be entered from the keyboard.

Mnemonics to Clear and Reset the Terminal

Mnemonic Explanation
CE Clear from cursor to end of screen. All unprotected characters from the current cursor position up to

the end of the screen are cleared.
CL Clear from cursor to end of line. All unprotected characters from the current cursor up to the end of

the line are cleared. Inside windows, CL/CE skips over protected fields.
CS Clear the entire screen. All characters both protected and unprotected are cleared.
CT Clear all TAB Stops set by the ST mnemonic.
CU Clear all unprotected characters on the screen. This mnemonic is used to clear data from the screen

while leaving any protected mask intact. Also, performs a Move Home (MH), if window tracking is
on. The cursor is moved to position 0,0 of the current window.

ES End Write Status Line. Characters output and echoed are no longer displayed in the status line of the
terminal (See also: WS).

K0 CURSOR Set no cursor to be displayed on the terminal.
K1 CURSOR Set Blinking Block.
K2 CURSOR Set Steady Block.
K3 CURSOR Set Blinking Underline.
K4 CURSOR Set Steady Underline
NR Narrow Character Display. Set wide display mode (commonly 132 columns) and display further

output and echoed characters in narrow format.
NV Normal video. Display reverse video as dark on lighted background.
RS Reset Terminal. Send the commands to reset the terminal to its power-up parameters. This normally

resets protocols, translations, function keys and clears the screen.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 35 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

RV Reverse video. Display reverse video as lighted characters on dark background.
SF Status Line OFF. Turn off the optional status line at the bottom (or top) of the screen.
SO Status Line ON. Turn on the optional status line at the bottom (or top) of the screen.
WALTSIZE (Release 9.3)   Controls the size of the main window when using dL4Term or dL4 for Windows. The

mnemonic 'w,h WALTSIZE' sets the main window size to "w" columns and "h" rows as defined by
the current grid coordinate setting. If the new window size would place the edges outside the screen,
the window will be repositioned. The original window size can be restored using 'WCSTDSIZE' or
'XX' mnemonics. The WALTSIZE mnemonic does not change to current font size even if the new
window size exceeds the screen size. The WALTSIZE mnemonic should not be used in combination
with the 'NR' or 'WD' mnemonics.

WD Wide Character Display. Set the terminal into normal mode (commonly 80 columns) and display
further output and echoed characters in normal format.

WHISTORY (Release 7.3)   Change the size of the history buffer. The mnemonic syntax is 'n WHISTORY' where
"n" is the minimum number of history to be provided by the window. The size of the history buffer
can only be increased, it can not be decreased or disabled.

WS Write Status Line. All further characters echoed or output are displayed in the terminal’s status line
until the ES mnemonic is sent.

WSTDSIZE (Release 9.3)   Restores the main window back to standard size from the 'WALTSIZE' mnemonic.
XX Initialize Terminal. This mnemonic can define a series of functions such as Clear screen, Clear

Memory, Clear Status Line, etc. required to reset the terminal; See also: RS.

Mnemonics Applied to the Cursor Position

Mnemonic Explanation
BK Cursor Back. A carriage return without line-feed is sent to the screen moving the cursor to the

beginning of the current line.
ALIGN Move the cursor to the next character column which is a multiple of the parameter. For example, if

printed at column 20, the mnemonic string ‘15ALIGN’ will move the cursor to column 30. This
mnemonic is used by the comma operator of the PRINT statement.

CR Perform a new-line operation. A carriage return and a line-feed are sent to the terminal. If the cursor
is at the bottom of the window, the screen scrolls up one line. Some terminals do not scroll if the
screen window contains protected fields. Hard-coded sequences of "\15\\12\" or 'CRLF' should be
replaced with "\15\" or 'CR'.

DC Delete Character. The character at the cursor is deleted and all remaining characters on the line are
shifted left.

DL Delete Line. The line containing the current cursor is deleted from the window and all remaining
lines are moved up.

FF Form Feed. Scroll to the next page. This mnemonic is used primarily for printers.
IC Insert Character. A space is added at the current cursor position by shifting the character under the

cursor (and all remaining characters on the line) right one position.
IL Insert Line. A new line is added by shifting the line containing the cursor (and all following lines)

down one line. Lines can disappear off the end of a window. The universal new line code is \15\.
Inside windows, IL/DL moves to the beginning of the line.

LF Perform a Line-Feed. This, in effect, is identical to a MD mnemonic. The cursor is moved down to
the next line while staying at the same column.

MD Move Down. The cursor is moved down to the next line while staying at the same column. Some
terminals scroll if you are already on the last line of the screen. Inside windows, MD wraps on the
last line if the window has WRAP style; otherwise it is non-operative.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 36 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

MH Move Home. The cursor is moved to position 0,0 of the current window.
ML Move Left. The cursor is moved Left one character.
MOVETO Move the cursor to the grid position specified by the parameters. If a single numeric parameter is

given (‘10MOVETO’), then the cursor will be moved to the specified grid column on the current
row. If two parameters are used (’10,20MOVETO’), then the cursor will set the cursor grid column
to the first parameter (10) and the cursor grid row to the second parameter (20).

MP Use Memory Pointer instead of cursor for next positioning command.
MR Move Right. The cursor is moved Right one character. Inside windows, MR wraps on the last

position if the window has WRAP style; otherwise it is non-operative.
MU Move Up. The cursor is moved up to the previous line while staying at the same column.
TB Tab Backward. The cursor is moved to the start of the previous TAB Stop as defined with the ST

mnemonic.
TF Tab Forward. The cursor is moved to the start of the next TAB Stop as defined with the ST

mnemonic.
VT Vertical Tab. Move the cursor Down in the window to the next preset Vertical Tab Stop. This

mnemonic is normally used for printers using the supplied printer filter or when you direct data
through the Auxiliary printer port.

Mnemonics to Control Attributes

Mnemonic Explanation
BB Begin Blink Mode. All further output and echoed characters blink until the EB mnemonic is sent.
BBOLD Begin bold mode.
BC Begin compressed mode.
BD Begin Dimmed Intensity Mode. All further output and echoed characters are displayed in dimmed

(half) intensity until the ED mnemonic is sent. Some terminals treat dimmed intensity data as
protectable and use of the FM mnemonic causes dimmed fields to become protected. Inside
windows, BP/EP implies dimmed and protected.

BG Begin Graphics Mode. This is a legacy mnemonic that normally has no effect.
BI Begin Italic mode.
BP Begin Protectable Field. Further characters echoed or sent to the terminal are flagged as protectable

and are usually displayed in half-intensity. Similarly, half-intensity data printed using the 'BD'
mnemonic can also be protectable, depending upon your terminal. After you have painted your
protectable fields on the terminal, you must issue the FM mnemonic to format and write-protect
your protected field. Inside windows, BP does not imply FX.

BQ (Release 6.2.7)   Enables a special query mode which disables echo and the cursor. Using 'BQ' is the
same as 'IOEE K0' and can improve query performance on some systems.

BR Begin Reversed Video . All further output and echoed characters are displayed in reverse video
format. On most terminals, the background becomes lit and the characters are shown as black. Color
monitors and other terminals can permit control of the display.

BSO Begin strike-out mode.
BSUB Begin subscript mode.
BSUP Begin superscript mode.
BU Begin Underline Mode. All further output and echoed characters are underlined until the EU

mnemonic is sent.

BX Begin Expanded Print. All further output and echoed characters are displayed in your pre-defined



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 37 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

choice of double-high, double-wide or both.
CPI Set the fontsize to produce the number of characters per inch specified by the numeric parameter

(’10 CPI’). The mnemonic may also be used with two parameters, n and d, to set the number of
characters per inch to the fraction n/d (’50 3 CPI’ selects 16.66.. characters per inch).

EB End Blink Mode. Characters output and echoed no longer blink.
EBOLD End bold mode.
EC End compressed mode.
ED End Dimmed Mode. Characters output and echoed are no longer be in half-intensity.
EG End Graphics Mode. This is a legacy mnemonic that normally has no effect.
EI End italic mode.
EP End Protectable Field. All further characters transmitted are not to be considered part of a protected

field. Inside windows, EP does not imply FM.
EQ (Release 6.2.7)   Disables the special query mode which disabled echo and the cursor.
ER End Reversed Video. Characters output and echoed are no longer in reverse video format.
ESO End strike-out mode.
ESUB End subscript mode.
ESUP End superscript mode.
EU End Underline Mode. Characters output and echoed are no longer underlined.
EX End Expanded Print. Characters output or echoed are no longer in expanded format.
FM Enter Format Mode. Write protect is set on all characters previously sent using the BP mnemonic.

The protectable fields are now protected preventing any overwriting of protected data. On some
terminals, dimmed characters (BD) can also become protected.

FONTCELL Set the font size to fit into a character cell whose height is the parameter times the current coordinate
grid row height. The font width is set by the operating system to the preferred width for the specified
font height and typeface. This mnemonic is used to precisely control the line height.

FONTFACE Set the font typeface to the name supplied by the string parameter. For example, the statement
‘PRINT PChr$(“Helvetica”);’FONTFACE’’ would select Helvetica or an operating system chosen
substitute as the current typeface.

FONTSIZE Set the font size to the parameter times the current coordinate grid row height. The font width is set
by the operating system to the preferred width for the specified font height and typeface.

FX Exit Format Mode. All previously write-protected characters are now returned to their
protectable state. Fields can be overwritten or changed until another FM is issued. Some terminals
cannot overwrite protected characters once formatted by the FM mnemonic. A clear-screen (CS) is
required to reset these fields.

LPI Set font size to produce the number of lines per inch specified by the numeric parameter (‘6 LPI’).
RESETFONT Reset font to default font and size.
ST Set a TAB Stop at the cursor. To be used with the TF and TB mnemonics for presetting TAB stops

on the screen.

Mnemonics to Control Color

Mnemonic Explanation
RE Color RED. All further output and echoed characters are displayed in Red.
GR Color GREEN. All further output and echoed characters are displayed in Green.
YE Color YELLOW. All further output and echoed characters are displayed in Yellow.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 38 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

BL Color BLUE. All further output and echoed characters are displayed in Blue.
BLACK Color Black. All further output and echoed characters are displayed in Black.
MA Color Magenta. All further output and echoed characters are displayed in Magenta.
CY Color CYAN. All further output and echoed characters are displayed in Cyan.
WH Color WHITE. All further output and echoed characters are displayed in White.
BACKCOLOR Set background color to the RGB parameter. The parameter is a 24-bit integer RGB value in which

the most significant 8-bits specify the red component, the middle 8-bits specify the green
component, and the least significant 8-bits specify the blue component.

FONTCOLOR Set text color to the RGB parameter. The parameter is a 24-bit integer RGB value in which the
most significant 8-bits specify the red component, the middle 8-bits specify the green component,
and the least significant 8-bits specify the blue component.

DEFAULTCOLOR Set the default colors for the current session from the current text and background colors.
‘INVERT’ – invert colors from the cursor to the end of the line.
‘n INVERT’ – invert colors for ‘n’ columns from the cursor position.
‘w,h INVERT’ – invert colors in a rectangle of ‘w’ columns and ‘h’ rows where the cursor is at the
upper left corner of the rectangle.
‘x1,y1,x2,y2 INVERT’ – invert colors in a rectangle with the upper left corner at ‘x1,y1’ and the
lower right corner at ‘x2,y2’.

PENCOLOR Set color used by BOX and LINE statements to the RGB parameter. The parameter is a 24-bit
integer RGB value in which the most significant 8-bits specify the red component, the middle 8-
bits specify the green component, and the least significant 8-bits specify the blue component.

RESETCOLOR Reset the current foreground, pen, and background colors to the default values of the output
window. Note that the 'CS' and 'XX' mnemonics differ in that 'CS' does not reset the current colors,
but the 'XX' mnemonic does.

Mnemonics to Transmit Data

Mnemonic Explanation
BT Begin Transmission. Begin transmitting all characters from the terminal's memory. This function is

highly terminal dependent.
ET End Transmission. Disable transmission of characters from the terminal's memory.
LU Send Line Unprotected. All non-protected characters from the current cursor through the end of the

line are transmitted from the terminal.
PS Print Screen. Send the contents of the current screen through the terminal's Auxiliary/Printer port.
PU Send Page Unprotected. All unprotected characters on the screen are transmitted from the screen to

the system.
SENDCLIP (Release 7.3)   Causes dL4Term or dl4 for Windows to send any text in the Windows clipboard as

current input characters. This mnemonic can also be used in a function key programming string with
the 'PGMFN' mnemonic to program a key to send the clipboard characters (note: the "Program
Paste" option must be enabled in dL4 for Windows or dL4Term).

SL Send Line All. All characters (including protected fields) on the line containing the cursor are
transmitted from the screen to the system.

SP Send Page All. All characters (including protected fields) on the screen are transmitted to the
system.

TL Transmit Line unprotected. All non-protected characters from the current cursor through the end of
the line are transmitted from the terminal.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 39 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

TP Transmit Line protected. All characters (including protected fields) on the screen from the current
cursor to the end of the screen are transmitted to the system.

TR Transmit Screen unprotected. All non-protected characters from the current cursor through the end
of the screen are transmitted from the terminal.

TS Transmit Screen protected. All characters from the current cursor through the end of the screen are
transmitted from the terminal.

Mnemonics for Drawing

Mnemonic Explanation
ELLIPSE Draw an ellipse bounded by a rectangle using the first two parameters as one corner and the second

two parameters as the opposite corner using the current pen color and pen weight. For example, the
mnemonic string ’10,15,30,50ELLIPSE’ would draw an ellipse within the a rectangle with one
corner at grid coordinates 10,15 and the opposite corner at coordinates 30,50. The interior of the
ellipse is filled by the current brush (normally transparent). The current cursor position is not
changed.

FILLIMAGE Draw an image file (such as JPEG or BMP) filling the defined rectangle.
PChr$(filepath,x1,y1,x2,y2);’FILLIMAGE’
filepath Resource name in the current resource file or a file path on the client system.
x1     Grid column of the upper left rectangle corner
y1     Grid row of the upper left rectangle corner
x2     Grid column of the lower right left rectangle corner
y2     Grid row of the lower right rectangle corner

FITIMAGE Draw an image file (such as JPEG or BMP) inside the defined rectangle preserving the image aspect
ratio.
PChr$(filepath,x1,y1,x2,y2);’FITIMAGE’
filepath Resource name in the current resource file or a file path on the client system.
x1     Grid column of the upper left rectangle corner
y1     Grid row of the upper left rectangle corner
x2     Grid column of the lower right left rectangle corner
y2     Grid row of the lower right rectangle corner

FRAME Draw a frame around (outside) a rectangle using the first two parameters as one corner and the
second two parameters as the opposite corner. The frame color is controlled by the overall color
scheme and not by the color mnemonics. An optional fifth parameter, a single character string,
specifies the frame style (“S” for sunken, “R” for raised, “E” for etched, and “B” for bump). The
default frame style is the style used by a ‘WCSTRING’ input box.

INVERT Invert colors within a specified area. The mnemonic has 4 formats accepting 0, 1, 2, and 4 numeric
parameters:

LINETO Draw line from the current cursor position to the specified coordinate grid and column
(’10,15LINETO’) which becomes the new current cursor position. The line is drawn using the
current pen color and pen weight. This mnemonic is used by the LINE statement.

PENCOLOR Set color used by BOX and LINE statements to the RGB parameter. The parameter is a 24-bit
integer RGB value in which the most significant 8-bits specify the red component, the middle 8-bits
specify the green component, and the least significant 8-bits specify the blue component

PENWEIGHT Set the pen width to the parameter times the coordinate grid unit.

RECT Draw a rectangle using the first two parameters as one corner and the second two parameters as the
opposite corner using the current pen color and pen weight. For example, the mnemonic string



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 40 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

’10,15,30,50RECT’ would draw a rectangle with one corner at grid coordinates 10,15 and the
opposite corner at coordinates 30,50. The interior of the rectangle is filled by the current brush
(normally transparent). The current cursor position is not changed.

RECTTO Draw a rectangle using the current cursor position as one corner and the two parameters as the
opposite corner using the current pen color and pen weight. For example, the mnemonic string
‘30,50RECT’ would draw a rectangle with one corner at the current cursor position and the opposite
corner at grid coordinates 30,50. The interior of the rectangle is filled by the current brush (normally
transparent). The current cursor position is not changed. This mnemonic is used by the BOX
statement.

Mnemonics to Define the Coordinate Grid

Mnemonic Explanation
GRIDENGLISH Set coordinate grid by English units. The coordinate grid is defined to be in thousandths of an inch

times the parameter measured from the upper left corner of the printable area. For example, the
mnemonic string ‘100gridenglish’ would set the grid to be in tenths of an inch and in that grid the
statement “PRINT @15,23;” would position the cursor to a point 1.5 inches to the right and 2.3
inches down from the upper left corner of the printable area of the screen, window, or page. The
mnemonic may also be used with two numeric parameters, ‘n,d GRIDENGLISH’, to set the grid
size to the fraction n/d. Thus the mnemonic ‘1000,72 GRIDENGLISH’ would set the grid unit to
(1000/72) thousandths of an inch which simplifies to 1/72 inch or a “point”.

GRIDMETRIC Set coordinate grid by metric units. The coordinate grid is defined to be in hundredths of a
millimeter times the parameter measured from the upper left corner of the printable area. For
example, the mnemonic string ‘100gridmetric’ would set the grid to be in millimeters and in that
grid the statement “PRINT @15,23;” would position the cursor to a point 15 millimeters to the right
and 23 millimeters down from the upper left corner of the printable area of the screen, window, or
page. The mnemonic may also be used with two numeric parameters, ‘n,d GRIDMETRIC’, to set
the grid size to the fraction n/d.

GRIDFONT Set coordinate grid by the current font size. The coordinate grid is defined to be in average character
widths and heights divided by the parameter and measured from the upper left corner of the
printable area. For example, the mnemonic string ‘1gridfont’ would set the grid to be in character
columns and rows as defined by the average width and height of a character in the current font. This
is the default coordinate grid. The column width and row height are determined by the font in use
when the GRIDFONT mnemonic is processed and will not be changed if the font typeface, style, or
size is changed until another GRIDFONT mnemonic is processed. The mnemonic may also be used
with two numeric parameters, ‘n,d GRIDFONT’, to set the grid size to the fraction n/d.

Miscellaneous Mnemonics

Mnemonic Explanation
BH Box Horizontal character. This mnemonic is used to draw horizontal box characters using

WINDOW. If undefined, the '_' character is printed.
BV Box Vertical character. This mnemonic is used to draw vertical box characters using WINDOW. If

undefined, the '|' character is printed.
LANDSCAPE Set printer to landscape mode (‘1 LANDSCAPE’) or to portrait mode (‘0 LANDSCAPE’).
MARGIN Set printer margins. The mnemonic has two forms: ‘w MARGIN’ which sets the left margin to “w”

grid units and ‘w,h MARGIN’ which sets the left margin to ‘w’ grid units and the top/bottom
margins to ‘h’ grid units.

RB Ring BELL. Sends the sequence causing the terminal to beep.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 41 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

TP Toggle Page. Switches the display to another page of memory in the terminal.
RD Read Cursor. The terminal transmits its current coordinate position to the program. This function is

highly dependent upon the terminal.
PI Position Indicator. This mnemonic is used by supplied utilities to display the requested number of

input characters in a field. The form used by the program is usually 'nPInML' where n is the number
of characters in the field. The default character for this mnemonic is _.

SA User Defined mnemonic to contain any non-supported terminal function.
SB User Defined mnemonic to contain any non-supported terminal function.
SC User Defined mnemonic to contain any non-supported terminal function.
SD User Defined mnemonic to contain any non-supported terminal function.
S1 User Defined mnemonic to contain any non-supported terminal function.
S2 User Defined mnemonic to contain any non-supported terminal function.
S3 User Defined mnemonic to contain any non-supported terminal function.
S4 User Defined mnemonic to contain any non-supported terminal function.

Special Mnemonics for I/O Control

Mnemonic Explanation
BACTFN Begin activate-on-function-character. INPUT terminates on receipt of any normal termination

character (such as carriage return) or any mnemonic character that is defined as a data character
(such as ‘F3’ or ‘NEXTPAGE’). The terminating character can be read using the KEY option of the
INPUT statement.

BACTSP (Release 9.3)   Enables activate on special character. This is similar to 'IOBC', except that is can
define the characters that cause input activation. The special character set is defined by using the
statement "SYSTEM 38,S$", where the string S$ contains the characters the cause input aqctivation.

BCTRACK Begin cursor tracking. If input is performed immediately after outputting a BCTRACK mnemonic,
input edit keys will be treated as data and returned as mnemonic characters such as ‘ML’. Cursor
tracking is terminated by outputting any character other than a BCTRACK mnemonic.

BEGIN Sent to a GUI element or as part of preprogrammed typeahead to set the cursor to the start of the
current value and visibly mark the current value for possible replacement or deletion. The mnemonic
‘n BEGIN’ performs these operations on GUI element “n” and sets the input focus to that element.

BPSWD (Release 9.3)   Enable password input mode. Input statements will echo input characters as asterisks.
BUCASE (Release 7.1)   Enables uppercase conversion of terminal input.
EACTFN Disable activate-on-function-character. Normal INPUT (default) is restored. Input is terminated by

[EOL] (usually RETURN), length or time.
EACTSP (Release 9.3)   Disables special character activation mode ('BACTSP') and returns to standard input

mode.
EPSWD (Release 9.3)   Disables password input mode and returns to standard input mode.
EUCASE (Release 7.1)   Disables uppercase conversion of terminal input
IOBC Begin activate-on-control-character. The IOBC mnemonic enables XON/XOFF and CTRL Q/CTRL

S are ignored. The terminating control character is placed into the last position of the INPUT string
variable. INPUT continues to terminate on receipt of a control character until the mnemonic 'IOEC'
is sent.

IOBD Begin Destructive Backspace. When destructive backspace is enabled (default), pressing a
BACKSPACE or CONTROL-H results in the sequence backspace, space, backspace being
transmitted to the screen. Destructive backspace continues until the 'IOED' mnemonic is sent.

IOBE Begin Input Echo. As characters are entered on the screen, they are displayed (normal default). Input



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 42 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

echo continues until the IOEE mnemonic is sent. The SYSTEM statement provides an additional
way to enable/disable echo. Any of the 3 methods can be used together or separately.

IOBF Mnemonic accepted, but does not perform a function.
IOBI Begin input transparency. The IOBI mnemonic enables Binary Input mode resulting in no input

translation of characters received until the IOEI is sent. Nulls, [ESC]s, and control characters are
placed into the string exactly as received with and without the high-order bit set. When Binary Input
is enabled, your INPUT statements must specify a time limit or character count or input continues
indefinitely. See also HALT Command to unlock a port, and SYSTEM Statement Binary Input
Mode.

IOBO Begin output transparency. The IOBO mnemonic enables Binary Output Mode resulting in no
special output translation of characters.

IOBX Begin XON/XOFF protocol. The IOBX mnemonic enables Unix sending XON/XOFF protocol
when communicating with a Host computer until the IOEX mnemonic is sent. The system prevents
overflow of the type-ahead buffer by sending an XOFF to a host when the buffer is full. This
function is usually used when you activate a program on a port that is wired directly to another
system. Normal keyboard XON/XOFF protocol is always enables.

IOB\ Begin sending the \ character to the screen whenever [ESC] is pressed. The default operation is to
always send the \ character without [ESC] branching in effect. The \ is sent until the IOE\ mnemonic
is sent.

IOCI Clear the contents of the terminal's type-ahead buffer. Any input entered but not processed as
INPUT is discarded.

IOEC Disable activate-on-control-character. Normal INPUT (default) is restored, and XON/XOFF flow
control are terminated. CTRL Q and CTRL S are recognized. Input is terminated by [EOL] (usually
RETURN), length or time.

IOED End Destructive Backspace. Stop sending backspace, space, backspace. Send only a single
backspace and erase the input character from the input buffer.

IOEE End Input Echo. Disable echo of input characters on the terminal. Identical to using SYSTEM
Statement. Input characters are not displayed on the screen until echo is enabled by SYSTEM or an
IOBE mnemonic is sent.

IOEF Mnemonic accepted, but does not perform a function.
IOEI End Input Transparency. Normal Input Mode is activated, and Binary Input is disabled. Special

characters are processed and [EOL] (usually RETURN) terminates INPUT.
IOEX End XON/XOFF Protocol. Normal overflow of the type-ahead buffer is allowed. This is the default

condition whereby type-ahead buffer overflow outputs a bell to the terminal, and input is discarded.

IOE\ End sending the \ character to the screen whenever [ESC] is pressed. This function disables the
IOB\ mnemonic and system default. The \ character is never sent to the terminal when [ESC]is
pressed.

IOIH Setup for special Input Handling. This mnemonic is followed by a byte defining the type of Input
processing to be performed.

IORS Reset the I/O parameters for this terminal. Echo is enabled as is the output of "\" on [ESC]. All other
IO modes are turned off.

STDEDIT (Release 9.3)   Disables extended input action definitions in the terminal definition files and returns
to standard input action.

XTDEDIT (Release 9.3)   Enables extended input action definitions in the terminal definition files.When active
any "[InputActions]" entry with the "extended" attribute will override the standard input action.

Mnemonics for Graphic User Interfaces



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 43 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Mnemonic Explanation
ONCLOSE Define action to perform when a user attempts to close a session. This mnemonic is used to

prevent a user from improperly exiting an application. A user can close a session by
disconnecting a telnet session, selecting a window exit button, or any external method of
terminating the user interface. The mnemonic requires a numeric parameter (the action
number) and a string parameter. Action 0 displays the string text in a message box and gives
the user a choice of exiting dL4 or continuing the current application. Action 1 displays the
string text in a message box and then continues the current application. Action 2 discards the
user request to exit and sends the string text as input to the application. The ONCLOSE
setting can be cleared by specifying action 0 with an empty string (“”). Usage:
PChr$(n,text);’ONCLOSE’
n Action to perform.
Text String to display.

PGMHELPFN Program the function key specified by the numeric parameter 1 with the string specified by
the string parameter 2. When typed, the function key will send both the string and the action
string of the current selected GUI (‘WCxxxx’) element. This mnemonic is normally used to
support a context dependent help key in a GUI application. Example: Print
PChr$(1,”Help\15\”);’PGMHELPFN’

SCRIPT display strings that have been defined in a resource file. When using dL4Term, script strings
can speed the display of complex GUI screens because scripts are cached on the client
system and thus only needed to be transmitted the first time the script is used. Script strings
are defined in the "[Scripts]" section of a resource file using syntax similar to dL4 string
expressions. The following resource file defines a script called "Page1" for an input screen:
[dL4 Resources]
[Scripts]
age1='4GRIDFONT'
; Initialize the menus
+= PChr$(101,"&Menu1","")+'WCMENU'
+= PChr$(102,"&Help","")+'WCMENUACTION'
+= PChr$(103,"&Bye","")+'WCMENUACTION'
+= 'WCENDMENU'
+= PChr$(102,1,'F4')+'WCACTION'
+= PChr$(103,1,'F3')+'WCACTION'
; Display the form title in double high characters
+= @120,0;+'8FONTSIZE'+"ORDER ENTRY"+'4FONTSIZE'
; Display some labels
+= @0,8;+"Name:"+@0,16;+"Address:"+@0,24;+"City:"
+= @200,24;+"State:"+@0,32;+"ZIP:"
; Create buttons and edit boxes for input
+= PChr$(2,4,80,36,85,"OK",2)+'WCBUTTON'
+= PChr$(3,144,80,176,85,"Cancel",2)+'WCBUTTON'
+= PChr$(4,284,80,316,85,"Help",2)+'WCBUTTON'
+= PChr$(11,40,8,160,13,"",2)+'WCSTRING'
+= PChr$(12,40,16,160,21,"",2)+'WCSTRING'
+= PChr$(13,40,24,160,29,"",2)+'WCSTRING'



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 44 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

+= PChr$(14,240,24,280,68,"",2)+'WCLISTDROP'
+= Chr$(15,40,32,80,37,"",2)+'WCSTRING\

The lines beginning with "+=" are continuation lines which append characters to the current, "Page1", definition line.
The space after the "+=" is not required.
The following program displays "page1":

Declare Intrinsic Sub SetResource
Call SetResource("example.res")
Print 'XX';PChr$("Page1");'SCRIPT';

Note that the resource source file shown above must be compiled into "example.res" using the MAKERES utility:
makeres -o example.res example.src

WCCU (Release 9.1)   Clears the values of a range of GUI elements. The mnemonic string
'5,7WCCU' clears the GUI elements 5, 6, and 7. The upper limit of the element range can
exceed the highest existing element number. The 'WCCU' mnemonic can also be used with a
single parameter to clear a single GUI element.

WCSTYLE (release 10.3)   Controls the style of GUI elements.
'0 WCSTYLE' Use the latest style supported by the operating system and dL4 (this is

currently the same as '2 WCSTYLE')
'1 WCSTYLE' Use the traditional style (as used before dL4 10.3) if supported by the

operating system
'2 WCSTYLE' Use the Windows theme style of Windows XP thru Windows 8 if supported

by the operating system
The 'WCSTYLE' mnemonic, if used, should be output to the main window immediately after
an 'XX" mnemonic and before any other windows or any GUI elements are created. All
Windows and GUI elements use the same style. The 'XX' mnemonic, when output to the
main window, clears any current application style setting and restores the user selected style.

WCTIPTEXT (Release 9.3)   Define tool tip text balloons that are displayed whenever a user places the
pointer near a GUI element. Tip text is limited to a maximum of 1000 characters
PChr$(n,"text");'WCTIPTEXT'
n Action to perform.
Text String to display.
PChr$(n,c,"text");'WCTIPTEXT'
c 'c' is the WCGRID or WCSORTGRID column number starting at 0.

WCTITLE (Release 9.3)   Allows the change of the title on an existing GUI control. Usage:
PChr$(n,"New title");’WCTITLE’
n GUI element number

WCBUTTON Create button. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCBUTTON’
n GUI element number
x1 Grid column of upper left button corner
y1 Grid row of upper left button corner
x2 Grid column of lower right left button corner
y2 Grid row of lower right button corner



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 45 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

label Title string displayed on button with optional ampersand before selection
key

options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss of
focus)

WCCOLORBTN (Release 9.3)   Create button that uses the current GUI text and background colors. Operates
the same way as WCBUTTON.

WCRJBUTTON (Release 9.3)   Create button with right justified title text. Operates the same way as
WCBUTTON.

WCLJBUTTON (Release 9.3)   Create button with left justified title text. Operates the same way as
WCBUTTON.

WCIMAGEBTN (Release 9.3)   Create button with an image file displayed. Usage:
PChr$(n,x1,y1,x2,y2 {,image {,options} {,disabled}});’WCIMAGEBTN’
n GUI element number
x1 Grid column of upper left button corner
y1 Grid row of upper left button corner
x2 Grid column of lower right left button corner
y2 Grid row of lower right button corner
image The path or resource name of the image to be displayed
options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss of

focus)
disabled The path or resource name of the image to be displayed when the button is

disabled. If a disabled image is not specified, a disabled image button will
use a "greyed out" version of image.

WCDATE (Release 10.2)   To create GUI input elements for date values.
PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCDATE’
n GUI element number
x1 Grid column of upper left edit box corner
y1 Grid row of upper left edit box corner
x2 Grid column of lower right left edit box corner
y2 Grid row of lower right edit box corner
label Title string displayed in edit box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on loss of focus)
l Limit on number of characters accepted in edit box

WCDEFAULTBTN Create default button. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCDEFAULTBTN’
n GUI element number
x1 Grid column of upper left button corner
y1 Grid row of upper left button corner



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 46 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

x2 Grid column of lower right left button corner
y2 Grid row of lower right button corner
label Title string displayed on button with optional ampersand before selection

key
options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss of

focus)

WCDEFAULTCLRBTN (Release 9.3)   Create default button that uses the current GUI text and background colors.
Operates the same way as WCDEFAULTBTN.

WCDEFAULTRJBTN (Release 9.3)   Create default button with right justified title text. Operates the same way as
WCDEFAULTBTN.

WCDEFAULTLJBTN (Release 9.3)   Create default button with right justified title text. Operates the same way as
WCDEFAULTBTN.

WCDEFAULTIMGBTN (Release 9.3)   Create default button with an image file displayed. Usage:
PChr$(n,x1,y1,x2,y2 {,image {,options} {,disabled}});’WCDEFAULTIMGBTN’
n GUI element number
x1 Grid column of upper left button corner
y1 Grid row of upper left button corner
x2 Grid column of lower right left button corner
y2 Grid row of lower right button corner
image The path or resource name of the image to be displayed
options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss of

focus)
disabled The path or resource name of the image to be displayed when the button is

disabled. If a disabled image is not specified, a disabled image button will
use a "greyed out" version of image.

WCPAD Create transparent button. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options{,scale}}});’WCPAD’
n GUI element number
x1 Grid column of upper left button corner
y1 Grid row of upper left button corner
x2 Grid column of lower right left button corner
y2 Grid row of lower right button corner
label Not used.
options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss of

focus)
scale Scaling value for the pointer coordinates returned by a WCQUERY of a

WCPAD element.

WCCHECK Create check box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCCHECK’
n GUI element number
x1 Grid column of upper left check box corner



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 47 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

y1 Grid row of upper left check box corner
x2 Grid column of lower right left check box corner
y2 Grid row of lower right check box corner
label Title string displayed in check box rectangle with optional ampersand

before selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on losss of focus)

WCGRID and
WCSORTGRID (Release 10.2)   Create grid style GUI input elements Usage:

PChr$(n,x1, y1, x2, y2, "columns", options, rowh);'WCGRID'
PChr$(n,x1, y1, x2, y2, "columns", options, rowh, headerh);'WCGRID'
n element number of the grid box (must be unique in window)
x1,y1 Upper left grid coordinates of the rectangle containing the grid box and title
x2,y2 Lower right grid coordinates of the rectangle enclosing the grid box and

title
columns A string that defines the columns and column labels.
options A required numeric parameter, see description below
rowh Numeric data row height in grid coordinates.
headerh An optional numeric parameter specifying the height of the header row. If

not specified, the data row height is used.

The "columns" string is a sequence of column definition strings. Each column definition
string has the format:
PChr$(width, name$)+'WCxxxx'
PChr$(width, name$, options)+'WCxxxx'
PChr$(width, name$, options, mask$)+'WCxxxx'
width Initial column width in grid column units
name$ Column label to be displayed in the header.
options An optional numeric parameter, see description below.
mask$ Optional string parameter controlling the display format (not supported in

this release).
WCxxxx Column type specified as 'WCSTRING', 'WCNUMBER', 'WCDATE',

'WCPRIVATE', 'WCTEXT', 'WCLISTDROP', 'WCEDITDROP',
'WCBUTTON', 'WCRJBUTTON', 'WCLJBUTTON', 'WCCHECK', or
'WCRADIO'.

If a long row is to be displayed as two lines, a 'CR' mnemonic must be used in the 'columns'
string as a line delimiter.

Radio buttons must be adjacent to form a group. Radio button groups must be separated by a
non-radio button column.

The grid "options" parameter is the sum of the following option values:

1 Disable and "gray out" the grid box (user can't select the box)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 48 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

2 Use the grid box as a tab stop (in element number order)
4 Send input to window when the user leaves a modified row MSC(48) will

be set to the row number and MSC(47) will be -1
16 Don't display first field of row, but return it as part of the row
32 Any loss of input focus is reported as an input value change

If not needed, the value of the column "options" must be zero.

As in 'WCLISTGRID' boxes, WCACTIONs 4 and 5 are supported to tell the application
when a user has scrolled to the beginning or end of the grid so that the application can add
new grid rows.

Rows are inserted into a grid by printing the column values as strings with 'HT' mnemonics
terminating each column. The final column of a row can be terminated by a 'CR' mnemonic
or end-of-line character. The row is inserted at the current position which is typically the end
of the grid but may be changed by printing 'n,r WCSELECT' where 'n' is the GUI element
number and 'r' is the grid row number (0 origin). If the 'MH'mnemonic is the first character of
a new row, that row will be inserted at the beginning of the grid instead of the end of the grid
without changing the current position. An existing row can be deleting by selecting the row
using 'n,r WCSELECT' and then printing a line containing only a 'DL' mnemonic. An
existing row can be updated by selecting the row and then printing the new row contents as a
line prefixed with a 'DL' mnemonic.

The 'n WCMARK' and 'n WCUNMARK' mnemonics can be printed to a grid element to set
a row as currently selected or to clear the selection. The 'fg,bg WCMARKCOLOR'
mnemonic can be printed to a grid element to set the color used to display the currently
selected row.

The 'n,r,c WCFOCUS' mnemonic can be printed to set the input focus on row 'r'and column
'c' of the grid element 'n'.

The 'PREVPAGE' and 'NEXTPAGE' mnemonics can be used to define popup messages to
inform the user that the end of the grid has been reached or to wait while the application is
reading additional rows. The message text is set by printing a line to the grid with a
'PREVPAGE' or 'NEXTPAGE' mnemonic as the first character of the text. Any existing
'PREVPAGE' or 'NEXTPAGE' message will be replaced. These messages can be deleted by
printing a line that contains only a 'PREVPAGE' or 'NEXTPAGE' mnemonic.

Immediately after a grid element is created, the drop-down lists in 'WCLISTDROP' or
'WCEDITDROP' columns must be initialized by printing each list ending with a double 'CR'.
If a 'WCLISTDROP' column used option 16 ("hidden" field), then each line must consist of
the hidden value, an 'HT' character, and the associated display value.

To display grid rows using alternating colors, print a 'fg,bg WCALTCOLOR' mnemonic to
the grid.

To display modified cells with specific colors, print a 'fg,bg WCEDITCOLOR' mnemonic to
the grid.

To set tool tip text for each cell in a column, print
PChr$(n, c, "text");'WCTIPTEXT';



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 49 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

where 'n' is the element number of the grid and 'c' is the column number starting at 0.

When using 'WCGRID', the column headers act as buttons. If "clicked", the application
receives a function key character ('Fn' where 'n' is the grid element number modulo 64) or, if
set, the action string. The application can determine which header was selected by using the
MSC(47) function to determine the zero based column number (MSC(48), the row number,
will be -1). The application can then ignore the request or reload the grid in the requested
order. An 'n,c,d SORT' mnemonic can be printed to display an up arrow (ascending) or down
arrow (descending) indicator on header column 'c' of the grid 'n' ('d' is 1 for ascending order
or -1 for descending order).

When using 'WCSORTGRID', the column headers act as locally processed sort control
buttons. The display order is changed immediately after the user "clicks" on the header. The
application is not informed about the change and will continue to use and see the original
row numbers used to populate the grid. If rows are added by the application to the grid after
the user selects a sorting order, the new rows will be displayed in the selected order. If the
user modifies a row after selecting a sorting order, the row will NOT be repositioned unless
the sorting order is changed. An application can select a sorting order by printing the 'n,c,d
SORT' mnemonic where 'n' is the element number of the grid, 'c' is the zero based column for
sorting, and 'd' is 1 for ascending order or -1 for descending order.

If a button in a row is "clicked", the application receives a function key character ('Fn' where
'n' is the grid element number modulo 64) or, if set, the action string. The application can
determine which button was selected by using the MSC(47) function to determine the zero
based column number and MSC(48) to get the row number.

Users can enter data in any column other than a WCTEXT column or a push button if the
column already has a value. To allow a user to define a new row, the row must be filled with
default values.

Grid elements do not return anything if a 'WCQUERY' mnemonic is sent to a grid element.
The values of individual rows can be requested by printing the 'n,r WCQUERYROW'
mnemonic where 'n' is the grid element number and 'r' is the desired row. The value of the
row is returned as a carriage return terminated line with tab characters ('HT') separating the
column values. Applications can parse the result string themselves or use the new intrinsic
CALL GRIDROW() to store the column values. An application can request the values of
modified or new rows by printing the 'n,0 WCQUERYNEW' mnemonic which returns the
first such row or an empty line if there are no such rows. Additional modified or new rows
can be requested by printing the 'n WCQUERYNEW' mnemonic. All rows returned by
'WCQUERYNEW' are prefixed by the row number and a tab ('HT') character.

The 'WCGRID' and 'WCSORTGRID' mnemonics can only be used with version 10 or later
of dL4Term or dL4 for Windows. The grid mnemonics cannot be used on Windows 98 or
ME.

(Release 10.4.7) Specific cells in 'WCGRID' or 'WCSORTGRID' rows can be updated by
using the 'n,r,c WCSELECT' mnemonic to address column "c" of row "r" of GUI element "n"
and then performing a "PRINT" of the new values. Sequential cells can be updated by
printing multiple values separated by 'HT' characters. Updating cells using the 'n,r,c
WCSELECT' method will not cause the rows to be re-sorted if local sorting is being used.
Example: Print '2,10,1 WCSELECT';



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 50 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Print "123.45";'HT';"Updated"

WCRADIO Create radio button. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCRADIO’
n GUI element number
x1 Grid column of upper left radio button corner
y1 Grid row of upper left radio button corner
x2 Grid column of lower right left radio button corner
y2 Grid row of lower right radio button corner
label Title string displayed in radio button rectangle with optional ampersand

before selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on loss of focus)

WCNUMBER Create numeric input box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCNUMBER’
n GUI element number
x1 Grid column of upper left edit box corner
y1 Grid row of upper left edit box corner
x2 Grid column of lower right left edit box corner
y2 Grid row of lower right edit box corner
label Title string displayed in edit box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on loss of focus)
l Limit on number of characters accepted in edit box

WCSTRING Create character input box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCSTRING’
n GUI element number
x1 Grid column of upper left edit box corner
y1 Grid row of upper left edit box corner
x2 Grid column of lower right left edit box corner
y2 Grid row of lower right edit box corner
label Title string displayed in edit box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on loss of focus)
l Limit on number of characters accepted in edit box

WCPRIVATE Create character hidden input box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCPRIVATE’
n GUI element number
x1 Grid column of upper left edit box corner
y1 Grid row of upper left edit box corner



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 51 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

x2 Grid column of lower right left edit box corner
y2 Grid row of lower right edit box corner
label Title string displayed in edit box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on loss of focus)
l Limit on number of characters accepted in edit box

WCLABEL Create a label for an input box. Usage:
PChr$(n,x1,y1,x2,y2 ,label);’WCLABEL’
n GUI element number
x1 Grid column of upper left display box corner
y1 Grid row of upper left display box corner
x2 Grid column of lower right left display box corner
y2 Grid row of lower right display box corner
label Title string displayed in display box rectangle with optional ampersand

before selection key
WCTEXT Create multi-line character display box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options {,width}}});’WCTEXT’
n GUI element number
x1 Grid column of upper left text box corner
y1 Grid row of upper left text box corner
x2 Grid column of lower right left textt box corner
y2 Grid row of lower right text box corner
label Title string displayed in text box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss of

focus)
width Maximum line length in characters. Using this parameter also enables a

horizontal scroll bar.

WCMEMO Create multi-line character input box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCMEMO’
n GUI element number
x1 Grid column of upper left memo box corner
y1 Grid row of upper left memo box corner
x2 Grid column of lower right left memo box corner
y2 Grid row of lower right memo box corner
label Title string displayed in memo box rectangle with optional ampersand

before selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on loss of focus)
l Limit on number of characters accepted in memo box

WCLIST Create selection list box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCLIST’



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 52 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

n GUI element number
x1 Grid column of upper left list box corner
y1 Grid row of upper left list box corner
x2 Grid column of lower right left list box corner
y2 Grid row of lower right list box corner
label Title string displayed in list box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change,8 =

allow multiple selection, 16 = first field invisible, 32 = send input on loss of
focus)

WCLISTGRID (Release 9.3)   Create selection list box with grid-like appearance. Operates the same way as
WCLIST. Offers these additional features.

1.    Horizontal lines are drawn between items in the list.
2.    Vertical lines are drawn at each tab position defined by the 'ST' mnemonic.
3.    The title string can include 'HT' mnemonics to align text to grid columns.
4.    The title string can include color mnemonics.
5.    The new WCACTIONs 4 and 5 are supported to tell the application when a

user has scrolled to the beginning or end of the list so that the application
can add new list items.

6.    If the 'MH' mnemonic is the first character of a new item, that item will be
inserted at the beginning of the list instead of the end of the list.

7.    The 'PREVPAGE' and 'NEXTPAGE' mnemonics can be used to mark
special items to be displayed without grid lines. These items are placed at
the beginning and end of the list to inform the user to wait while the
application is reading additional items. The 'PREVPAGE' or 'NEXTPAGE'
must be the first character of the special item. Any existing 'PREVPAGE' or
'NEXTPAGE' item will be replaced. These special items can be deleted
from the list by printing a line that contains only a 'PREVPAGE' or
'NEXTPAGE' mnemonic.

WCSHOWLIST Create read-only list box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCSHOWLIST’
n GUI element number
x1 Grid column of upper left list box corner
y1 Grid row of upper left list box corner
x2 Grid column of lower right left list box corner
y2 Grid row of lower right list box corner
label Title string displayed in list box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 16 = first field invisible, 32 =

send input on loss of focus)

WCSHOWLISTGRID (Release 9.3)   Create read-only list box. Operates the same way as WCSHOWLIST. Offers
these additional features.
1.    Horizontal lines are drawn between items in the list.
2.    Vertical lines are drawn at each tab position defined by the 'ST' mnemonic.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 53 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

3.    The title string can include 'HT' mnemonics to align text to grid columns.
4.    The title string can include color mnemonics.
5.    The new WCACTIONs 4 and 5 are supported to tell the application when a

user has scrolled to the beginning or end of the list so that the application
can add new list items.

6.    If the 'MH' mnemonic is the first character of a new item, that item will be
inserted at the beginning of the list instead of the end of the list.

7.    The 'PREVPAGE' and 'NEXTPAGE' mnemonics can be used to mark
special items to be displayed without grid lines. These items are placed at
the beginning and end of the list to inform the user to wait while the
application is reading additional items. The 'PREVPAGE' or 'NEXTPAGE'
must be the first character of the special item. Any existing 'PREVPAGE' or
'NEXTPAGE' item will be replaced. These special items can be deleted
from the list by printing a line that contains only a 'PREVPAGE' or
'NEXTPAGE' mnemonic.

WCEDITLIST Create editable selection list box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCEDITLIST’
n GUI element number
x1 Grid column of upper left edit list box corner
y1 Grid row of upper left edit list box corner
x2 Grid column of lower right left edit list box corner
y2 Grid row of lower right edit list box corner
label Title string displayed in edit list box rectangle with optional ampersand

before selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on loss of focus)
l Limit on number of characters accepted in edit box

WCLISTDROP Create drop down selection list. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCLISTDROP’
n GUI element number
x1 Grid column of upper left list box corner
y1 Grid row of upper left list box corner
x2 Grid column of lower right left list box corner
y2 Grid row of lower right list box corner
label Title string displayed in list box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 16 =

first field invisible, 32 = send input on loss of focus)

WCEDITDROP Create drop down editable list box. Usage:
PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCEDITDROP’
n GUI element number
x1 Grid column of upper left edit box corner
y1 Grid row of upper left edit box corner



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 54 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

x2 Grid column of lower right left edit box corner
y2 Grid row of lower right edit box corner
label Title string displayed in edit box rectangle with optional ampersand before

selection key
options Numeric options (1 = disable, 2 = tab stop, 4 = send input on change, 32 =

send input on loss of focus)
l Limit on number of characters accepted in edit box

WCMENU Create menu. Usage:
PChr$(n,label,shortcut{,options});’WCMENU’
n GUI element number
label Menu title string with optional ampersand before selection key
shortcut Shortcut key string
options Numeric options (1 = disable)

WCSUBMENU Create submenu. Usage:
PChr$(n,label,shortcut{,options});’WCSUBMENU’
n GUI element number
label Menu title string with optional ampersand before selection key
shortcut Shortcut key string
options Numeric options (1 = disable)

WCMENUACTION Create menu action item. Usage:
PChr$(n,label,shortcut{,options});’WCMENUACTION’
n GUI element number
label Menu title string with optional ampersand before selection key
shortcut Shortcut key string
options Numeric options (1 = disable)

WCMENUCHECK Create menu check box item. Usage:
PChr$(n,label,shortcut{,options});’WCMENUCHECK’
n GUI element number
label Menu title string with optional ampersand before selection key
shortcut Shortcut key string
options Numeric options (1 = disable)

WCMENURADIO Create menu radio button item. Usage:
PChr$(n,label,shortcut{,options});’WCMENURADIO’
n GUI element number
label Menu title string with optional ampersand before selection key
shortcut Shortcut key string
options Numeric options (1 = disable)

WCMENUSEP Create menu separator
WCENDMENU End menu or sub-menu definition



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 55 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

WCGROUP Group graphical elements. Usage:
PChr$(n,x1,y1,x2,y2,label);’WCGROUP’
n GUI element number
x1 Grid column of upper left group rectangle corner
y1 Grid row of upper left group rectangle corner
x2 Grid column of lower right left group rectangle corner
y2 Grid row of lower right group rectangle corner
label Title string displayed in group rectangle outline

WCMSGASK Display message dialog box and return as an input string the uppercase label of the button
selected by the user. Usage:
PChr$(nmsg{,title{,options}});’WCMSGASK’
msg Message string to be displayed in dialog box
title Optional title string for dialog box
options Optional string that controls the presence and labeling of buttons within the

dialog box. The default value is “O”. The first uppercase letter selects the
default button. The supported values are:

"ARI" "Abort", "Retry", "Ignore"
"O" "Ok"
"OC" "Ok", "Cancel"
"RC" "Retry", "Cancel"
"YN" "Yes", "No"
"YNC" "Yes", "No", "Cancel"

WCMSGERROR Display an error message dialog box and return as an input string the uppercase label of the
button selected by the user. See ‘WCMSGASK’ for a description of the parameters.

WCMSGINFO Display an information message dialog box and return as an input string the uppercase label
of the button selected by the user. See ‘WCMSGASK’ for a description of the parameters.

WCMSGWARN Display a warning message dialog box and return as an input string the uppercase label of the
button selected by the user. See ‘WCMSGASK’ for a description of the parameters.

WCSELECT Select parameter (‘n WCSELECT’) as current graphical element.

WCENABLE Enable user input/selection to/of a specified element(‘n WCENABLE’) or a range of
elements (‘n,m WCENABLE’).

WCDISABLE Disable user input/selection to/of a specified element (‘n WCDISABLE’) or a range of
elements (‘n,mWCDISABLE’).

WCQUERY Request a single graphical element (‘n WCQUERY’) or a range of elements (‘n,m
WCQUERY’) to send their current values.

WCASKCOLOR Display color selection dialog using the parameter (‘n WCASKCOLOR’) as the default RGB
color. The selected color, if any, will be sent as a decimal number followed by a carriage
return.

WCDELETE Delete specifed graphical elements (‘n WCDELETE’ or ‘first,last WCDELETE’)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 56 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

WCACTION Change action performed by input element. Usage:
PChr$(n,action,label);’WCACTION’
n GUI element number
action Action to be modifed.

0    Changes the text sent when the element is selected.
1    Changes the text sent when the element value is changed.

(Release 10.4)   code 1 mnemonic can now be applied to a window to
report when the user selects a GUI element when the focus was previously
on the window containing the GUI element. The purpose of this action is to
terminate a character mode input in the window whenever a user "clicks"
on a GUI element.

2    Can detect double click.
3    Changes will be immediately when the element value is changed.  (Release

6.2.3)
4    Causes a list box to send the associated string whenever the user scrolls to

the first item in the list box. Can be use to add additional items to the list
box.   (Release 9.3)

5    Causes a list box to send the associated string whenever the user scrolls to
the last item in the list box. Can be use to add additional items to the list
box.   (Release 9.3)

6    Has been implemented to report double clicking on list box elements or
buttons without reporting a preceding single click code. This makes it
possible for an application to use double clicks for a completely different
function than single clicks. WCACTION 6 is supported for use with
'WCBUTTON', 'WCLIST', 'WCLISTGRID', 'WCSHOWLIST',
'WCSHOWLISTGRID', and 'WCPAD'.   (Release 10.2)
Example : PRINT PCHR$(10,6,'F40');'WCACTION';

Note: when using WCACTION 6, single clicks are not reported until the system double click
timeout has occurred (typically a .6 second delay). A similar delay will occur in list boxes
when a user selects a new row with the arrow keys. The double click timing can be changed
by setting the following DWORD value in the client system registry to the number of
milliseconds to wait for the second click:
HKEY_CURRENT_USER\Software\DynamicConcepts\dL4Term\WinTerm\DoubleClickMS
This value will be used by all windows on the client system after dL4 is started.
label String to be sent by the specified action.

WCEVENT Enable or disable keyboard input deferral after a GUI event is reported. If input is deferred
(‘1 WCEVENT’), then keyboard input will be buffered and not processed after a GUI event
is report until a ‘WCFOCUS’ or ‘BEGIN’ mnemonic is printed. This allows the application
to set the input focus to a desired input element and direct the keyboard input to that new
element. Input deferral mode is disabled by the ‘0 WCEVENT’ mnemonic string or by an
‘XX’ mnemonic. A ‘2 WCEVENT’ mnemonic string clears and discards any deferred
keyboard input.

WCEXTKEYS Enable or disable extended keyboard behavior in graphical elements. Without any parameters
or in the form ‘3 WCEXTKEYS’, the mnemonic enables treating the ENTER key as a tab
between GUI elements and as a newline within WCMEMO input boxes. The form ‘1
WCEXTKEYS’ just enables treating the ENTER key as a tab between elements. The form ‘2



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 57 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

WCEXTKEYS’ just enables treating ENTER as a newline in WCMEMO boxes. The form ‘0
WCEXTKEYS’ disables both options.

AUTOCOMPLETE Define autocompletion value for a WCSTRING or WCNUMBER box.
PChr$(n,value);’AUTOCOMPLETE’
n GUI element number
value Autocompletion string value. If the current value of the input box matches

the leading characters of the string, the current value will be replaced by the
string.

WCBQRYBUF Enable separate buffering of data sent by ‘WCQUERY’. When enabled, ‘WCQUERY’
results are read from record 1 (“INPUT #3,1;S$”).

WCEQRYBUF Disable separate buffering of data sent by ‘WCQUERY’

WCFOCUS Set current focus to selected element (‘n WCFOCUS’)
(Release 10.2) In grid elements, the format 'n,r,c WCFOCUS' sets the input focus on row 'r'
and column 'c' of the grid element 'n'.

WCMARK Mark or select item in a list box (‘n WCMARK’)

WCUNMARK Unmark or unselect item in a list box (‘n WCUNMARK’)

WCSETCOLOR Set text and background colors for graphical elements. If sent to a window, it sets the defaults
for all subsequently created elements. If sent to an element, it changes the colors of the
element. The mnemonic can be used without parameters (‘WCSETCOLOR’) or with two
RGB parameters (‘t b WCSETCOLOR’). If used without parameters, the mnemonic uses the
current window colors.

WCRESETCOLOR Reset text and background colors to the defaults for graphical elements. The mnemonic can
be sent to a window or to an existing element.

WCMARKCOLOR Set text and background colors for selected items in graphical element item lists. The
mnemonic can be used with 0, 1, or 2 numeric parameters. With no parameters, the window
text and background colors are used. A single parameter is treated as an RGB text color and
the window background color is used for the background. Two RGB parameters (‘t b
WCMARKCOLOR’) set the text and background colors explicitly.

WCSETFONT Set font for controls

WCRESETFONT Reset font for controls to the default font

WCWHERE Request the graphical element that currently has the input focus to send the action string
“n”as input (‘n WCWHERE’). If the window itself has the focus, a ‘CR’ will be be returned
as input. Note that the user may move the focus after the ‘WCWHERE’ mnemonic has been
processed.

XST Release 10.5)   Sets GUI element tab stops using scaling from the window containing the
GUI element rather than the font of the GUI element itself. This makes it possible to align



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 58 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

tab stops with text in the window or other GUI elements. The 'XST' mnemonic can be used
with any GUI element that supports the 'ST' mnemonic.

Table of Extended Graphics Codes

Form and chart components:

Mnemonic Hex Value Meaning
G1 0x250c FORMS LIGHT DOWN AND RIGHT
G2 0x2510 FORMS LIGHT DOWN AND LEFT
G3 0x2514 FORMS LIGHT UP AND RIGHT
G4 0x2518 FORMS LIGHT UP AND LEFT
GC 0x253c FORMS LIGHT VERTICAL AND HORIZONTAL
GD 0x252c FORMS LIGHT DOWN AND HORIZONTAL
GH 0x2500 FORMS LIGHT HORIZONTAL
GL 0x2524 FORMS LIGHT VERTICAL AND LEFT
GR 0x251c FORMS LIGHT VERTICAL AND RIGHT
GU 0x2534 FORMS LIGHT UP AND HORIZONTAL
GV 0x2502 FORMS LIGHT VERTICAL

Table of Mnemonic Codes

Control Characters

Mnemonic Hex Value Meaning
NUL 0x0000 NULL
SOH 0x0001 START OF HEADING
STX 0x0002 START OF TEXT
ETX 0x0003 END OF TEXT
EOT 0x0004 END OF TRANSMISSION
ENQ 0x0005 ENQUIRY
ACK 0x0006 ACKNOWLEDGE
BEL 0x0007 BELL
BS 0x0008 BACKSPACE
HT 0x0009 HORIZONTAL TABULATION
LF 0x000a LINE FEED
VT 0x000b VERTICAL TABULATION
FF 0x000c FORM FEED
CR 0x000d CARRIAGE RETURN
SO 0x000e SHIFT OUT (possibly "status line on")
SI 0x000f SHIFT IN
DLE 0x0010 DATA LINK ESCAPE
DCI 0x0011 DEVICE CONTROL ONE
DC2 0x0012 DEVICE CONTROL TWO
DC3 0x0013 DEVICE CONTROL THREE



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 59 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

DC4 0x0014 DEVICE CONTROL FOUR
NAK 0x0015 NEGATIVE ACKNOWLEDGE
SYN 0x0016 SYNCHRONOUS IDLE
ETB 0x0017 END OF TRANSMISSION BLOCK
CAN 0x0018 CANCEL
EM 0x0019 END OF MEDIUM
SUB 0x001a SUBSTITUTE
ESC 0x001b ESCAPE
FS 0x001c FILE SEPARATOR
GS 0x001d GROUP SEPARATOR
RS 0x001e RECORD SEPARATOR (or "reset terminal")
US 0x001f UNIT SEPARATOR
0x0020           - 0x007e Printable ASCII
DEL 0x007f DELETE
PAD 0x0080 PADDING CHARACTER
HOP 0x0081 HIGH OCTET PRESET
BPH 0x0082 BREAK PERMITTED HERE
NBH 0x0083 NO BREAK HERE
IND 0x0084 INDEX
NEL 0x0085 NEXT LINE
SSA 0x0086 START OF SELECTED AREA
ESA 0x0087 END OF SELECTED AREA
HTS 0x0088 CHARACTER TABULATION SET
HTJ 0x0089 CHARACTER TABULATION WITH JUSTIFICATION
VTS 0x008a LINE TABULATION SET
PLD 0x008b PARTIAL LINE FORWARD
PLU 0x008c PARTIAL LINE BACKWARD
RI 0x008d REVERSE LINE FEED
SS2 0x008e SINGLE-SHIFT TWO
SS3 0x008f SINGLE-SHIFT THREE
DCS 0x0090 DEVICE CONTROL STRING
PU1 0x0091 PRIVATE USE ONE
PU2 0x0092 PRIVATE USE TWO
STS 0x0093 SET TRANSMIT STATE
CCH 0x0094 CANCEL CHARACTER
MW 0x0095 MESSAGE WAITING
SPA 0x0096 START OF GUARDED AREA
EPA 0x0097 END OF GUARDED AREA
SOS 0x0098 START OF STRING
SGCI 0x0099 SINGLE GRAPHIC CHARACTER INTRODUCER
SCI 0x009a SINGLE CHARACTER INTRODUCER
CSI 0x009b CONTROL SEQUENCE INTRODUCER
STRM 0x009c STRING TERMINATOR



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 60 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

OSC 0x009d OPERATING SYSTEM COMMAND
PM 0x009e PRIVACY MESSAGE
APC 0x009f APPLICATION PROGRAM COMMAND
NBSP 0x00a0 NON-BREAKING SPACE

General punctuation

Mnemonic Hex Value Meaning
ENQUAD 0x2000 EN QUAD
EMQUAD 0x2001 EM QUAD
ENSPACE 0x2002 EN SPACE
EMSPACE 0x2003 EM SPACE
THREEEMSP 0x2004 THREE-PER-EM SPACE
FOUREMSP 0x2005 FOUR-PER-EM SPACE
SIXEMSP 0x2006 SIX-PER-EM SPACE
FIGSP 0x2007 FIGURE SPACE
PUNCTSP 0x2008 PUNCTUATION SPACE
THINSP 0x2009 THIN SPACE
HAIRSP 0x200a HAIR SPACE
ZWSP 0x200b ZERO WIDTH SPACE
NONJOINER 0x200c ZERO WIDTH NON-JOINER
JOINER 0x200d ZERO WIDTH JOINER
LRMARK 0x200e LEFT-TO-RIGHT MARK
RLMARK 0x200f RIGHT-TO-LEFT MARK
LINESEP 0x2028 LINE SEPARATOR
PARASEP 0x2029 PARAGRAPH SEPARATOR
LRE 0x202a LEFT-TO-RIGHT EMBEDDING
RLE 0x202b RIGHT-TO-LEFT EMBEDDING
PDF 0x202c POP DIRECTIONAL FORMATTING
LRO 0x202d LEFT-TO-RIGHT OVERRIDE
RLO 0x202e RIGHT-TO-LEFT OVERRIDE

CJK symbols and punctuation

Mnemonic Hex Value Meaning
IDEOSP 0x3000 IDEOGRAPHIC SPACE

UNCLASSIFIED

Mnemonic Hex Value Meaning
IOIHIR 0xf000 IO INPUT HANDLING IRIS
IOIHSM 0xf001 IO INPUT HANDLING SMBASIC INPUT
IOIHSR 0xf002 IO INPUT HANDLING SMBASIC READ RECORD



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 61 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

IOIHSI 0xf003 IO INPUT HANDLING SIMPLE
IOBE 0xf004 IO BEGIN INPUT ECHO
IOEE 0xf005 IO END INPUT ECHO
IOBI 0xf006 IO BEGIN TRANSPARENT INPUT
IOEI 0xf007 IO END TRANSPARENT INPUT
IOBO 0xf008 IO BEGIN TRANSPARENT OUTPUT
IOBD 0xf009 IO BEGIN DESTRUCTIVE BACKSPACE
IOED 0xf00a IO END DESTRUCTIVE BACKSPACE
IOBS 0xf00b IO BEGIN BACKSLASH ON ESCAPE
IOES 0xf00c IO END BACKSLASH ON ESCAPE
IOCI 0xf00d IO CLEAR INPUT BUFFER
IOBC 0xf00e IO BEGIN ACTIVATE ON CONTROL CHARACTER
IOEC 0xf00f IO END ACTIVATE ON CONTROL CHARACTER
IOBX 0xf010 IO BEGIN XON XOFF PROTOCOL
IOEX 0xf011 IO END XON XOFF PROTOCOL
IORS 0xf012 IO RESET ALL
IOBF 0xf013 IO BEGIN FUNCTION KEY INPUT TRANSLATION
IOEF 0xf014 IO END FUNCTION KEY INPUT TRANSLATION
IOTE 0xf015 IO TOGGLE INPUT ECHO
GRIDENGLISH 0xf020 SET COORDINATE GRID BY ENGLISH
GRIDMETRIC 0xf021 SET COORDINATE GRID BY METRIC
GRIDFONT 0xf022 SET COORDINATE GRID BY FONT
FONTFACE 0xf024 SET FONT TYPEFACE
FONTSIZE 0xf025 SET FONT SIZE
FONTWEIGHT 0xf026 SET FONT WEIGHT
FONTCOLOR 0xf027 SET FONT COLOR
PENSTYLE 0xf02c SET PEN STYLE
PENWEIGHT 0xf02d SET PEN WEIGHT
PENCOLOR 0xf02e SET PEN COLOR
BRUSHCOLOR 0xf034 SET BRUSH COLOR
TALEFT 0xf038 SET TEXT ALIGNMENT LEFT
TACENTER 0xf039 SET TEXT ALIGNMENT CENTER
TARIGHT 0xf03a SET TEXT ALIGNMENT RIGHT
TADECIMAL 0xf03b SET TEXT ALIGNMENT DECIMAL
BACKCOLOR 0xf03c SET BACKGROUND COLOR
LINETO 0xf03f DRAW LINE TO
RECTTO 0xf03e DRAW RECTANGLE TO
RECT 0xf040 DRAW RECTANGLE
ELLIPSE 0xf041 DRAW ELLIPSE
BCTRACK 0xf081 BEGIN CURSOR TRACKING
ET 0xf083 END TRANSMISSION
RB 0xf087 RING BELL
ML 0xf088 MOVE LEFT



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 62 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

TF 0xf089 TAB FORWARD
MH 0xf08f MOVE HOME
CS 0xf090 CLEAR SCREEN
S1 0xf091 SPECIAL CODE 1
S2 0xf092 SPECIAL CODE 2
S3 0xf093 SPECIAL CODE 3
S4 0xf094 SPECIAL CODE 4
ES 0xf095 END WRITE STATUS LINE
SF 0xf097 STATUS LINE OFF
WS 0xf098 BEGIN WRITE STATUS LINE
K0 0xf099 SET CURSOR OFF
K1 0xf09a SET CURSOR BLINKING BOX
K2 0xf09b SET CURSOR STEADY BLOCK
K3 0xf09c SET CURSOR BLINKING UNDERLINE
K4 0xf09d SET CURSOR STEADY UNDERLINE
BG 0xf09e BEGIN GRAPHICS MODE
EG 0xf09f END GRAPHICS MODE
MR 0xf0a0 MOVE RIGHT
RD 0xf0a1 READ CURSOR POSITION
EF 0xf0a2 END PROGRAM FUNCTION KEY
CU 0xf0a3 CLEAR SCREEN UNPROTECTED
CL 0xf0a4 CLEAR TO END OF LINE
CE 0xf0a5 CLEAR TO END OF SCREEN
P1 0xf0a6 PROGRAM FUNCTION KEY 1
P2 0xf0a7 PROGRAM FUNCTION KEY 2
P3 0xf0a8 PROGRAM FUNCTION key 3
P4 0xf0a9 PROGRAM FUNCTION key 4
MD 0xf0aa MOVE DOWN
MU 0xf0ab MOVE UP
P5 0xf0ac PROGRAM FUNCTION KEY 5
P6 0xf0ad PROGRAM FUNCTION KEY 6
P7 0xf0ae PROGRAM FUNCTION KEY 7
P8 0xf0af PROGRAM FUNCTION KEY 8
BB 0xf0b0 BEGIN BLINK MODE
EB 0xf0b1 END BLINK MODE
BR 0xf0b2 BEGIN REVERSE VIDEO MODE
ER 0xf0b3 END REVERSE VIDEO MODE
BD 0xf0b4 BEGIN DIMMED INTENSITY MODE
ED 0xf0b5 END DIMMED INTENSITY MODE
BP 0xf0b6 BEGIN PROTECTED MODE
EP 0xf0b7 END PROTECTED MODE
BU 0xf0b8 BEGIN UNDERLINE MODE
EU 0xf0b9 END UNDERLINE MODE



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 63 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

BX 0xf0ba BEGIN EXPANDED PRINT MODE
EX 0xf0bb END EXPANDED PRINT MODE
FM 0xf0bc BEGIN FORMAT MODE
FX 0xf0bd END FORMAT MODE
LK 0xf0be LOCK KEYBOARD
UK 0xf0bf UNLOCK KEYBOARD
BT 0xf0c0 BEGIN TRANSMISSION FROM MEMORY
MP 0xf0c1 USE MEMORY POINTER FOR NEXT POSITION
IL 0xf0c2 INSERT LINE
DL 0xf0c3 DELETE LINE
IC 0xf0c4 INSERT CHARACTER
DC 0xf0c5 DELETE CHARACTER
CT 0xf0c6 CLEAR TABS
ST 0xf0c7 SET TAB
AE 0xf0c8 AUXILIARY PORT ENABLE
AD 0xf0c9 AUXILIARY PORT DISABLE
SL 0xf0ca SEND LINE
LU 0xf0cb SEND LINE UNPROTECTED
SP 0xf0cc SEND PAGE
GN 0xf0cd SET COLOR GREEN
TB 0xf0ce TAB BACKWARD
PI 0xf0cf INPUT POSITION INDICATOR
RE 0xf0d0 SET COLOR RED
PU 0xf0d1 SEND PAGE UNPROTECTED
YE 0xf0d2 SET COLOR YELLOW
BL 0xf0d3 SET COLOR BLUE
MA 0xf0d4 SET COLOR MAGENTA
CY 0xf0d5 SET COLOR CYAN
WH 0xf0d6 SET COLOR WHITE
XX 0xf0d7 RESET ALL
SA 0xf0d8 SPECIAL CODE A
SB 0xf0d9 SPECIAL CODE B
SC 0xf0da SPECIAL CODE C
SD 0xf0db SPECIAL CODE D
BV 0xf0dc BOX VERTICAL LINE
BH 0xf0dd BOX HORIZONTAL LINE
WD 0xf0e2 SET WIDE MODE
NR 0xf0e3 SET NARROW MODE
RF 0xf0e4 RESET FUNCTION KEYS
TL 0xf0e5 TRANSMIT LINE UNPROTECTED
TP 0xf0e6 TRANSMIT LINE PROTECTED
TR 0xf0e7 TRANSMIT SCREEN UNPROTECTED
TS 0xf0e8 TRANSMIT SCREEN PROTECTED



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 64 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

PS 0xf0e9 PRINT SCREEN
BA 0xf0eb BEGIN TRANSPARENT PRINT MODE
EA 0xf0ec END TRANSPARENT PRINT MODE
RV 0xf0ed SET REVERSED VIDEO
NV 0xf0ee SET NORMAL VIDEO
BO 0xf0ef BEGIN VISIBLE PRINT MODE
EO 0xf0f0 END VISIBLE PRINT MODE
BK 0xf0f1 BACK TO BEGINNING OF LINE
BC 0xf0f2 BEGIN COMPRESSED MODE
EC 0xf0f3 END COMPRESSED MODE
BI 0xf0f4 BEGIN ITALIC MODE
EI 0xf0f5 END ITALIC MODE
BSO 0xf0f6 BEGIN STRIKE OUT MODE
ESO 0xf0f7 END STRIKE OUT MODE
BBOLD 0xf0f8 BEGIN BOLD MODE
EBOLD 0xf0f9 END BOLD MODE
BSUB 0xf0fa BEGIN SUBSCRIPT MODE
ESUB 0xf0fb END SUBSCRIPT MODE
BSUP 0xf0fc BEGIN SUPERSCRIPT MODE
ESUP 0xf0fd END SUPERSCRIPT MODE
ALIGN 0xf0fe ALIGN TO NEXT HORIZONTAL BOUNDARY
MOVETO 0xf0ff MOVE TO
ADD 0xf100 FUNCTION KEY ADD
BEGIN 0xf101 FUNCTION KEY BEGIN
CANCEL 0xf102 FUNCTION KEY CANCEL
CLEAR 0xf103 FUNCTION KEY CLEAR
CLOSE 0xf104 FUNCTION KEY CLOSE
COMMAND 0xf105 FUNCTION KEY COMMAND
COPY 0xf106 FUNCTION KEY COPY
CREATE 0xf107 FUNCTION KEY CREATE
CUT 0xf108 FUNCTION KEY CUT
DIVIDE 0xf109 FUNCTION KEY DIVIDE
END 0xf10a FUNCTION KEY END
EXEC 0xf10b FUNCTION KEY EXEC
EXIT 0xf10c FUNCTION KEY EXIT
FIND 0xf10d FUNCTION KEY FIND
HELP 0xf10e FUNCTION KEY HELP
LOAD 0xf10f FUNCTION KEY LOAD
MARK 0xf110 FUNCTION KEY MARK
MESSAGE 0xf111 FUNCTION KEY MESSAGE
MODIFY 0xf112 FUNCTION KEY MODIFY
MOVE 0xf113 FUNCTION KEY MOVE

MULTIPLY 0xf114 FUNCTION KEY MULTIPLY



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 65 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

NEXT 0xf115 FUNCTION KEY NEXT
NEXTPAGE 0xf116 FUNCTION KEY NEXTPAGE
NEW 0xf117 FUNCTION KEY NEW
OPEN 0xf118 FUNCTION KEY OPEN
OPTIONS 0xf119 FUNCTION KEY OPTIONS
PASTE 0xf11a FUNCTION KEY PASTE
PAUSE 0xf11b FUNCTION KEY PAUSE
PREV 0xf11c FUNCTION KEY PREV
PREVPAGE 0xf11d FUNCTION KEY PREVPAGE
PRINT 0xf11e FUNCTION KEY PRINT
REDO 0xf11f FUNCTION KEY REDO
REFRESH 0xf120 FUNCTION KEY REFRESH
RENAME 0xf121 FUNCTION KEY RENAME
REPLACE 0xf122 FUNCTION KEY REPLACE
RESTART 0xf123 FUNCTION KEY RESTART
RESTORE 0xf124 FUNCTION KEY RESTORE
RESUME 0xf125 FUNCTION KEY RESUME
RUN 0xf126 FUNCTION KEY RUN
SAVE 0xf127 FUNCTION KEY SAVE
SELECT 0xf128 FUNCTION KEY SELECT
SETTINGS 0xf129 FUNCTION KEY SETTINGS
SIZE 0xf12a FUNCTION KEY SIZE
SORT 0xf12b FUNCTION KEY SORT
START 0xf12c FUNCTION KEY START
STOP 0xf12d FUNCTION KEY STOP
SUBTRACT 0xf12e FUNCTION KEY SUBTRACT
SUSPEND 0xf12f FUNCTION KEY SUSPEND
UNDO 0xf130 FUNCTION KEY UNDO
F0 0xf140 FUNCTION KEY 0
F1 0xf141 FUNCTION KEY 1
F2 0xf142 FUNCTION KEY 2
•
•
•
F63 0xf17f FUNCTION KEY 63
BLACK 0xf180 SET COLOR BLACK
RESETCOLOR 0xf181 RESET FG/PEN/BG COLOR TO DEFAULT
WINDOW 0xf182 CREATE WINDOW
WMODAL 0xf183 CREATE MODAL WINDOW
WCHILD 0xf184 CREATE CHILD WINDOW
WDELETE 0xf185 CLOSE/DESTROY WINDOW
WHIDE 0xf186 MAKE WINDOW INVISIBLE

WTITLE 0xf187 CHANGE WINDOW TITLE



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 66 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

WSELECT 0xf188 SELECT CURRENT WINDOW
WRANK 0xf189 CHANGE WINDOW Z-ORDER
WCANVAS 0xf18a CHANGE CANVAS SIZE
WOUTPUT 0xf18b CHANGE OUTPUT REGION SIZE/POSITION
WVIEW 0xf18c CHANGE DISPLAY WINDOW CANVAS SIZE/POSITION
WSCROLL 0xf18d SCROLL WINDOW POSITION IN CANVAS
WMOVE 0xf18e MOVE DISPLAY WINDOW ON SCREEN
WSHOW 0xf18f MAKE WINDOW VISIBLE
WOUTPUTSIZE 0xf190 RESIZE OUTPUT REGION
WVIEWSIZE 0xf191 RESIZE DISPLAYED WINDOW IN CANVAS
WENABLE 0xf192 ENABLE WINDOW
WDISABLE 0xf193 DISABLE WINDOW
WCBUTTON 0xf194 CREATE BUTTON
WCCHECK 0xf195 CREATE CHECK BOX
WCRADIO 0xf196 CREATE RADIO BUTTON
WCNUMBER 0xf197 CREATE NUMERIC INPUT BOX
WCSTRING 0xf198 CREATE CHARACTER INPUT BOX
WCPRIVATE 0xf199 CREATE CHARACTER HIDDEN INPUT BOX
WCLABEL 0xf19a CREATE A LABEL FOR AN INPUT BOX
WCTEXT 0xf19b CREATE MULTI-LINE CHARACTER DISPLAY BOX
WCMEMO 0xf19c CREATE MULTI-LINE CHARACTER INPUT BOX
WCLIST 0xf19d CREATE SELECTION LIST BOX
WCEDITLIST 0xf19e CREATE EDITABLE SELECTION LIST BOX
WCLISTDROP 0xf19f CREATE DROP DOWN SELECTION LIST
WCEDITDROP 0xf1a0 CREATE DROP DOWN EDITABLE LIST BOX
WCMENU 0xf1a1 CREATE MENU
WCMENUACTION 0xf1a2 CREATE MENU ACTION ITEM
WCMENUCHECK 0xf1a3 CREATE MENU CHECK BOX ITEM
WCMENURADIO 0xf1a4 CREATE MENU RADIO BUTTON ITEM
WCMENUSEP 0xf1a5 CREATE MENU SEPARATOR
WCENDMENU 0xf1a6 END MENU OR SUB-MENU DEFINITION
WCGROUP 0xf1a7 GROUP GRAPHICAL ELEMENTS
WCSELECT 0xf1a8 SELECT CURRENT GRAPHICAL ELEMENT
WCENABLE 0xf1a9 ENABLE USER INPUT/SELECTION TO/OF ELEMENT
WCDISABLE 0xf1aa DISABLE USER INPUT/SELECTION TO/OF ELEMENT
WCQUERY 0xf1ab REQUEST GRAPHICAL ELEMENT TO SEND VALUE
WCDELETE 0xf1ac DELETE A GRAPHICAL ELEMENT
WCACTION 0xf1ad CHANGE ACTION PERFORMED BY INPUT ELEMENT
WCFOCUS 0xf1ae SET CURRENT FOCUS TO SELECTED ELEMENT
WCMARK 0xf1af MARK OR SELECT ITEM
WCUNMARK 0xf1b0 UNMARK OR UNSELECT ITEM
WCSUBMENU 0xf1b1 CREATE SUBMENU
WCSETFONT 0xf1b3 SET FONT FOR CONTROLS



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 67 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

INPUTSTART 0xf1b4 RECORD START OF INPUT
LITNUL 0xf1b5 LITERAL NULL (BINARY ZERO)
LITCR 0xf1b6 LITERAL CARRIAGE RETURN
RESETATTR 0xf1b7 CLEAR ALL ATTRIBUTES (BLINK, DIM, ..)
BACTFN 0xf1b8 BEGIN ACTIVATE ON MNEMONIC CHARS
EACTFN 0xf1b9 END ACTIVATE ON MNEMONIC CHARS
INVERT 0xf1ba INVERT COLORS IN SPECIFIED AREA
PGMFN 0xf1bb PROGRAM FUNCTION KEY
ONCLOSE 0xf1bc WARN/PREVENT EXIT
LANDSCAPE 0xf1bd ENABLE PRINTER LANDSCAPE/PORTRAIT
WCWHERE 0xf1be RETURN CURRENT GRAPHICAL ELEMENT ACTION
LPI 0xf1bf LINES PER INCH (PRINTERS)
CPI 0xf1c0 CHARACTERS PER INCH (PRINTERS)
FONTCELL 0xf1c1 FONT CHARACTER CELL SIZE
MARGIN 0xf1c2 SET MARGINS (PRINTERS)
WCDEFAULTBTN 0xf1c3 CREATE DEFAULT BUTTON
SUSPENDAUX 0xf1cd SUSPEND AUX PRINTING
CONTINUEAUX 0xf1ce CONTINUE AUX PRINTING
WCEVENT 0xf1cf CONTROL TRANSMISSION OF GUI EVENTS
PGMHELPFN 0xf1d0 PROGRAM FUNCTION KEY TO RETURN FOCUS
WCBQRYBUF 0xf1d1 BEGIN WCQUERY INPUT BUFFERING
WCEQRYBUF 0xf1d2 END WCQUERY INPUT BUFFERING
WCRESETFONT 0xf1d3 RESET FONT FOR CONTROLS
RESETFONT 0xf1d4 RESET FONT FOR TERMINAL/WINDOW
DEFAULTCOLOR 0xf1d7 USE CURRENT COLORS AS SESSION DEFAULTS
WCSETCOLOR 0xf1d8 SET BG/FG COLORS FOR CONTROLS
WCRESETCOLOR 0xf1d9 RESET BG/FG COLORS FOR CONTROLS
WCASKCOLOR 0xf1da ASK USER TO CHOOSE COLOR
WCMARKCOLOR 0xf1db SET COLORS FOR SELECTED ITEMS
WCMSGWARN 0xf1dc DISPLAY WARNING MESSAGE DIALOG
WCMSGINFO 0xf1dd DISPLAY INFORMATION MESSAGE DIALOG
WCMSGASK 0xf1de DISPLAY QUESTION MESSAGE DIALOG
WCMSGERROR 0xf1df DISPLAY ERROR MESSAGE DIALOG
FITIMAGE 0xf1e3 DISPLAY IMAGE FILE PRESERVING ASPECT RATIO
FRAME 0xf1e4 DRAW EDGE AROUND RECTANGLE
FILLIMAGE 0xf1e6 DRAW IMAGE FILLING SPECIFIED RECTANGLE
WCEXTKEYS 0xf1e7 ENABLE OR DISABLE EXTENDED KEY BEHAVIOR
WCPAD 0xf1e8 CREATE TRANSPARENT BUTTON
WCSHOWLIST 0xf1e9 CREATE READ ONLY LIST BOX
AUTOCOMPLETE 0xf1ea ENABLE AUTOCOMPLETION IN GRAPHICAL ELEMENTS
BQ 0xf1eb ENABLE SPECIAL CHARACTER INPUT   (Release 6.2.7)
EQ 0xf1ec DISABLE SPECIAL CHARACTER INPUT   (Release 6.2.7)
BUCASE 0xf1ed ENABLE UPPERCASE INPUT   (Release 7.1)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 68 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

EUCASE 0xf1ee DISABLE UPPERCASE INPUT   (Release 7.1)
WHISTORY 0xf1f0 SET HISTORY SIZE   (Release 7.3)
SENDCLIP 0xf1f1 SENDS INPUT TO CLIPBOARD   (Release 7.3)
STDEDIT 0xf1f2 DISABLE EXTENDED EDIT INPUT   (Release 9.3)
XTDEDIT 0xf1f3 ENABLE EXTENDED EDIT INPUT   (Release 9.3)
WCCU 0xf1f6 Clears the values of GUI elements ;nbsp; (Release 7.1)
WCRJBUTTON 0xf1f7 CREATE BUTTON WITH TEXT RIGHT JUSTIFIED   (Release 9.3)
WCLJBUTTON 0xf1f8 CREATE BUTTON WITH TEXT LEFT JUSTIFIED   (Release 9.3)
WCDEFAULTRJBTN 0xf1f9 CREATE DEFAULT BUTTON WITH TEXT RIGHT JUSTIFIED   (Release

9.3)
WCDEFAULTJLBTN 0xf1fa CREATE DEFAULT BUTTON WITH TEXT LEFT JUSTIFIED   (Release

9.3)
WCTITLE 0xf1fb CHANGES THE TITLE OF AN EXISTING GUI ELEMENT   (Release 9.3)
BACTSP 0xf1fc ENABLE SPECIAL CHARACTER INPUT   (Release 9.3)
EACTSP 0xf1fd DISABLE SPECIAL CHARACTER INPUT   (Release 9.3)
WCIMAGEBTN 0xf1fe CREATE BUTTON WITH IMAGE FILE DISPLAYED   (Release 9.3)
WCDEFAULTIMGBTN 0xf1ff CREATE DEFAULT BUTTON WITH IMAGE FILE DISPLAYED   (Release

9.3)
WCTIPTEXT 0xf200 SET TOOL TIP TEXT FOR GUI ELEMENT   (Release 9.3)
WCCOLORBTN 0xf201 CREATE BUTTON WITH CURRENT GUI TEXT AND BACKGROUND

COLORS   (Release 9.3)
WCDEFAULTCLRBTN 0xf202 CREATE DEFAULT BUTTON WITH CURRENT TEXT AND

BACKGROUND COLORS   (Release 9.3)
SCRIPT 0xf206 DISPLAY SCRIPT RESOURCE   (Release 9.5)
BPSWD 0xf207 ENABLE PASSWORD INPUT   (Release 9.3)
EPSWD 0x208 DISABLE PASSWORD INPUT   (Release 9.3)
WCLISTGRID 0xf209 CREATE SELECTION LIST BOX WITH GRID.   (Release 9.3)
WCSHOWLISTGRID 0xf20a CREATE READ ONLY LIST BOX WITH GRID LINES.   (Release 9.3)
WALTSIZE 0xf20b SET AN ALTERNATE SIZE FOR THE MAIN WINDOW   (Release 9.3)
WSTDSIZE 0xf20c SET THE WINDOW SIZE BACK TO THE STANDARD SIZE FROM

WALTSIZE   (Release 9.3)
WCDATE 0xf20f CREATE GUI INPUT ELEMENT FOR DATE VALUE   (Release 10.2)
WCGRID 0xf210 CREATE GUI GRID INPUT ELEMENT   (Release 10.2)
WCSHOWGRID 0xf211 CREATE GUI GRID READ ONLY ELEMENT   (Release 10.2)
WCSORTGRID 0xf212 CREATE GUI SORT GRID INPUT ELEMENT   (Release 10.2)
WCALTCOLOR 0xf213 SET ALTERNATE COLORS FOR GUI CONTROLS   (Release 10.2)
WCEDITCOLOR 0xf214 SET EDIT COLORS FOR GUI CONTROLS   (Release 10.2)
WCQUERYROW 0xf215 REQUEST GRID ELEMENT TO SEND ROW VALUE   (Release 10.2)
WCQUERYNEW 0xf216 REQUEST GRID ELEMENT TO SEND NEW ROWS &nbps; (Release 10.2)
WCSTYLE 0xf218 SET GUI STYLE   (Release 10.3)
XST 0xf219 SET TAB USING EXTERNAL COORDINATES   (Release 10.5)

CHAPTER 7 - STATEMENTS



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 69 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

INTRODUCTION
This chapter describes dL4 BASIC statements that are used to create dL4 BASIC programs. A quick reference listing of
these statements is available in Appendix D of this guide. The notations used to represent the syntax of statements is
listed in "Syntax", Chapter 1 of this guide.

STATEMENT STRUCTURE
A BASIC statement can optionally begin with either a line number or a label:

{stmt.no | label:} STATEMENT

dL4 BASIC statements are executed when a user executes the program. Debugging is facilitated through SCOPE,
which is documented in the dL4 Command Reference Guide.

Certain statements may be executed immediately from the keyboard, i.e., they are executed as soon as the user finishes
typing a statement. These statements are identified in this chapter by "Executable From Keyboard".

In this chapter, statements are listed alphabetically with the general forms given in terms of literal elements in upper
case or variables in italic type. Upper case is used for all key words such as utilities, statements, functions, and
environment variables. Key words are all cross-referenced in the Index at the back of this guide. Each statement begins
on a separate page and conforms to the standard format.

NOTE:

The syntax of every statement begins with:

{stmt.no | label:} STATEMENT {parameters}

as in:

{stmt.no | label:}ADD chan. expr, arg {...};

What this means is that some statements are executable from the keyboard, making statement numbers and labels
unnecessary, while other statements are not executable from the keyboard. This guide clearly identifies whether each
statement can or cannot be executed from the keyboard. To avoid repetition, this stmt.no/label argument is omitted
from statement syntaxes, but it should be understood to exist in every case.

STATEMENT DOCUMENTATION FORMAT
Each statement begins a new page in this guide, documented as follows:

STATEMENT



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 70 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Summary of the functionality of the statement.

Syntax
STATEMENT syntax with its parameter lists.

Parameters
Description of each parameter.

Executable From Keyboard?
Yes or No

Remarks
Discussion of the usage of the statement in context.

Examples
Examples of the statement in context.

See also Related statements.

STATEMENTS, LINE NUMBERS AND LABELS
All program instructions are called statements. They have the general form:

{ line-no | label: } { statement { \ statement } }

line no is the valid line number, 1 to 268369919.

label: is a valid statement label followed by a colon.

statement is any valid BASIC statement.

{\...} is the separator for multiple statements (also called sub-statements) appearing on the same statement line.

LINE IDENTIFICATION
Each line begins with an optional line number, line-no, and ends with the [EOL] end of line character. If specified, line-
no must be an integer in the range 1 through 268369919.

Following, or in place of, the line-no can be a statement label. The label can be from 1 to 32 characters in length
consisting of letters, digits, and underscore. A label must begin with a letter or underscore and end with a colon.

Throughout this guide, line-no is used to indicate selection of either a line number or label. If a label is not explicitly
defined for a statement, any supplied line-no is considered both the line number and label. If a statement has neither a
line-no or label, it cannot be directly referenced by other program statements.

A statement is one instruction to be executed by the computer, such as printing a list of values. A program line is a line
consisting of one or more statements.

MULTIPLE-STATEMENT LINES
Several statements can appear on a single line, separated by a backslash (\) . Statements are numbered on each line from
the left, starting with 1. For example:



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 71 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

PRINT TOTAL; J \ IF J End

When utilizing multi-statement lines, you should note certain programming effects. Conditional branching (GOTO,
GOSUB, ON) can only select the first statement of any line. Branching to statements (other than the first) is provided
only by the JUMP statement.

ADD

Synopsis
Low-level statement to insert data or data definitions into a file.

Syntax
ADD chan.expr {expr.list} {;}

Parameters
chan.expr is a driver-class dependent channel expression.
expr.list is an arbitrary number of comma separated expressions or variables of any dL4 data types.
";" unlocks the record after a successful ADD.

Executable From Keyboard?
Yes.

Remarks
The ADD statement is most commonly used to insert a new data record or to define a new index.
ADD is a low-level statement intended for use in utilities and other programs that need to perform
special file manipulations. Most applications should use the ADD RECORD or ADD INDEX
statements rather than ADD. Refer to the dL4 Files and Devices reference manual for more
information on using ADD with specific file types or drivers.

Examples
Add #1,0,0,-1;CustRec.Name$

Add #1,0,-1,-1;

See also
ADD RECORD, ADD INDEX, DEFINE RECORD

ADD INDEX

Synopsis
Add an index to a file.

Syntax
ADD INDEX chan.no, index.no; struct.var

Parameters
chan.no identifies a valid channel number.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 72 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

index.no is a numeric expression whose integer value identifies an index to be created in the file.
struct.var is a variable of structure data type.

Executable From Keyboard?
Yes.

Remarks
In many drivers, indices may be added only before data has been written to the file. Indices should
be created beginning with index 1 with consecutive index numbers.
Defining an index requires defining a structure where all members have 'fieldname' designations.
This structure identifies the various parts of the key.
Options for the entire Key include: Unique, Duplicates and Packed.
Options for Key members include: Ascending, Descending, Uppercase.

Def Struct CustKey1  : Key "NameCtyBal" + Duplicates + Descending

    Member Name$[25]  : Key "Name" + Uppercase

    Member City$[25]  : Key "City" + Uppercase

    Member 3%,Balance  : Key "CurrBal"

End Def

Dim Key1. As CustKey1

Add Index #5,1;Key1. ! Define index 1 as NameCtyBal directory

In this example, the structure CustKey1 is named "NameCtyBal" and represents an index of
possibly duplicate keys which are to be collated in descending order.
The member Name$ is an 25-character string from the data field with the same name. It is to be
uppercased. The field City$ is a 25-character string from the data filed with the same name. It is
also to be uppercased. The last part of this key, Balance, is a 3% numeric field from the field named
"CurrBal".
Once the structure is defined, a new index (directory) is added by the ADD INDEX statement and
all active records are keyed immediately. If no errors result, the selected index was successfully
added.

Examples Add Index #1,1;Key1.

Add Index #1,2;Key2.  ! Indices must be added in order

See also
ADD

ADD RECORD

Synopsis
Add new record to file.

Syntax
ADD RECORD chan.no; struct.var {;}

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 73 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

chan.no identifies a valid channel number.
struct.var is a variable of structure data type.
";" unlocks the record after a successful ADD RECORD.

Executable From Keyboard?
Yes.

Remarks
A new record is allocated, written and all keys associated with this record are inserted. When the
add operation is complete, the new record becomes the current record.
If no errors result, the selected record was successfully added to the file.

Examples
Add Record #1;CustRec.

Add Record #chan;CustRec.;

See also
ADD

BOX

Synopsis
Draw a rectangular figure on display device.

Syntax
BOX {chan.no;} {@x1,y1;} [ TO @x2,y2;] | [SIZE w,h]

Parameters
chan.no identifies a valid channel number.
x1,y1 are the column, row coordinates of the upper left corner.
x2,y2 are the lower right column, row coordinates.
w,h identify the width and height.

Executable From Keyboard?
Yes.

Remarks
Box drawing is a function of the window and printer drivers, and uses the #,#RECTTO and
#,#RECT mnemonics.
If @x1,y1 is not specified, the current cursor position is used as the upper left corner.

Examples
Box @7,2; To @70,10;

Box @7,2; Size 70,19



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 74 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Box To @70,10;

See Also
LINE, SIZE

BUILD

Synopsis
Create and open a file.

Syntax1
BUILD chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
BUILD chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Syntax3
BUILD chan.no, + file.spec.str {, {chan.no,} + file.spec.str} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to the
file.
file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to build and open a file.
driver-class specifies the driver-class, instead of using a default driver-class derived from the
file.spec.
driver-name specifies the driver-name, instead of using a default driver-class derived from the
file.spec.
file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to build and open a file.
+ file.spec.str identifies a valid dL4 file specification used to create and open a text file.

Executable From Keyboard?
Yes.

Remarks
Each file.spec.str, which is described in detail in Chapter 9 of this guide, contains the file's
attributes and filename to be created. Multiple strings may be specified to create several files and
they will be opened on successive channel numbers. Any new channel number (#channel) in the
filename list will cause assignment of channels to continue from that number.
The attributes are optional and may consist of several items, selecting the type, structure, and
protection of the file.
The filename is any legal filename. If the filename is to replace an existing file on the system, the
name must be terminated with an exclamation point (!).



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 75 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Unless as AS clause is used, the file type to be built will be determined by the file.spec.str or
file.spec.items.
If the file is to be created as a Contiguous data file, the initial Record Count and Record Length
must be specified in the form "[count:length]". The Record Count is the initial number of records to
be allocated to the file. Record length is specified in words.
If no record count/length is specified, the file is created as a Formatted Item file. The Record Length
and format is defined by the program when Record 0 is written.
If the str.expr defining the filename is preceded by a + sign (note: the + character is not within the
str.expr), the file is created as a text file.
The AS clause can be used to override the default driver selection:

Build #c; <filename> As "CLASS NAME"
Build #c; <filename> As "DRIVER NAME"

class might be "Full-ISAM" for any available full ISAM driver, or a specific full ISAM driver.
Older-style BUILD statements such as:

Build #1,+"MYFILE!"
can be made more readable as:

Build #1,"MYFILE" As "TEXT"
Examples

Build #1,"cust.masterfi!" As "Full-ISAM"

Build #0,"2/ABC" , + "/usr/ub/3/textfile!"

Build #C,"<644> [1000:256] PAYROLL/CFILE!"

See also
OPEN, EOPEN, ROPEN, WOPEN

CALL (BASIC PROGRAM)

Synopsis
Call a BASIC program.

Syntax
CALL filename {, parm.list}

Parameters
filename is a string literal or expression containing a dL4 BASIC program filename which is
optionally preceded by a relative or absolute directory pathname.
parm.list is a comma separated list of expressions or variables of any data types to be passed to the
calling program.

Executable From Keyboard?
No.

Remarks
BASIC programs called as subroutines are referred to as subprograms. A subprogram accepts a list



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 76 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

of argument variables passed by the calling program by use of the ENTER statement. The number
and type of arguments in the CALL statement must match those in the ENTER statements of the
called program. The maximum number of arguments is limited only by the maximum statement
length.

A subprogram accepts and returns values through the passed list of arguments which may be any
combination of: variables, constants, or expressions. The argument name in the subprogram does
not need to (and generally won't) be identical to the name of the passed variable in the calling
program. For example, if the calling program passes A$ and T, the subprogram may ENTER with
DATA$ and VALUE. The variable names specified by ENTER are mapped to reference the data
space of the variable names passed in the CALL. All other variables in a subprogram are
considered local to the subprogram.
Subprograms can be nested indefinitely, limited only by the maximum process size of the Operating
System.
The parm.list may be defined as any combination of str.vars, num.vars, mat.vars, str.exprs,
num.exprs, array.vars or str.lit, depending on the requirements of the subroutine being called. A
mat.var or array.var in CALL or ENTER must be specified with empty subscripts; e.g. A3[ ].
Otherwise, only the first array element will be passed as an argument. The subroutine may use these
items for input and output of data. A variable (not an expression) must be specified in positions of
the parm.list which return information to the program.

Examples
Call "pgm",A$,B[],C[2],Input$

See also
CALL (Procedure), ENTER

CALL (PROCEDURE)

Synopsis
Call a procedure.

Syntax
CALL proc.name ( {parm.list} )

Parameters
proc.name is the name of a valid existing procedure.
parm.list is a comma separated list of expressions or variables of any data types to be passed to the
calling procedure.

Executable From Keyboard?
No.

Remarks
Whenever a proc.name is to be used before its definition within the current program unit or
program, or physically resides in another program, a DECLARE statement must occur before its
first use.
An error is generated before program execution starts, if any EXTERNAL proc.name references
are unresolved.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 77 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Optionally parameters may be passed to the procedure in the param.list. The parameters may be
any type of data, including a structure. When passing a structure, the procedure must also include
its own structure definition of an identical structure and supply the structures designation.
Variables are passed to procedures by reference, not by name. Expressions are passed to procedures
by value. When variables are passed by reference to a procedure, that procedure actually points its
referenced variables to the caller's supplied variables data space. Any changes to the variable are
affected in the caller's program. If a procedure updates, or returns a value in, a referenced variable,
that operation will be lost if the caller passed an expression. Normally, procedures need not concern
themselves with what was passed, however the caller should be aware of the appropriate calling
sequence.
When a caller invokes a procedure which accepts a specific list of arguments, the interpreter verifies
that the parameter types being passed are of the correct type. If the procedure calls for a string, the
interpreter will verify that the argument is string.
An error is not generated should a caller pass an expression when the procedure assumes a variable
reference. The caller simply elects not to care about any result returned in that variable reference.

Examples
! This is an example of the CALL statement (calling a procedure)
External Sub Printit(S$)

If Not(S$) Exit Sub  ! nothing to print, exit

Print S$

End Sub

Call Printit("Call a procedure")

Call Printit("")

See also
END SUB, SUB, DECLARE, EXTERNAL SUB, CALL (BASIC Program)

CASE

Synopsis
Control complex conditional and branching operations.

Syntax1
CASE [num.lit | [num.lit TO num.lit] | [IS rel.op num.lit]] {, [num.lit | [num.lit TO num.lit] | [IS
rel.op num.lit]]} ...

Syntax2
CASE [str.lit | [str.lit TO str.lit] | [IS rel.op str.lit]] {, [str.lit | [str.lit TO str.lit] | [IS rel.op str.lit]]} ...

Syntax3
CASE ELSE

Parameters
num.lit is a numeric literal.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 78 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

rel.op is a relational operator.
str.lit is a string literal.

Executable From Keyboard?
No.

Remarks
The CASE statement specifies the conditions for which its associated statements are executed.
Multiple conditions, separated by comma may be specified.
CASE ELSE is optional and the associated statements are executed when no other CASE
expression matched the value of the primary expr. If present, CASE ELSE must be the last CASE
in the block.

Examples
! This is an example of the Case statement
Dim %1, Choice

Print 'CS'

Choice = 1

Do Until Choice = 6

Select Case Choice

Case 1

Print @15,Choice + 15;"This is case 1"

Case 2 To 3

Print @15,Choice + 15;"This is case 2 or 3"

Case IS > 3

Print @15,Choice + 15;"This is case greater than 3"

Case Else

Print @15,Choice + 15;"This is default case"

End Select

Choice = Choice + 1

Loop

See also
SELECT CASE, ELSE, END SELECT

CHAIN

Synopsis
Transfer control to another program.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 79 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
CHAIN filename {, num.expr {, num.var}}

Parameters
filename is a string literal or expression containing a dL4 BASIC program filename which is
optionally preceded by a relative or absolute directory pathname.
num.expr is an expression yielding a starting stmt.no in the new program to begin execution.
num.var is a variable of numeric type which is set to the stmt.no following the CHAIN in the
current program.

Executable From Keyboard?
Yes.

Remarks
CHAINing to a null string terminates the current program. If the program was executed under
SCOPE, the user will return to command mode. If the program was executed under RUN, then
RUN will exit.
There are two types of CHAIN operations; short and long.
A short CHAIN transfers control from one BASIC program to another. All files remain open and
common variables are passed using COM or CHAIN READ / CHAIN WRITE. A short CHAIN
is performed if the filename is the name of an existing BASIC program, or begins with the string
'RUN' or 'run'.
A long CHAIN appends the supplied filename to the type-ahead buffer, exits the program to
command mode, and processes type-ahead as though the command was entered from the keyboard.
Several commands may be within a long CHAIN, and they are executed in sequence. A long
CHAIN is performed for dL4 programs whenever a short CHAIN fails. If filename begins with
the character "\010\", "\031\", "\032\", or "\177\" a long chain will be performed after deleting that
character.
Each command should be terminated with an [EOL] terminator. The number of characters that can
be passed in this fashion is limited to the size of the user's input buffer.
Any long CHAIN which enters or passes input to command mode first closes all channels.

(Release 7.3)   Any long CHAIN allows "\177\" or "\377\" to mark the end of the program
filename and the beginning of text to be treated as type ahead. This is to increase increase
compatibility with UniBasic.

Any CHAIN terminates the current program.
The CHAIN statement is illegal in a procedure.

Examples
Chain "3/FILENAME"

Chain Q$,4000,B

See also
COM, CHAIN READ, CHAIN WRITE



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 80 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CHAIN READ

Synopsis
Read variables from a previous program.

Syntax
CHAIN READ [ var.list | = | * ]

Parameters
var.list is a list of comma separated variables of any dL4 data types passed to this program.

Executable From Keyboard?
No.

Remarks
CHAIN READ specifies common variables passed to this program via CHAIN WRITE
statements in a preceding program. Multiple CHAIN READ statements may be used, and they may
be placed anywhere within a program. Variables listed in a CHAIN READ may not be
dimensioned by a DIM statement. If a specified variable was not passed by a CHAIN WRITE
statement, an error is generated.
CHAIN READ = causes all variables passed as common to be read into the program. All such
variables must appear in the program at least once (even if not used).
CHAIN READ * functions like CHAIN READ = except that variables passed to, but not
appearing in this program are ignored.
The CHAIN READ statement is ignored if executed. When a program passes data to another using
CHAIN WRITE, the new program's CHAIN READ statements are executed during the CHAIN
operation.
The actual CHAIN READ statements may be placed anywhere in a program, however the best
method is to group them together at the beginning of a program near your DIM statements.
CHAIN READ statements may not be used together with COM.
The CHAIN READ statement is illegal in a procedure.

Examples
Chain Read A,B,C,X$

Chain Read *

See also
CHAIN READ IF, CHAIN WRITE, CHAIN WRITE IF, COM

CHAIN READ IF

Synopsis
Conditionally read variables from a previous program.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 81 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
CHAIN READ IF [ var.list | = | * ]

Parameters
var.list is a list of comma separated variables of any dL4 data types passed to this program.

Executable From Keyboard?
No.

Remarks
CHAIN READ IF specifies common variables passed to this program via CHAIN WRITE
statements in a preceding program. Multiple CHAIN READ IF statements may be used, and they
may be placed anywhere within a program. Variables listed in a CHAIN READ IF may not be
dimensioned by a DIM statement. If a specified variable was not passed by a CHAIN WRITE
statement, no error is generated.
CHAIN READ IF = causes all variables passed as common to be read into the program. All such
variables must appear in the program at least once (even if not used).
CHAIN READ IF * functions like CHAIN READ IF = except that variables passed to, but not
appearing in this program are ignored.
The CHAIN READ IF statement is ignored if executed. When a program passes data to another
using CHAIN WRITE, the new program's CHAIN READ IF statements are executed during the
CHAIN operation.
The actual CHAIN READ IF statements may be placed anywhere in a program, however the best
method is to group them together at the beginning of a program near your DIM statements.
CHAIN READ IF statements may not be used together with COM.
The CHAIN READ IF statement is illegal in a procedure.

Examples
Chain Read If A,B,C,X$

Chain Read If *

See also
CHAIN READ, CHAIN WRITE, CHAIN WRITE IF, COM

CHAIN WRITE

Synopsis
Write variables to the program selected by the preceding CHAIN statement.

Syntax
CHAIN WRITE [ var.list | * ]

Parameters
var.list is a list of comma separated variables of any dL4 data types to be passed to the chained
program.

Executable From Keyboard?
No.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 82 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Remarks
CHAIN WRITE statements specify variables to be passed as common to the next program. All
variables specified must be dimensioned or otherwise have a value assigned to them in order to be
passed. It is the responsibility of the receiving program to contain the necessary CHAIN READ
statements to accept the data.
All variables are passed complete to their dimensioned length, such that strings with embedded
nulls are passed in their entirety.
A CHAIN WRITE must not be directly executed. Multiple CHAIN WRITE statements may be
used, and should only be placed as a group after a CHAIN or SWAP statement.
CHAIN WRITE * passes all variables in the program as common. It cannot be used with any
other CHAIN WRITE statements.
CHAIN WRITE statements may not be used together with COM.
The CHAIN WRITE statement is illegal in a procedure.

Examples
Chain Write A,B,C,X$

Chain Write *

See also
CHAIN READ, CHAIN READ IF, CHAIN WRITE IF, COM

CHAIN WRITE IF

Synopsis
Conditionally write variables to the program selected by the preceding CHAIN statement.  
(Release 9.1)

Syntax
CHAIN WRITE IF [ var.list | * ]

Parameters
var.list is a list of comma separated variables of any dL4 data types to be passed to the chained
program.

Executable From Keyboard?
No.

Remarks
CHAIN WRITE IF statements specify variables to be passed as common to the next program. All
variables specified must be dimensioned or otherwise have a value assigned to them in order to be
passed. Unlike CHAIN WRITE, no error will occur if a specified varialble has not been allocated.
It is the responsibility of the receiving program to contain the necessary CHAIN READ
statements to accept the data.
All variables are passed complete to their dimensioned length, such that strings with embedded
nulls are passed in their entirety.
A CHAIN WRITE IF must not be directly executed. Multiple CHAIN WRITE IF statements
may be used, and should only be placed as a group after a CHAIN or SWAP statement.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 83 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CHAIN WRITE IF * passes all variables in the program as common. It cannot be used with any
other CHAIN WRITE IF statements.
CHAIN WRITE IF statements may not be used together with COM.
The CHAIN WRITE IF statement is illegal in a procedure.

Examples
Chain Write If A,B,C,X$

Chain Write If *

See also
CHAIN READ, CHAIN READ IF, CHAIN WRITE, COM

CHANNEL

Synopsis
Low-level statement to perform a driver-specific command.

Syntax
CHANNEL chan.cmd, chan.expr {expr.list}

Parameters
chan.cmd is an integer value indicating a driver-class dependent action.
chan.expr is a driver-class dependent channel expression.
expr.list is an arbitrary number of comma separated expressions or variables of any dL4 data types.

Executable From Keyboard?
Yes.

Remarks
Refer to the dL4 Files and Devices reference manual for information on channel commands
supported by specific drivers.

Examples
Channel 38, #1, 1; Creationdate#

Channel 38, #1, 2; LastAccessdate#

Channel 38, #1, 3; Modificationdate#

See also

CHDIR

Synopsis
Change default directory to a specified path.

Syntax
CHDIR str.expr



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 84 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
str.expr is an expression yielding a string value.

Executable From Keyboard?
Yes.

Remarks
The str.expr must be a legal filename of a directory.

Examples
Chdir C$

Chdir "../menu"

See also

CLEAR

Synopsis
Clear channels or initialize variables.

Syntax1
CLEAR {chan.no {, chan.no}...}

Syntax2
CLEAR var.list

Parameters
chan.no is a valid channel number.
var.list is an arbitrary number of comma separated variables of any dL4 data types.

Executable From Keyboard?
Yes.

Remarks
The chan.no expression is evaluated, truncated to an integer and used to select the channel number
(0 to 99) to clear. Multiple channels, separated by comma may be cleared. If no chan.no is given, all
opened files (Channels 0 to 99) are cleared. Record locks on the file are removed, the file header
may be updated and the system file descriptor is released. A cleared channel is available for re-use
for another file.
CLEAR differs from CLOSE in that it will always succeed: any I/O errors that occur while
clearing the channel will be ignored. Additionally, if the channel was opened with BUILD, the file
will be deleted. Refer to the dL4 Files and Devices reference manual for the file type or driver
specific effects of CLEAR.
Clearing a variable initializes its value as if the variable had just been DIMed. Numeric and binary
values are zeroed. String values are set to nulls. Date values are set to a special value that indicates
that it isn't a valid date.
dL4 programs generate an error when a specified chan.no is not currently open.

Examples
Clear #5,#8,#X+2



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 85 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Clear

See also
CHANNEL, CLOSE

CLOSE

Synopsis
Close specified or all channels.

Syntax
CLOSE {chan.no {, chan.no}...}

Parameters
chan.no identifies a valid channel number.

Executable From Keyboard?
Yes.

Remarks
The chan.no expression is evaluated, truncated to an integer and used to select the channel number
(0 to 99) to close. Multiple channels, separated by comma may be closed. If no chan.no is given, all
opened files (Channels 0 to 99) are closed. Record locks on the file are removed, the file header may
be updated and the system file descriptor is released. A cleared channel is available for re-use for
another file.
Refer to the dL4 Files and Devices reference manual for file type or device specific effects of
CLOSE.
dL4 programs generate an error when a specified chan.no is not currently open.

Examples
Close #1

Close #5,#8,#X+2

Close

See also
BUILD, CHANNEL, CLEAR, EOPEN, OPEN, ROPEN, WOPEN

COM

Synopsis
Specify common variables.

Syntax
COM {[%prec | prec% ] ,} var.list { , [%prec | prec% ], var.list } ...

Parameters
prec indicates the precision number defined for the variable.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 86 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

var.list is an arbitrary number of comma separated variables of any dL4 data types.
Executable From Keyboard?

No.
Remarks

The COM statement allocates space and defines precision for variables which can be passed
between programs. The form is identical to the DIM statement, except that all variables defined by
COM are flagged as common and eligible to be passed during CHAIN or SWAP.
Precisions can be defined for the variables in the var.list by including the optional %prec or prec%
precision. All further variables in the var.list will be at the last specified precision. The last supplied
precision in a COM or DIM statement is used as the default for all automatically assigned
variables.
All COM statements in a program must be executed before any statement which allocates or
defines a new variable (LET, DIM, IF, etc.). Statements such as REM, ESCSET, GOTO, etc.
which use no variables may precede COM. An error is generated if a COM statement is executed
out of order.
Variables to be passed must be defined in a COM statement by each program that is to use them.
Generally, two or more programs using a set of common variables will contain identical COM
statements in order to pass the entire set between them. A program CHAIN may exclude certain
variables in its common set, and these variables become unassigned. Similarly, the program may
add variables to the set, and they will be allocated and initialized as done by a DIM. Numeric
precision may not be changed between programs, but strings and arrays may be re-dimensioned to
smaller sizes using COM.
CHAIN READ and CHAIN WRITE statements may not be used together with COM.
If a program contains the statement "OPTION GLOBAL COM" or "OPTION DEFAULT COM
ON", then any common variables allocated by a COM statement will be automatically shared with
any subprogram or procedure that also includes the GLOBAL COM ON option. The variables will
be shared even if the subprogram is called indirectly through another subprogram that does not use
the GLOBAL COM ON option. Global common variables are similarly shared when preforming
short CHAINs, but not across a long CHAIN. To reduce overhead, place related common variables
in a common structure variable. Programs that expect common structure variables must use either
COM or DECLARE COM statements to define the structure type of the variables.
The COM statement is illegal in a procedure.

Examples
Com A$[19],B$[1],T4$[132]

Com C$[1762]

Com A[5],T$[120],D[23,14],%3,X[17]

Com 1%,A,B,%2,C,D,%3,E,F,4%,G

See also
CHAIN READ, CHAIN WRITE, DIM

CONV

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 87 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Convert binary data to decimal, or convert decimal data to binary.
Syntax1

CONV 0, expr, num.var
Syntax2

CONV 1, var, num.expr
Parameters

expr is an expression of string or binary data type.
num.var is a variable of numeric type.
var is a variable of string or binary data type.
num.expr is an expression yielding a numeric value to be converted.

Executable From Keyboard?
Yes.

Remarks
The CONV mode 0 statement extracts binary information from a var or expr and returns the value
in decimal into a num.var. Additionally, using CONV mode 1, numeric information in a num.expr
can be converted to binary and placed into a var or expr.
The var or expr specifies the binary string and must define a string of one to four characters. The
num.var is the decimal numeric variable. When converting from or to a string, each character will
be treated as an 8-bit byte and the upper 8-bits of the Unicode character will be treated as zeroes.
The valid numeric ranges, as well as the internal storage format, are determined by the length of the
var or expr given. This variable would usually be subscripted to select the desired length, otherwise
the dimensioned length of the string would be assumed. The following table compares the string
length with the range of values that can be stored.

str.var SIZE DECIMAL
B$[x,x] 1 byte 0 to 255
B$[x,x+1] 2 bytes 0 to 65535
B$[x,x+2] 3 bytes 0 to 16777215
B$[x,x+3] 4 bytes -2,147,483,648 to 2,147,483,647

The conversion process allows positive integers only to be represented in 1, 2, or 3 byte lengths. A
negative value must be converted to a 4 byte length to retain its negative sign. Converting a
negative value to a shorter length and back would result in a truncated positive integer different
from the original value.
The 4 byte length described here is identical to the internal format of a double-precision integer
numeric variable written to a file, and such a value could be read as a string and converted to
numeric. The 2 byte length, however, is NOT compatible with the %1 format because it is unsigned.
Signed values could be converted using 1, 2, or 3 byte lengths provided the program performs an
adjustment for 16-bit two's complement notation.

Examples
100 Rem Convert binary to decimal D

110 Conv 0,A$[1,n],D

120 If D>R Then Let D=D-A



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 88 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

200 Rem Convert decimal D to binary

210 If D<0 Then Let D=D+A

220 Conv 1,A$[1,n],D

Size (n) Range (R) Adjust by (A)
1 byte -128 to 127 256 (28)
2 bytes -32768 to 32767 65536 (216)
3 byte -8388608 to 8388607 16777216 (224)

This method causes the upper bit of each string to be considered a sign bit, just as is done by CONV
with the 4 byte length. In the case of 2 bytes, for example, the values 0 thru 32767 represent
themselves, while 65535 thru 32768 represent -1 thru -32768.

See also
PRECISIONS, STRINGS

DATA

Synopsis
Define internal program data.

Syntax
DATA num.lit | str.lit {, num.lit | str.lit}...

Parameters
num.lit is a numeric literal value.
str.lit is a quoted sequence of characters.

Executable From Keyboard?
No.

Remarks
Each num.lit or str.lit is stored within the program as a numeric or string constant according to its
type. Character strings must be quoted.
No other statement may follow DATA on the same program line. All text up to the end of the line is
considered part of the DATA statement.
DATA statements may appear anywhere within a program and are ignored if executed, that is, they
are treated like REM comments.
Each DATA statement may contain as many values as can be entered, up to the size of the input
buffer.
Numeric data items must be separated by comma, but can be in decimal and E-notation. A comma
cannot be part of a numeric item that will be read into a num.var.
For IRIS compatibility, a %prec declaration may be included before numeric values, but it will be
ignored and discarded.

Examples
Data 200,300,400,500,600,700.25,800,23.45



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 89 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Data "quoted string, has comma", "\015\\015\"

See also
READ, RESTORE

DECLARE

Synopsis
Declare a non-local procedure or provide a forward definition.   (Release 9.1, add COM & DIM)

Syntax1
DECLARE { EXTERNAL | INTRINSIC } SUB proc.name {, ...}

Syntax2
DECLARE { EXTERNAL | INTRINSIC } FUNCTION func.name {, ...}

Syntax3
DECLARE (COM | DIM) var.name {AS struct.name}[, var.name {AS struct.name}] {, ...}

Parameters
proc.name is a valid procedure name.
func.name is a valid function name.

Executable From Keyboard?
No.

Remarks
EXTERNAL identifies the procedure as a separate secondary program unit with its own set of
variables and program options.
INTRINSIC identifies the procedure as an internal language function, added by a developer and
linked into the runtime. These functions are written in C and include some of the familiar IRIS
calls, such as $TRXCO.
If the procedure is an internal procedure within the program unit, neither EXTERNAL nor
INTRINSIC is declared. Internal procedures share everything with the surrounding program unit.
If any of the declared procedures are EXTERNAL and outside of the program, they must be in one
of a declared list of library files. At runtime, those libraries declared with the EXTERNAL LIB
statement are opened and the required procedures are dynamically linked into the calling program.
DECLARE COM and DECLARE DIM define the structure type of global COM variables.

Examples
Declare Intrinsic Function FmtOf

Declare External Function IsPrime

Declare Function IsPrime

Declare External Sub VerifyDate(D$, ...)

Declare Dim Rec. as CUSTREC

See also
END FUNCTION, END SUB, SUB, EXTERNAL LIB, EXTERNAL SUB, FUNCTION



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 90 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

DEF FN

Synopsis
Define user function.

Syntax
DEF func.name ({parm.list}) = expr

Parameters
func.name is a valid function name.
parm.list is a comma separated list of expressions or variables of any data types to be passed to the
calling function.
expr is an expression of the same type as the func.name.

Executable From Keyboard?
No.

Remarks
Each user function must have a DEF statement executed before it can be used. User functions
cannot be redefined using subsequent DEF statements within the same program unit.
The parenthesized parm.list is considered a dummy argument. The expr is the expression to be
evaluated whenever the function is called. When this occurs, the actual argument supplied will be
substituted for every occurrence of the dummy argument in the given expression. Any variable
currently in use with the same name as the dummy argument is not affected by the function call.
Any structure variable in parm.list must be followed by an "AS struct.name" clause. Any array
variable in parm.list must be followed by empty brackets ("[]"). When using a function with array
parameters, array variables must be followed by empty brackets ("X = SampleIt(Y[])").
A user function may call another user function in its definition, provided the called function has
already been defined. User functions may be nested in this manner up to a maximum of 500 levels.

Examples
Def FNA(X)=(X^3)*(X^2)*X

Def DoIt(V)=(V^4)*FNA(V)  ! Nested FNA

Def Round(X)=SGN(X)*ABS(100*INT(X)+.5)/100

See also
EXTERNAL FUNCTION, FUNCTIONS, DECLARE

DEFINE RECORD

Synopsis
Define the record format for a file.

Syntax
DEFINE RECORD chan.no; struct.var



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 91 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
chan.no is a valid channel number.
struct.var is a variable of structure data type.

Executable From Keyboard?
Yes.

Remarks
The DEFINE RECORD statement is used to establish the record definition and data dictionary of a
newly built Full-ISAM database file.
structvar is the name of a structure variable including ITEM "Fieldname" specifications for each
member of the structure template. Refer to the dL4 Files and Devices reference manual for details
on character and length requirements for field names.
The record layout of the file is structured according to the members of the given structure, i.e. types,
sizes, and fieldnames.
No data records are written to the file by the DEFINE RECORD operation.
For example, given the following structure template:

Def Struct Customer  ! Define using fieldnames'

Member Name$[25]  : Item "Name" ! supply database fieldnames.

Member Address$[25] : Item "Addr"

Member City$[25]  : Item "City"

Member State$[2]  : Item "State"

Member Zip$[10]  : Item "PostCode"

Member 3%,Balance  : Item "CurrBal" : Decimals 2

End Def

and the following dim and build statements:
Dim Cust. As Customer

Build #5, "Customers" As "Full-ISAM"

the structure is mapped to the record layout of the file.
Define Record #5; Cust.

If no errors result, the record definition was accepted and written to the file.
Examples

Define Record #1;CustRec.

See also
ADD RECORD, SET

DEF STRUCT

Synopsis
Define a structure.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 92 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax1
DEF STRUCT struct.name= {%prec | prec% ,} var.list {, { %prec | prec% ,} var.list} ...

Syntax2
DEF STRUCT struct.name

MEMBER {%prec | prec% ,} var.list {, { %prec | prec% ,} var.list} ...
.
.
.

END DEF
Syntax3

DEF STRUCT struct.name {: ITEM id } {:RAW}
MEMBER {%prec | prec% ,} var.name [: ITEM id] { DECIMALS digits}
.
.
.

END DEF
Syntax4

DEF STRUCT struct.name {: KEY id option.list }
MEMBER {%prec | prec%,} var.name [: KEY id option.list] { DECIMALS digits}
.
.
.

END DEF
Parameters

struct.name is a structure identifier.
prec indicates the precision number defined for the variable.
var.list is a list of comma separated variable names of any dL4 data types.
id is a string or a numeric literal identifying a fieldname or an item number.
var.name is a variable name.
digits is a numeric literal identifying the number of decimal digits.
option.list is a list of UPPERCASE, DESCENDING, UNIQUE, VARLEN, and/or PACKED key
options, each preceded by a plus sign ("+").

Executable From Keyboard?
No.

Remarks
DEF STRUCT is the start of the template for the definition of a complex data type. struct.name is a
unique name tagged to this template. The name may be from one to thirty-two characters in length,
and contain letters, digits, and underscores. DEF STRUCT does not actually allocate a structure



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 93 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

using the supplied name, rather it informs the compiler to define a unique structure template tagged
with this name.

var.name may be any type of variable declaration: string, numeric, date, binary, array or another
structure. The syntax and function of MEMBER statements are nearly identical to that of DIM.
Any MEMBER statement declaring a numeric or date member must specify the precision (%prec
or prec%). Any MEMBER statement declaring an array is expressed as follows:

Member var.name [num.expr {, ...}]

The subscript dimensions of the array may be given with [num.expr {, ...}]. Any MEMBER
statement declaring a structure as a member is expressed as follows:

Member var.name. {[num.expr {, ...}] } As struct.name2

var.name. is the name of a structure whose members are defined by the structure definition
struct.name2. struct.name2 must be an existing struct.name which has been previously defined. The
var.name. may include array subscript dimensions as in [num.expr {, ...}], if var.name. is to be an
array of structures.
If Syntax1 is used, all MEMBER var.list names must be contained on a single program line.
Syntax2, Syntax3, or Syntax4 may be used for readability, or when all of the members cannot be
defined on a single line.
The END DEF statement defines the end of a structure definition.
Prior to using a structure, you must dimension one or more variables as a specific struct.name. The
following general form is used to dimension a structure:

Dim variable. { [expr {, ... }] } As struct.name

variable. is an actual variable in the program which is to be referenced as a structure. The variable
may include array subscript dimensions, if the variable. is to be an array of structures.
As struct.name informs the compiler which compiled structure definition is to be used for variable.
A structure definition itself may contain one or more structures, or arrays of structures. To define a
structure which includes a structure, a MEMBER is expressed as follows:

Member name. { [expr {, ... }] } As struct.name2

name. is the name within struct.name2 whose members are defined by the structure definition
struct.name2. struct.name2 must be an existing structname which has been previously defined.
The names of structure members are distinct from any other names outside the structure; e.g.
Data.Q$ is distinct from Q$ which is distinct from Data1.T.Q$.
The members of a structure are physically contiguous in memory, and are ordered in memory as
defined by DEF STRUCT. Individual structure members cannot be re-dimensioned.
The RAW option enables special file access behavior similar to OPTION FILE ACCESS RAW
but applied only to the members of the structure when used in an ADD RECORD, READ
RECORD, or WRITE RECORD statement.

Examples
Def Struct Stat = %4,Population,City$[40]

Def Struct StatMem

Member %4, Population

Member City$[40]

End Def



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 94 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

See also
END DEF, MEMBER

DELETE INDEX

Synopsis
Delete an index in a file.

Syntax
DELETE INDEX chan.no, index.no

Parameters
chan.no is a valid channel number.
index.no is a numeric expression whose integer value identifies an index to be deleted in the file.

Executable From Keyboard?
Yes.

Remarks
When an index is no longer required, it may be deleted. It is driver dependent whether deleting an
index is supported or results in savings of disk space. In most cases, it is assumed that the file
structure will reuse the empty portion of the file.
If no errors result, the selected index was successfully deleted.
DELETE INDEX is not supported by any driver in dL4 revision 3.1 or earlier. For later revisions
of dL4, refer to the dL4 Files and Devices reference manual to determine whether a particular
driver supports DELETE INDEX.

Example
Delete Index #1,2

See also
ADD INDEX

DELETE RECORD

Synopsis
Delete current locked record from a file.

Syntax
DELETE RECORD chan.no

Parameters
chan.no is a valid channel number.

Executable From Keyboard?



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 95 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Yes.
Remarks

The current record is deallocated, and all keys associated with this record are removed. The current
record must be locked in order to be deleted.
If no errors result, the current record was successfully deleted.

Examples
Delete Record #2

See also

DIM

Synopsis
Allocate space for variables.

Syntax1
DIM {[%prec | prec% ] ,} var.list { , [%prec | prec% ], var.list } ...

Syntax2
DIM var.list AS struct.name

Parameters
prec indicates the precision number defined for the variable.
var.list is a list of comma separated variables of any dL4 data types. See Chapter 3 for information
on variable types and subscripting variables.
struct.name is a structure identifier.

Executable From Keyboard?
Yes.

Remarks
The DIM statement allocates space and defines precision for variables which are considered local
to the current program. The form is identical to the COM statement, except that all variables
defined by DIM are not automatically passed during CHAIN statements unless specified using
CHAIN WRITE and CHAIN READ.
Precisions can be defined for the variables in the var.list by including the optional %prec or
prec% precision. All further variables in the var.list will be at the last specified precision. The last
supplied precision in a COM or DIM statement is used as the default for all automatically
assigned variables.
If the var.list contains an str.var, in the form str.var$[num.expr], the num.expr within subscripts is
evaluated, truncated to an integer, and used as the maximum size of the string variable in
characters. Any attempt to store data beyond this maximum results in data truncation. String
variables must appear in a DIM or COM statement before use by any other statement. They
cannot be re-dimensioned unless the variable is deallocated (see the FREE statement).
If the var.list contains an binary.var, in the form binary.var?[num.expr], the num.expr within
subscripts is evaluated, truncated to an integer, and used as the maximum size of the binary
variable in 8-bit bytes. Any attempt to store data beyond this maximum results in data truncation.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 96 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Binary variables must appear in a DIM or COM statement before use by any other statement.
They cannot be re-dimensioned unless the variable is deallocated (see the FREE statement).
If the var.list contains a variable in the form struct.var. then Syntax2 is used to dimension the
variable as a structure of type struct.name. The variable may include array subscript dimensions, if
it is to be an array of structures. The AS struct.name informs the compiler which compiled
structure definition is to be used for struct.var. (see the DEF STRUCT statement).
If the var.list contains a num.varItalic text or date.var without subscripts, it is allocated at the
current default precision as a simple numeric or date variable.
If the var.list contains a variable in the form var.name[num.expr], or
var.name[num.expr1,num.expr2], it is allocated at the current default precision as a one or two
dimensional array. An array can have up to 16 dimensions. The expression within subscripts are
evaluated, truncated to integers, and used to select the size (number of elements) of the array.
Variables specifying one expression result in a one-dimensional array (vector or list). Two
expressions separated by a comma result in a two-dimensional array (matrix). Any array used in a
program without specifically being mentioned in a DIM or COM statement is automatically
dimensioned to [10] for each dimension.
It is considered good programming practice to define all variables (other than temporaries and
variables to use the default precision) in a DIM or COM statement. The statement "OPTION
DEFAULT AUTODIM OFF" can be used to enforce the use of DIM statement for all variables.
The final %prec or prec% executed in your program selects the default for any run-time variable
assignments.

Examples
Dim Alpha$[26],Byte?[80],DayOfMonth#[31]

Dim CustInfo.[1000] As Customer

Dim State$[50,2],%3,X[17]

Dim %1,A,B,2%,C,D,3%,E,F,%4

See also
DEF STRUCT, COM

DO

Synopsis
Begin a program loop.

Syntax
DO

Parameters
None.

Executable From Keyboard?
No.

Remarks
Program loops may be established using the DO and LOOP statements as a means of blocking a set
of repeated statements. These statements provide greater flexibility and looping control than FOR /



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 97 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

NEXT.
The bare DO loop must have a specific termination statement such as IF condition EXIT DO as
one of the blocked statements or an infinite loop will result.
Execution resumes at the statement following the DO and continues normally. Upon execution of
the LOOP statement, execution resumes at the statement following the corresponding DO.
Unlike FOR, DO loops may nest indefinitely. In addition, each DO loop must contain exactly one
matching LOOP statement. The compiler ensures that all loops are properly matched. Although not
recommended, branching from outside to inside a DO loop will not cause an error, rather the
program will remain in the loop until it terminates. The DO statement itself need not be executed to
commence looping.

Examples
Do

done = 1

Print done

If done Exit Do

Loop

See also
DO UNTIL, DO WHILE, EXIT DO, LOOP

DO UNTIL

Synopsis
Begin a loop to be performed as long as the expression is false.

Syntax
DO UNTIL bool.expr

Parameters
bool.expr is an expression evaluated to produce a boolean value.

Executable From Keyboard?
No.

Remarks
Program loops may be established using the DO and LOOP statements as a means of blocking a set
of repeated statements. These statements provide greater flexibility and looping control than FOR /
NEXT.
The UNTIL expression provides the loop with a specific termination condition. UNTIL provides
for looping as long as the expression remains false - that is until it becomes true.
The optional UNTIL clause may be placed on either the line containing the DO or LOOP
statement, depending upon when expression is to be tested. By placing the clause with LOOP, the
developer ensures that at least one iteration is performed.
Execution resumes at the statement following the DO and continues normally. Upon execution of
the LOOP statement, execution resumes at the statement following the corresponding DO.
Unlike FOR, DO loops may nest indefinitely. In addition, each DO loop must contain exactly one



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 98 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

matching LOOP statement. The compiler ensures that all loops are properly matched. Although not
recommended, branching from outside to inside a DO loop will not cause an error, rather the
program will remain in the loop until it terminates. The DO statement itself need not be executed to
commence looping.

Examples
Choice = 1

Do Until Choice = 4

Print Choice

Choice = Choice + 1

Loop

See also
DO, DO WHILE, LOOP, EXIT DO

DO WHILE

Synopsis
Begin a loop to be performed as long as the expression is true.

Syntax
DO WHILE bool.expr

Parameters
bool.expr is an expression evaluated to produce a boolean value.

Executable From Keyboard?
No.

Remarks
Program loops may be established using the DO and LOOP statements as a means of blocking a set
of repeated statements. These statements provide greater flexibility and looping control than FOR /
NEXT.
The WHILE expression provides the loop with a specific termination condition. WHILE provides
for looping as long as the expression remains true.
The optional WHILE clause may be placed on either the line containing the DO or LOOP
statement, depending upon when expression is to be tested. By placing the clause with LOOP, the
developer ensures that at least one iteration is performed.
Execution resumes at the statement following the DO and continues normally. Upon execution of
the LOOP statement, execution resumes at the statement following the corresponding DO.
Unlike FOR, DO loops may nest indefinitely. In addition, each DO loop must contain exactly one
matching LOOP statement. The compiler ensures that all loops are properly matched. Although not
recommended, branching from outside to inside a DO loop will not cause an error, rather the
program will remain in the loop until it terminates. The DO statement itself need not be executed to
commence looping.

Examples
Choice = 1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 99 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Do While Choice < 4

Print Choice

Choice = Choice + 1

Loop

See also
DO, DO UNTIL, LOOP, EXIT DO

DUPLICATE

Synopsis
Copy a file.

Syntax
DUPLICATE str.expr {AS driver-class | driver-name }

Parameters
str.expr is a string literal or expression containing a source filename followed by a destination
filename (space separated) each of which is optionally preceded by a relative or absolute directory
pathname.
driver-class specifies the driver-class.
driver-name specifies the driver-name.

Executable From Keyboard?
Yes.

Remarks
If the destination file already exists, an exclamation point ("!") must be appended to the destination
filename to overwrite the existing file.
If the file consists of two or more subfiles, each file will be copied. For example, an Indexed
Contiguous file might consist of a data file ("source") and an index file ("source.idx"). These files
would be copied to the destination filename ("destination" and "destination.idx"). Refer to the dL4
Files and Devices reference manual for more information on specific file types.

Examples
Duplicate "PAYROLL PAY1QTRBKUP"

Duplicate "/usr/ub/23/file /u/u1/23/file"

See also

EDIT

Synopsis
Format numeric and string expressions.

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 100 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

EDIT str.expr, str.var; expr.list
Parameters

str.expr is an expression yielding a string value.
str.var is any destination string variable used to receive the formatted result.
expr.list is an arbitrary number of comma separated expressions or variables of string or numeric
data types.

Executable From Keyboard?
Yes.

Remarks
The str.expr defines the format string to apply to the list of variables in the expr.list. Output is
formatted according to the rules for the String Operator: USING.
Only numeric data is formatted, string data is copied exactly to the destination.
The EDIT statement is used to format string and numeric output. EDIT operates similar to LET
USING; formatting output and storing the result in a string variable. Unlike LET USING, EDIT
allows a list of arguments for the formatted result.

Examples
Edit "$#,##&.##",D$;T,E,F,"TAXES",T9

Edit A$,B$;"TOTAL DUE",Z,"BALANCE",Q,R$,T9

See also
LET USING

ELSE

Synopsis
Control conditional branching.
ELSE {IF bool.expr}

Parameters
bool.expr is a expression evaluated to produce a boolean value.

Executable From Keyboard?
No.

Remarks
Inclusion of an ELSE or ELSE IF block is optional. ELSE must be the only statement on the line
(except that it may be followed by a trailing ! comment).
Statements to be executed on the bool.expr being true follow the ELSE IF on subsequent lines. All
statements up to the associated ELSE or ENDIF are part of the true condition.
ELSE defines an optional block of stmts to execute when the corresponding Blocked-IF was false.

Examples
If (A=100 And B=200)

Print A,B



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 101 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Else If A=100

Print B

Else

Print A

End If

See also
IF, THEN, END IF

END

Synopsis
Terminate the program.

Syntax
END

Parameters
None.

Executable From Keyboard?
Yes.

Remarks
If the program was executed from the SCOPE Interactive Development Environment (IDE), an
END statement causes program execution to cease and the user is returned to the SCOPE IDE
following the prompt:

Ready

If the program was executed from another environment, such as the Operating System prompt, via
the applicable RUN filename command, the user is returned to that environment.
Other statements may follow an END, and inclusion of an END is optional. If a program reaches its
physical end of the program and no END statement exists, an implied END is performed.
END leaves the current program (with all variables) in the user's partition. All channels are closed
automatically.
The END statement is illegal in a procedure.

Examples
End

See also
STOP, SUSPEND

END DEF

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 102 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

End a structure definition.
Syntax

END DEF
Parameters

None.
Executable From Keyboard?

No.
Remarks

The END DEF statement defines the end of a structure definition.
Examples

Def Struct StatMem

Member %4, Population

Member City$[40]

End Def

See also
DEF STRUCT

END FUNCTION

Synopsis
End a FUNCTION definition.

Syntax
END FUNCTION return.expr

Parameters
return.expr yields the value to be returned, which must match the data type of the function.

Executable From Keyboard?
No.

Remarks
END FUNCTION is used to mark the end of the definition of a multi-line function and provide the
return value for the function.
The EXIT FUNCTION statement can be used to return from a function before reaching the END
FUNCTION statement.

Examples
External Function IsPrime(N)

Dim %2,I

If N = 1 Exit Function 0 ! not a prime number

For I=2 To Sqr(N)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 103 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

If Not(N Mod I) Exit Function 0 ! not prime

Next I

End Function 1 ! prime

See also
EXIT FUNCTION, EXTERNAL FUNCTION, FUNCTION

END IF

Synopsis
End conditional branch.

Syntax
END IF

Parameters
None

Executable From Keyboard?
No.

Remarks
END IF must be the only statements on the line (except that it may be followed by a trailing !
comment).
END IF defines the end of a blocked IF.
An ELSE IF does not need an END IF.

Examples
If A=100

Print A

If J

Write #3,R;A$

Else

Read #3,R;A$

End If

End If

See also
IF, ELSE, THEN

END SELECT

Synopsis
End complex conditional branch



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 104 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
END SELECT

Parameters
None.

Executable From Keyboard?
No.

Remarks
The compiler ensures that each END SELECT statement has a previous matching SELECT CASE
statement.

Examples
Random (0)

Choice = INT(RND(4))

Select Case Choice

Case 1

Print "This is case 1"

Case 2

Print "This is case 2"

Case Else

Print "This is default case"

End Select

See also
CASE, SELECT CASE

END SUB

Synopsis
End a procedure definition.

Syntax
END SUB

Parameters
None.

Executable From Keyboard?
Yes.

Remarks
END SUB is used to mark the end of the definition of a procedure.
The EXIT SUB statement can be used to return from a procedure before reaching the END SUB
statement.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 105 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
External Sub DoIt(D$)

Print D$

End Sub

See also
SUB, EXTERNAL SUB, EXIT SUB

END TRY

Synopsis
End a TRY block.

Syntax
END TRY

Parameters
None.

Executable From Keyboard?
No.

Remarks
END TRY is used to mark the end of a TRY block. Error branching is restored at the upon the
completion of the block.

Examples
Dim %1, Chan

Chan = 2

Try

Open #Chan,"cust.master"

Print "Opened cust.master on channel "; Chan

Else If Spc(8) = 42       ! file not found

Call "fm.cust", Chan

Print "Attempting to open cust.master file again"

Retry

Else

Print "Unexpected Error: ";Spc(8); " at line ";Spc(10)

End Try

Print "Terminating program"

Close
See also

TRY



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 106 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

ENTER

Synopsis
Accept arguments into a procedure.

Syntax
ENTER parm.list

Parameters
parm.list is a list of variables associated with parameters passed, optionally followed by three dots
("...").

Executable From Keyboard?
No.

Remarks
The ENTER statement accepts argument variables from a CALL by filename to a saved BASIC
program (subprogram) or can be used to process variable length parameter lists in a procedure.
The ENTER statement can be located on any line of the subprogram, but the variables cannot be
used until the ENTER statement has been executed. This means that the ENTER statement should
be at the beginning of the program in most cases.
The number and types of variables in the ENTER statement must match the CALL statement or
function invocation exactly or an error message is displayed.
The parm.list may be defined as any combination of variables, depending on the requirements of
the subprogram. The subprogram can only return data within arguments that are passed as variables,
subscripted numeric variables, or matrix variables. A matrix variable in a CALL, a function
reference, or an ENTER is given as a variable with empty subscripts; e.g. A3[].
If a subprogram is called with arguments, but no ENTER statement is executed, no error will occur
and the arguments will not be changed. If a subprogram has no parameters, an ENTER statement
with no parameters can be used to detect unnecessary arguments on the invoking CALL statement.
Subprograms called by filename and procedures may also accept a variable list of parameters. The
compiler performs no type or parameter checking for subprograms and procedures defined with a
variable list of parameters. Procedures with a variable list of parameters are defined in the following
manner:
Sub name (fixed.parms, ...) Function name (fixed.parms, ...)
Sub name (...) Function name (...)
Checking is only performed during the runtime processing of any ENTER statement within the
called subprogram or procedure. It is the sole the responsibility of the subprogram or procedure to
check the passed parameters.
A caller's list of arguments is placed into a list to be processed by the actual subprogram or
procedure. The general form of the ENTER statement when used for this purpose is:
Enter expected.parameter { , ... }
expected.parameter specifies the type of parameter expected by the procedure. If the next parameter
in the list matches the supplied expected.parameter, it is extracted from the list and passed to the
procedure. If not, an error is generated to the procedure which may decide to alter its course of
action.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 107 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

If additional parameters might follow, the ENTER statement must end with ... This preserves any
remaining arguments in the list passed by the caller. If the subprogram or procedure is certain that
additional parameters are not in the list, or that an error should result if there are, do not terminate
the ENTER statement with ...

Examples
Call $PGM,B$,A,D$[4,7] (from master program)
Enter B$,J,F$ (from called subprogram)

! This is an example of the Enter Statement with

! a variable length parameter list

External Sub VerifyDate(D$, ...)

Option Date Format Native

Dim 2%, D#

Dim %1, NoStatVar

Try Enter R$, ... Else Dim R$[6]

Dim %1

Try Enter S Else S = 0; NoStatVar = 1

Try

Let D# = D$

R$ = (Year(D#) Mod 100) * 10000 + Month(D#) * 100 + MonthDay(D#) Using

"&&&&&&"

Else

S = 1

End Try

If S And NoStatVar Error 38

End Sub

Call VerifyDate("06/05/97", S)

If S

Print "Not a valid date"

Else

Print "Valid date"

End If

See also
CALL, LIB, END, SUB, EXTERNAL SUB, FUNCTION, EXTERNAL FUNCTION

EOFCLR



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 108 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Clear end-of-file branching.

Syntax
EOFCLR

Parameters
None.

Executable From Keyboard?
No.

Remarks
EOFCLR clears any special end-of-file branching in effect. Normal error processing is resumed. If
an error branch is in effect from an ERRSET, ERRSTM, or IF ERR, it will be in control of further
end-of-file errors.

Examples
Eofclr

See also
IF ERR, ERRSET, ERRSTM, EOFSET

EOFSET

Synopsis
Specify end-of-file error branching.

Syntax
EOFSET label: | stmt.no

Parameters
label: is a user-defined name identifying a statement line.
stmt.no is a unique positive integer that identifies a statement line.

Executable From Keyboard?
No.

Remarks
EOFSET traps any further occurrence of error 52, "Record not written". If such an error occurs on
any channel, the program will branch to the label: or stmt.no given in the EOFSET statement.
EOFSET affects only this single error. Other errors are processed in the current error handling
mode.
IF ERR, ERRSET and ERRSTM statements are used to trap all errors, including end-of-file. The
EOFSET statement is used to override normal error branching for this special error.
EOFSET branching remains in effect until specifically cleared by EOFCLR. Other error
branching disable functions do not clear this special branch.

Examples



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 109 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Eofset 1050

Eofset NoData

See also
IF ERR, ERRSET, ERRCLR, ERRSTM, EOFCLR

EOPEN

Synopsis
Exclusively OPEN an existing file.

Syntax1
EOPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
EOPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to the
file.
file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.
driver-class specifies the driver-class, instead of using a default driver-class derived from the
file.spec.
driver-name specifies the driver-name, instead of using a default driver-class derived from the
file.spec.
file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.

Executable From Keyboard?
Yes.

Remarks
The EOPEN statement exclusively links a selected file to a channel.
EOPEN differs from OPEN in that the request will exclusively lock the file to the program.
EOPEN, OPEN, ROPEN or WOPEN requests by other programs will not be allowed until the file
is closed.
The operation of EOPEN is driver and operating system dependent. Refer to the dL4 Files and
Devices reference manual to determine if and how EOPEN is supported for specific file types.

Examples
Eopen #1,"23/MMFILE", C$

Eopen #1,"23/MMFILE" As "Full-ISAM"

Eopen #2,"FILE1","FILE2",#10,"FILE4"

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 110 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

BUILD, OPEN, ROPEN, WOPEN

ERASE

Synopsis
Perform driver-class dependent erase function.

Syntax
ERASE chan.no

Parameters
chan.no is a valid channel number.

Executable From Keyboard?
Yes.

Remarks
Refer to the dL4 Files and Devices reference manual for information on a specific driver.

Examples
! This is an example of the Erase statement

Dim s$[1]

Print 'CS'

W = 38 \ H = 12

Open #1,{" Windows ","TITL",W,H} As "Window"

Print #1; "Enter any character to Erase (Clear) Window ";

Read #1;S$

Erase #1

See also
CHANNEL

ERRCLR

Synopsis
Clear error branching.

Syntax
ERRCLR

Parameters
None.

Executable From Keyboard?
No.

Remarks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 111 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

ERRCLR clears any error-branching in effect and returns normal error processing to the
application. Normal error processing is to abort the current running program and output the error
message text:

Error in statement stn;sub-stn / Text description of error

Special end-of-file branching in effect from the EOFSET statement is not cleared by ERRCLR.
ERRCLR is used to clear automatic branch-on-error conditions previously set using ERRSET,
ERRSTM and IF ERR.
Normal error termination does not close all opened data files.

Examples
Errclr

See also
EOFSET, ERRCLR, IF ERR, ERRSTM, ERRSET

ERROR

Synopsis
Generate a dL4 BASIC error.

Syntax
ERROR num.expr

Parameters
num.expr is an expression yielding an error number.

Executable From Keyboard?
No.

Remarks
The ERROR statement generates a dL4 error to the current running program. The specified error
number is returned by SPC(8), and forces an error event within a TRY block, procedure, or to any
other error handler. The statement is helpful when writing procedures or user calls to provide a
meaningful exit to the caller.
num.expr is any expression which, following evaluation, is truncated to an integer and returned to
the application as an error number (event).
Application defined error numbers should have values >= 10,000.

Examples
Error E+10000

See also

ERRSET

Synopsis
Specify error branching.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 112 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
ERRSET label: | stmt.no

Parameters
label: is a user-defined name identifying a statement line.
stmt.no is a unique positive integer that identifies a statement line.

Executable From Keyboard?
No.

Remarks
ERRSET is used to specify a label: or stmt.no to receive program control upon the occurrence of
any BASIC error.
Error branching remains in effect until an ERRCLR is executed.
When the ERRSET statement is executed, any existing error branching from an IF ERR, or
ERRSTM is reset to branch to the selected stmt.no upon occurrence of any error.
ERRSET does not affect the state of the special EOFSET branch on end-of-file error.

Examples
Errset 8000

Errset ItDied

See also
EOFSET, ERRCLR, IF ERR, ERRSTM

ERRSTM

Synopsis
Specify statement(s) to execute on an error.

Syntax
ERRSTM stmt { \ stmt } ...

Parameters
stmt is any valid dL4 BASIC statement.

Executable From Keyboard?
No.

Remarks
The ERRSTM statement specifies a line of statements to be executed upon the occurrence of any
error.
Error statement processing remains in effect until an ERRCLR statement is executed.
When the ERRSTM statement is executed, any existing error branching from an IF ERR, or
ERRSET is reset to perform the stmts following ERRSTM upon the occurrence of any error.
Normal execution resumes at the next BASIC line, reserving all stmts following ERRSTM for
when an error occurs.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 113 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

ERRSTM must be the last statement of a multi-statement line.
ERRSTM has no effect on any special EOFSET end-of-file branch in effect.

Examples
Errstm Print "ERROR OCCURRED AT LINE:";Spc 10

Errstm Close \ Stop

Errstm If Spc 8 = 42 Stop Else ! Success

See also
EOFSET, ERRCLR, IF ERR, ERRSET

ESCCLR

Synopsis
Clear any ESCAPE branching in effect.

Syntax
ESCCLR

Parameters
None.

Executable From Keyboard?
No.

Remarks
ESCCLR removes any special ESCape branching or disabling in effect.
Previous ESCape branching or disable set by ESCSET, ESCSTM or ESCDIS statements is
disabled, and normal ESCape termination of a program is resumed.
The [ABORT] character may be used to override and abort any program that has ESCape
disabled, or an ESCape branch in effect.

Examples
Escclr

See also
ESCSET, ESCDIS, ESCSTM, IF ERR

ESCDIS

Synopsis
Disable escape events.

Syntax
ESCDIS

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 114 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

None.
Executable From Keyboard?

No.
Remarks

The ESCDIS statement prevents unauthorized ESCape termination of any BASIC program. Any
pressing of the ESCape key by the user is ignored.
ESCDIS remains in effect until an ESCSET, ESCSTM or ESCCLR is executed.
When the ESCDIS statement is executed, any existing ESCape branching is reset to ignore further
ESCape characters.
The [ABORT] character may be used to override and abort any program that has ESCape
processing.

Examples
Escdis

See also

ESCSET

Synopsis
Enable branch to statement on escape events.

Syntax
ESCSET label: | stmt.no

Parameters
label: is a user-defined name identifying a statement line.
stmt.no is a unique positive integer that identifies a statement line.

Executable From Keyboard?
No.

Remarks
ESCSET specifies a label: or stmt.no to receive program control upon pressing of the ESCape key.
Escape branching remains in effect until an ESCCLR is executed.
The [ABORT] character may be used to override and abort any program that has ESCape
processing.
When the ESCSET statement is executed, any existing ESCape branching from the ESCSTM or
ESCDIS is reset to branch to the ESCSTM stmt.no upon the occurrence of an ESCape.
ESCCLR is used to clear automatic branch-on-ESCape and resume normal ESCape processing.
Normal ESCape processing terminates the running BASIC program and produces a STOP at
prompt on the screen:

Stop at statement xx;yy in program name

Normal ESCape termination does not close all opened data files.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 115 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Note that ESCape's function may be assigned to keys other than ESCape itself, just as the ESCape
key may be assigned to perform some other function. The ESCape statements described above will
act upon any key currently defined as an [ESCAPE].

Examples
Escset 8000

Escset ItDied

See also
ESCDIS, ESCCLR, ERRSET, IF ERR

ESCSTM

Synopsis
Specify statement(s) to execute on escape events.

Syntax
ESCSTM stmt { \ stmt } ...

Parameters
stmt is any valid dL4 BASIC statement.

Executable From Keyboard?
No.

Remarks
The ESCSTM statement specifies a line of statements to be executed upon the pressing of an
ESCape key.
ESCape statement processing remains in effect until an ESCCLR statement is executed.
The [ABORT] character may be used to override and abort any program that has ESCape
processing.
When the ESCSTM statement is executed, any existing ESCape branching from the ESCSET or
ESCDIS is reset to perform the stmts following ESCSTM upon the occurrence of any error.
Normal execution resumes at the next BASIC line, reserving all stmts following ESCSTM for an
ESCape.
ESCSTM must be the last statement of a multi-statement line.
Note that ESCape's function may be assigned to keys other than ESCape itself, just as the ESCape
key may be assigned to perform some other function. The ESCape statements described above will
act upon any key currently defined as an [ESCAPE].

Examples
Escstm Print "ESCAPE PRESSED AT LINE";Err(2)

Escstm Close \ Stop

Escstm Close \ Chain "MAINMENU"

See also
ERRSTM, ESCSET, ESCCLR



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 116 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

EXIT DO

Synopsis
Exit a DO loop.

Syntax
EXIT DO

Parameters
None.

Executable From Keyboard?
No.

Remarks
The EXIT DO statement gracefully exits a DO loop.
EXIT DO is the preferable method to terminate a DO loop when writing portable code. Branching
out of a loop is never recommended.

Examples
Do

done = 1

Print done

If done

Exit Do

End If

Loop

See also
DO, DO UNTIL, DO WHILE, LOOP, EXIT FOR

EXIT FOR

Synopsis
Exit a FOR/NEXT loop.

Syntax
EXIT FOR

Parameters
None.

Executable From Keyboard?
No.

Remarks
The EXIT FOR statement gracefully exits a FOR loop.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 117 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

EXIT FOR is the preferable method to terminate a FOR loop when writing portable code.
Branching out of a loop is never recommended, and may lead to stack overflows.

Examples
For I = 1 To 10

If I > 5

Exit For

End If

Print "i = ";I

Next I

See also
FOR, NEXT

EXIT FUNCTION

Synopsis
Exit a function.

Syntax EXIT FUNCTION return.expr
Parameters

return.expr yields the value to be returned, which must match the data type of the function.
Executable From Keyboard?

No.
Remarks

EXIT FUNCTION provides an alternate means other than END FUNCTION to return to the
routine that called the function. It is generally used in the body of the function upon meeting some
condition.

Examples
External Function IsPrime(N)

Dim %2,I

If N = 1 Exit Function 0 ! not a prime number

For I=2 To Sqr(N)

If Not(Fra(N / I)

Exit Function 0 ! not prime

End If

Next I

End Function 1 ! prime

See also
END FUNCTION, EXTERNAL FUNCTION, FUNCTION



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 118 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

EXIT SUB

Synopsis
Exit a subroutine.

Syntax
EXIT SUB

Parameters
None.

Executable From Keyboard?
No.

Remarks
EXIT SUB provides an alternate means other than END SUB to return to the calling program. It is
generally used in the body of the subroutine upon meeting some condition.

Examples
External Sub DoIt(D$)

If D$ = "" Then Print "Nothing to print." \ Exit Sub

Print D$

End Sub

 
Call DoIt('CS')

Call DoIt("Print this.")

Call DoIt("")

See also
END SUB, SUB, EXTERNAL SUB

EXTERNAL FUNCTION

Synopsis
Define a function.

Syntax
EXTERNAL FUNCTION func.name ({parm.list })

Parameters
func.name is the function name.
parm.list is a list of variables associated with parameters passed, optionally followed by three dots
("...").

Executable From Keyboard?
No.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 119 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Remarks
EXTERNAL identifies the function as a separate secondary program unit which shares nothing
with its surrounding program and any main program unit, except channels. It is an independent
program unit within a program and visible to other program units both inside and outside of the
program. Regardless of its physical location, it has its own set of variables, Lib directory, DATA
statements, current precision, stacks, OPTIONS, etc.
The developer declares a function EXTERNAL whenever:
• The function is to share only variables and data passed by reference with the caller. It declares

its own data, precisions and local variables which are independent of any surrounding
program unit.

• The function sets its own parameters independent of the caller.
• The function shares nothing with the caller except parameters and channels.
• Other programs need to call the function.
A group of External functions (and subroutines) may be saved in a single program, called a library
file. A program which has both an executable main program unit as well as External functions may
also be referenced as a library by other programs. However, it is advisable to segregate shared
External functions into library files which do not include a main program unit to ensure that they
remain constant and available to other program units. An exception for compatibility purposes
might be a function which is called by filename and therefore exists as a main program unit of the
library file.
A function exits and returns a value to the caller when an EXIT FUNCTION or END FUNCTION
statement is executed.
A func.name may be from one-to-thirty-two characters in length and must end with the type
designation matching the data type returned from the function. Numeric data has no suffix, strings
end with $, dates with # and binary variables end with ?. Structures may be passed and operated
upon, but a function cannot return a structure.
Whenever a function is to be used before its definition within the current program unit or program,
or physically resides in another program, a DECLARE statement must occur before its first use.
Any structure variable in parm.list must be followed by an "AS struct.name" clause or an "AS *"
clause. Using an "AS *" clause allows the function to accept any structure as a legal argument, but
the parameter can only be used in user defined intrinsics such as CALL GETSTRUCT() or as an
argument to another procedure that has an "AS *" parameter.
Any array variable in parm.list must be followed by empty brackets ("[]"). When using a function
with array parameters, array variables must be followed by empty brackets ("X = SampleIt(Y[]").
Functions may be written to allow the caller to pass other than a fixed list of parameters. Parameter
types and number are not checked by the compiler or interpreter. Rather, it is left to the function to
process each of the arguments passed by a caller. To define a function of this type, the following
general forms are supported:

Function name (...)

The definition of the function itself specifies '...' informing the compiler and interpreter to leave the
parameter type and number checking to the function.
It is also permitted to define a function which has a known (required) list of parameters, followed by
additional optional parameters. Optional parameters must be the last parameters in the function
definition. The following example requires a numeric parameter and a string parameter, followed by
an optional number of parameters.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 120 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Function func.name (parameter1, parameter2$, ... }

Functions of this type utilize the ENTER statement to accept optional parameters.
The EXTERNAL FUNCTION statement is illegal in a procedure.

Examples
External Function IsPrime(N)

Dim %2,I

If N = 1 Exit Function 0 ! not a prime number

For I=2 To Sqr(N)

If Not(Fra(N / I))

Exit Function 0 ! not prime

End If

Next I

End Function 1 ! prime

See also
FUNCTION, SUB, EXTERNAL SUB, END FUNCTION, EXIT FUNCTION, DECLARE

EXTERNAL LIB

Synopsis
Declare library file(s).

Syntax
EXTERNAL LIB filename {, filename } ...

Parameters
filename is a string literal or expression containing a dL4 BASIC program filename which is
optionally preceded by a relative or absolute directory pathname.

Executable From Keyboard?
No.

Remarks
If any of the declared procedures are EXTERNAL and outside of the program, they must be in one
of a declared list of library files. At runtime, those libraries are opened and the required procedures
are dynamically linked into the calling program. The linking process consists of scanning the lists
of EXTERNAL LIB filenames loading and linking any required secondary program units until all
EXTERNAL references are resolved. EXTERNAL LIB declarations may be placed anywhere
within a program, and they affect the entire program.
filename is the name of a saved program which is to be opened during the dynamic linking phase
when the current program is first executed. Whenever a program is loaded, via CHAIN, RUN,
CALL "filename" or SWAP, all references to EXTERNAL procedures must be resolved prior to
execution. An error is generated if any EXTERNAL procedure references are unresolved.

Examples



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 121 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

External Lib "OldCalls"

External Lib "OldCalls",L$

See also
EXTERNAL SUB, EXTERNAL FUNCTION, DECLARE

EXTERNAL SUB

Synopsis
Define a subroutine.

Syntax
EXTERNAL SUB proc.name (parm.list)

Parameters
proc.name is the procedure name.
parm.list is a list of variables associated with parameters passed, optionally followed by three dots
("...").

Executable From Keyboard?
No.

Remarks
EXTERNAL identifies the subroutine as a separate secondary program unit which shares nothing
with its surrounding program and any main program unit, except channels. It is an independent
program unit within a program and visible to other program units both inside and outside of the
program. Regardless of its physical location, it has its own set of variables, Lib directory, DATA
statements, current precision, stacks, OPTIONS, etc.
Variables are passed to procedures by reference, not by name. Expressions are passed to procedures
by value. Normally, procedures need not concern themselves with what was passed, however the
caller should be aware of the appropriate calling sequence. If a procedure updates, or returns a value
in, a referenced variable, that operation will be lost if the caller passed an expression.
Sometimes the caller may intentionally wish to pass an expression to prevent the update of a local
variable passed by reference. This may be accomplished by converting the variable into an
expression. For example, the variable 'numeric' can be made an expression in the parm.list by
denoting it as (numeric + 0) and 'string$' can be denoted as (string$ + "").
The developer declares a subroutine EXTERNAL whenever:
• The subroutine is to share only variables and data passed by reference with the caller. It

declares its own data, precisions and local variables which are independent of any
surrounding program unit.

• The subroutine sets its own parameters independent of the caller.
• The subroutine shares nothing with the caller, except parameters and channels.
• Other programs need to call the subroutine.
A group of External subroutines (and functions) may be saved in a single program, called a library
file. A program which has both an executable main program unit as well as External subroutines
may also be referenced as a library by other programs. However, it is advisable to segregate shared



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 122 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

External subroutines into library files which do not include a main program unit to ensure that they
remain constant and available to other program units. An exception for compatibility purposes
might be a subroutine which is called by filename and therefore exists as a main program unit of the
library file.
Any structure variable in parm.list must be followed by an "AS struct.name" or an "AS *" clause.
Using an "AS *" clause allows the subroutine to accept any structure as a legal argument, but the
parameter can only be used in user defined intrinsics such as CALL GETSTRUCT() or as an
argument to another procedure that has an "AS *" parameter.
Any array variable in parm.list must be followed by empty brackets ("[]"). When using a subroutine
with array parameters, array variables must be followed by empty brackets. ("X = SampleIt(Y[])").
It is also permitted to define a subroutine which has a known (required) list of parameters, followed
by additional optional parameters. Optional parameters must be the last parameters in the
subroutine definition. The following example requires a numeric parameter and a string parameter,
followed by an optional number of parameters.
External Sub proc.name (parameter1, parameter2$, ... }

Subroutines of this type utilize the ENTER statement to accept optional parameters.
The EXTERNAL SUB statement is illegal in a procedure.

Examples
External Sub DoIt(D$)

Print D$

End Sub

See also
DECLARE, SUB, EXTERNAL FUNCTION, FUNCTION

FOR

Synopsis
Loop while incrementing or decrementing a numeric variable through an interval.

Syntax
FOR num.var = num.expr1 TO num.expr2 {STEP num.expr3}

Parameters
num.var is a variable of numeric data type.
num.expr1 is an expression yielding a numeric value, which is assigned as the initial value of
num.var.
num.expr2 is an expression yielding a numeric value, which is used as the limit value for num.var.
num.expr3 is an expression yielding a numeric value, which determines the amount that the num.var
is increased or decreased during each iteration of NEXT.

Executable From Keyboard?
No.

Remarks
The FOR statement is used in conjunction with the NEXT statement for repetitive statement



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 123 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

execution. Statements between the FOR/NEXT may be re-executed a given number of iterations.
This repetitive execution is known as a loop.
The num.var is termed the index variable and is used to control the loop.
Looping is initiated by setting the index variable equal to the initial value. At this point, a
preliminary check is made to see if the loop should be executed at all. If: initial > final AND step >
0, or initial < final AND step < 0, then the loop statements are not executed and the program
resumes following the associated NEXT statement (NEXT with same index variable). If not,
execution continues with the statement following the FOR.
Upon execution of the associated NEXT statement, the step value is added to the index. If the new
index will exceed the final value, normal program execution resumes at the statement following the
NEXT with the index variable set to the terminating value; e.g. if the step value is such that the
index will eventually equal the final value, the loop terminates with index = final + step. Otherwise,
index is set to the first value causing the loop to terminate.
A step value of zero will produce an infinite loop.
FOR/NEXT loops may be nested if certain precautions are taken. The following is an example of
valid nesting:
10 For A=1 To 10

20 For B=1 To 5

30 For C=B+1 To 4*A

40 ! Statements

50 Next C

60 Next B

70 Next A

The range of FOR/NEXT loops may not overlap. The following is an example of invalid nesting:
10 For I=1 To 10

20 For J=I+1 To 20

30 ! Statements

40 Next I

50 Next J

Example
For I=1 To 3

! Statements

Next I

Initially, I is set to 1, final is set to 3 and step defaults to 1. Each execution of the NEXT first checks
if (I+1)>3. When (I+1)>3, execution resumes following the NEXT with I=4.

 
10 For I=10 To 1 Step -2

20 ! Statements

30 Next I

Initially, I is set to 10, final is set to 1, and step is set to -2. Each execution of the NEXT first checks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 124 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

if (I-2)<1. When (I-2)<1, the loop terminates, in this example with I=0. The loop is performed 5
times for I = 10, 8, 6, 4, and 2.

See also
DO, EXIT FOR, NEXT

FREE

Synopsis
Deallocate (undimension) variable(s).

Syntax1
FREE var.list1

Syntax2
FREE ALL {EXCEPT var.list2}

Parameters
var.list1 is an arbitrary number of comma separated variables of any dL4 data types.
var.list2 is an arbitrary number of comma separated variables of any dL4 data types, which are not
freed.

Executable From Keyboard?
Yes.

Remarks
A freed string variable should not be referenced.
Freeing a numeric variable causes the next reference to reDim it to the last precision level.

Examples
Free N

Free N,P$,D#

Free All Except N,P$

See also
DIM

FUNCTION

Synopsis
Define a multi-line procedure which returns a value.

Syntax
FUNCTION func.name ({parm.list})

Parameters
func.name is the function name.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 125 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

parm.list is a list of variables associated with parameters passed, optionally followed by three dots
("...").

Executable From Keyboard?
No.

Remarks
FUNCTION declares a function which operates as a separate program block within a program unit
which returns a value to the caller. A Function may also operate upon, and return values through,
supplied parameters passed by reference.
A function exits and returns a value to the caller when an EXIT FUNCTION or END FUNCTION
statement is executed.
A func.name may be from one-to-thirty-two characters in length and must end with the type
designation matching the data type returned from the function. Numeric data has no suffix, strings
end with $, dates with # and binary variables end with ?. Structures may be passed and operated
upon, but a function cannot return a structure.
Whenever a function is to be used before its definition within the current program unit or program,
or physically resides in another program, a DECLARE statement must occur before its first use.
Any structure variable in parm.list must be followed by an "AS struct.name" clause or an "AS *"
clause. Using an "AS *" clause allows the function to accept any structure as a legal argument, but
the parameter can only be used in user defined intrinsics such as CALL GETSTRUCT() or as an
argument to another procedure that has an "AS *" parameter.
Any array variable in parm.list must be followed by empty brackets ("[]"). When using a function
with array parameters, array variables must be followed by empty brackets ("X = sampleIt(Y[])').
Functions may be written to allow the caller to pass other than a fixed list of parameters. Parameter
types and number are not checked by the compiler or interpreter. Rather, it is left to the function to
process each of the arguments passed by a caller.
To define a function of this type, the following general forms are supported:

Function name (...)

The definition of the function itself specifies '...' informing the compiler and interpreter to leave the
parameter type and number checking to the function.
It is also permitted to define a function which has a known (required) list of parameters, followed by
additional optional parameters. Optional parameters must be the last parameters in the function
definition. The following example requires a numeric parameter and a string parameter, followed by
an optional number of parameters.

Function func.name (parameter1, parameter2$, ... }

Functions of this type utilize the ENTER statement to accept optional parameters.
Examples

Function IsPrime(N)

If N = 1 Exit Function 0 ! not a prime number

For I=2 To Sqr(N)

If Not(Fra(N / I))

Exit Function 0 ! not prime

End If



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 126 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Next I

End Function 1 ! prime

See also
END FUNCTION, EXIT FUNCTION, EXTERNAL FUNCTION, EXTERNAL SUB, SUB

GET

Synopsis
Obtain driver-class dependent information from a channel.

Syntax
GET chan.expr var.list

Parameters
chan.expr is a driver-class dependent channel expression.
var.list is an arbitrary number of comma separated variables of any dL4 data types.

Executable From Keyboard?
Yes.

Remarks
Refer to the dL4 Files and Devices reference manual for information on using GET with a specific
driver.

Examples
Get #2,1,-1;Opt,name$

See also
SET

GOSUB

Synopsis
Unconditionally branch to a subroutine

Syntax
GOSUB label: | stmt.no

Parameters
label: is a user-defined name identifying a statement line.
stmt.no is a unique positive integer that identifies a statement line.

Executable From Keyboard?
No.

Remarks
The GOSUB statement is used in conjunction with the RETURN statement to provide traditional



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 127 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

BASIC subroutines. New programs should use the CALL and SUB statements which support
named subroutines with parameters.
GOSUB, like GOTO, performs an unconditional branch to the specified line number. Unlike
GOTO, however, the statement number performing the GOSUB is saved. Upon the execution of a
RETURN statement, normal execution would resume at the statement following the GOSUB.
GOSUB and RETURN are not paired as are FOR/NEXT; i.e. any RETURN will return to the last
GOSUB issued.
Subroutines may be nested to eight levels or the number of levels defined by the program OPTION
statements before a RETURN must be executed.
Failure to return from all nested levels can cause an error.
See the RETURN statement for variations on returning from subroutines.

Examples
Gosub 1000

Gosub Start_Input:

See also
CALL, GOTO, OPTION GOSUB NESTING, RETURN, SUB

GOTO

Synopsis
Unconditionally branch to a statement.

Syntax
GOTO label: | stmt.no

Parameters
label: is a user-defined name identifying a statement line.
stmt.no is a unique positive integer that identifies a statement line.

Executable From Keyboard?
No.

Remarks
The GOTO statement is used to unconditionally branch to another statement within a program and
resume normal execution there.
GOTO always transfers control to the first sub-statement on the specified line, and the line must
exist. For transfer to any sub-statement on a line, see the JUMP statement.
The verb GOTO may also be entered as GO TO.
A statement that performs a GOTO itself may cause an infinite loop terminated only by ESCape, or
ESCape Override [ABORT].

Examples
Goto 1000

Goto BEGIN:

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 128 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

JUMP, GOSUB

IF

Synopsis
Control conditional branching.

Syntax1
IF bool.expr {THEN} stmt {ELSE stmt}

Syntax2
IF bool.expr {THEN}

{stmt}...
ENDIF

Syntax3
IF bool.expr

' {THEN}
{ stmt } ...

{ ELSE IF bool.expr }
{ stmt } ...

{ ELSE }
{ stmt } ...

ENDIF
Parameters

bool.expr is an expression evaluated to produce a boolean value.
stmt is any valid dL4 BASIC statement.

Executable From Keyboard?
No.

Remarks
The IF statement tests a boolean expression and conditionally performs statements based on the
expression being true or false. See "Boolean Expression" in chapter 5 for a description of boolean
expressions.
The IF statement will test the given expression for validity and execute the stmt following THEN if
and only if the expression proves true. If the expression is not true, the statement is checked for the
ELSE operator. If found, the stmt following the ELSE will be executed; otherwise, the program
continues normally.
Entry of the THEN operator is generally optional.
The stmt following THEN and/or ELSE may be any BASIC statement or a stmt.no alone implying
a GOTO stmt.no. The verb GOTO can also be specifically entered, with the same result. Either
THEN or GOTO must be supplied in order to perform a GOTO.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 129 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

A false IF condition continues execution with the next statement line, instead of with the next sub-
stmt.no. When an IF is true, all remaining statements on the line are executed. An ELSE can be
used to override this feature. Both of the following examples perform the same function. In the first
example, both statements are executed if the expression A=100 is true. If false, execution resumes
on the next line of statements.
The second example performs a GOTO the next statement if the reverse expression is true,
otherwise the ELSE is executed following with the remaining statements on the line:

If A=100 Gosub 1000 \ Goto 1000

If A<>100 Goto 120 Else Gosub 1000 \ Goto 1000

The OPTION statement OPTION IF BY STATEMENTS can be used to force execution of only
one statement for each non-blocked IF statement without an ELSE. In the first example above, the
statement "GOTO 1000" is executed for any condition. With the default of OPTION IF BY LINES
in effect, the statement "GOTO 1000" is executed only for the true condition.
A blocked-IF structure provides a more convenient method of executing several statements for both
the true and false conditions for applications.
Blocked-IF statements are assumed whenever an IF or ELSE IF statement ends following an
expression. No stmts may follow the expression excepting an optional REM.
Inclusion of an ELSE or ELSE IF block is optional. The THEN statement is completely ignored
and can be omitted, if desired. THEN, ELSE, and ENDIF must be the only statements on their line
(except that they may be followed by a trailing REM comment).
Statements to be executed on the expression being true follow the IF (or THEN) on subsequent
lines. All statements up to the associated ELSE or ENDIF are part of the true condition.
ELSE defines an optional block of stmts to execute when the corresponding Blocked-IF was false.
ENDIF defines the end of a blocked IF.
Blocked-IFs can be nested to any level, and are indented like FOR-NEXT loops for readability.
There must be an ENDIF for every blocked-IF in the program. The integrity of the blocked-IFs is
checked by the RUN, CHAIN, SAVE, VERIFY and CHECK commands. Once checked, a
program is flagged OK eliminating further verification until a statement is changed within a
program.

Examples
If A*5 > B*10 Then Call PrintReport

If Len(A Using A$ TO ".") >132 Print #3;

If A-5 Then 340 Else If J=100 Gosub 100 Else Stop

If C$[1,1]<=Z$[10,10] And C$<>"X" Then 280

If (J=10 Or C=20) And (T=10 OR F=12) Stop

 

Blocked-IF:

If A=100 And B=200

Print A,B

Else If A=100

Print B

Else



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 130 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Print A

End If

See also
ELSE, THEN, END IF, GOTO, JUMP, OPTION IF, SELECT CASE

IF ERR 0 | 1

Synopsis
Specify a statement to execute when an error occurs.

Syntax
IF ERR 0 | 1 {stmt}

Parameters
stmt is any valid dL4 BASIC statement.

Executable From Keyboard?
No.

Remarks
IF ERR 0 is used to specify a line of statements to be executed upon the occurrence of any error.
IF ERR 1 may also be used to specify an error branch, however a separate error number is not
reserved for [INTERRUPT].
When an IF ERR 0 statement is executed, any existing error branching from a previous IF ERR 0 ,
ERRSET, or ERRSTM is reset to the stmts following the IF ERR 0. Normal execution resumes at
the next BASIC line, reserving all stmts following IF ERR 0 for error processing.
ESCape is also trapped generating a special Error code to the application.
ESCSTM, ESCSET, EOFSET, and ESCDIS statements can be used in addition to IF ERR.
Error statement processing remains in effect until an ERRCLR or IF ERR 0 statement is executed
without any trailing stmt.
IF ERR statements must be the last statement of a multi-statement line.
IF ERR statements are illegal in a procedure.

Examples
If ERR 0 Gosub 1000

If ERR 0

See also
EOFSET, ERR, ERRSET, ERRSTM, ERRCLR, JUMP

INPUT

Synopsis
Retrieve keyboard or channel input.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 131 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax1
INPUT [{LEN num.expr1;} {TIM num.expr2;} {KEY str.var; } { (num.expr3, num.var)}
{crt.expr;} {str.lit} var.list ] ...

Syntax2
INPUT chan.expr [{LEN num.expr1;} {TIM num.expr2;} {KEY str.var; } { (num.expr3,
num.var)} var.list ] ...

Parameters
num.expr1 is an expression yielding the maximum number of characters to read.
num.expr2 is an expression yielding the tenth-seconds time limit.
str.var receives the input terminating character, if any.
num.expr3 is an expression yielding an input mode.
num.var is a variable of numeric data type.
crt.expr indicates a CRT expression used to position the cursor.
str.lit is a literal text prompt message.
var.list indicates a list of variables of any dL4 data types, excluding structures, binary, and array
data types, to receive input.
chan.expr is a driver-class dependent channel expression.

Executable From Keyboard?
Yes.

Remarks
If a chan.expr is specified, the input for this statement will be satisfied by the selected channel. If
the chan.expr is not specified (or the selected channel is not open), input will be taken from the
standard input channel, usually the keyboard. The standard input channel can also be specified by
using channel -3. When requesting input from a chan.expr, the crt.expr, num.expr1, num.expr2, and
str.lit options should not be used.
If a crt.expr is specified, it is evaluated and output. Typically, a crt.expr is used to position the
cursor on the screen and/or clear lines, etc. prior to the request for input. Use of a crt.expr will
suppress the normal prompt unless a specific str.lit is specified.
If a str.lit is specified, the default prompt-message ? is replaced by the literal text within quotes. A
null prompt "" suppresses the output of the prompt-message as does the inclusion of any crt.expr.
If a LEN num.expr1; is specified, the num.expr1 is evaluated, truncated to an integer and set as the
maximum number of characters to be accepted for input. Unless a special input mode (such as
binary input) is in effect, the [ENTER] character may be used to terminate a character limited input
prior to exhausting the specified character count. If num.expr1 is greater than 16384, then input can
be terminated only by the [ENTER] character and at most (num.expr1 - 16384) characters will be
accepted.
If a TIM num.expr2; is specified, the num.expr2 is evaluated, truncated to an integer and set as the
number of tenth-seconds to wait for input. If no input is seen within the specified interval, a system
SIGNAL is sent to the program with the actual number of characters entered. A SIGNAL 5
statement should immediately follow to prevent overflowing the communication buffer. If timeout
signals have been disabled by an "OPTION INPUT TIMEOUT SIGNAL OFF" statement, a
timeout will cause an error. If num.expr2 equals -1, the input will timeout immediately.
Both a TIM num.expr1; and LEN num.expr2; can be specified on the same INPUT statement.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 132 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Length or time limits may also be specified using num.expr2. A special num.expr3 value is provided
to read the contents of the terminal's input buffer and is used by programs to read parameters
entered on a command line. Two different mechanisms exist to invoke control features.

(num.expr3, num.var) control with a returned response

The num.expr3 is evaluated and truncated to an integer. The second parameter must be a num.var
and will be set following the INPUT as the response.
If the num.expr3 evaluates to zero, the entire contents of the input buffer is selected as the input.
The num.var is not set to any value in this mode. Typically, this mode is used within a program that
can accept its input from a command line. To read the last command line, the input must be
performed prior to any other INPUT or PRINT statements which corrupt the input buffer.
If the num.expr3 evaluates to a positive value, the program is suspended for that number of tenth-
seconds or until the [ENTER] character is entered terminating the input. The actual number of
tenth-seconds that were spent waiting for INPUT is returned as a positive value in num.var. If no
[ENTER] character (return) is received within the specified interval, the num.var is set to the
negative of the specified tenth-second wait interval and any input characters are passed to the
INPUT var.list.
If the num.expr3 evaluates to a negative value, the value is converted to a positive number selecting
the maximum number of characters to be accepted for input. -5 causes the system to wait for the
input of 5 characters. The actual number of input characters is returned in the num.var. The
[ENTER] character may be used to terminate a character limited input prior to exhausting the
specified character count.
GENERAL OPERATION OF DATA INPUT
Following the parsing of the optional parameters, the program is suspended while data is read from
the standard input; usually the terminal. Characters previously entered (and buffered) are processed
first.
Characters are echoed (for keyboard input) unless echo is disabled by the previous entry of the
[TOGGLEECHO] character (normally CTRL E), the 'IOEE' mnemonic, or a SYSTEM 9
statement.
If the INPUT is not satisfied, the program is suspended until the [ENTER] character (return) is
entered, the specified character limit is reached, or a time-out occurs on timed input. When any of
these conditions occurs, the program resumes operation and begins processing input into the
variables defined in the var.list. The [ESCAPE] or [ABORT] characters will terminate input and
abort the statement.
SYSTEM 26 and 27 alter the operation of character limited input. Normal operation is to
automatically resume execution of the program when the limiting number of characters have been
processed. Executing a SYSTEM 27 forces character limited INPUT to require entry of the
[ENTER] character (return). When the limit is reached, the terminal's bell is sounded and extra
characters (except for edit keys) are ignored. SYSTEM 26 resets character limited input to operate
normally, that is, resume execution when the limiting number of characters have been processed.
No special processing is performed on the characters received. Data is passed to the program
exactly as received from the driver (see the dL4 Files and Devices reference manual)...
When binary input IOBI (or SYSTEM 14) is enabled, all characters are passed directly to the
program. All character input processing for [ENTER], [ESCAPE], [BACKSPACE], etc. is
suspended and the program must process all input data.
WARNING: When using Binary Input, it is possible to lock the terminal if your program does not
provide a way to terminate itself. If you lock a terminal, use another port to HALT or otherwise
terminate the locked program.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 133 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Cursor tracking can be enabled by printing a ‘BCTRACK’ mnemonic as the final character of str.lit
or in a preceding PRINT statement (assuming there is no str.lit string).
When a str.var is specified in the var.list, all characters are copied up to, but not including the
[ENTER] character. If the input is larger than the specified str.var, the extra input characters are
discarded. If the input does not fill up the destination str.var, a zero-byte terminator is placed after
the last character of data. If "KEY" is specified, then the [ENTER] character will be returned in
str.var.
If a num.var is specified in the var.list, the input characters are converted to numeric and stored into
the num.var. An error is generated if the input is not numeric or contains characters other than digits
+ - . or E notation. If error branching is in effect, the MSC(1) function (Last INPUT Element) may
be used to determine which input item was in error. For example:

10 Errset 40

20 Input A,B,C,D

30 End

40 Print "ERROR IN INPUT VARIABLE";Msc(1)

The user would enter the item or items, separating multiple items with a comma "," or [ENTER]. If
too many items are entered, a non-abortive error is generated and the extra items are ignored.
Numeric values may be entered in scientific notation; however, commas are not allowed within a
numeric item; e.g. 1,200 must be entered as 1200. To abort the INPUT statement, press ESCape.

Examples
Input Tim 10; Len 30; "CUSTOMER NAME >"A$

Input @10,23;"Press [RETURN]" T$

Input (-1,K) "Enter a single character "A$

Input "4 numbers w/ comma ? "A,B,C,D

See also
SYSTEM, READ

INTCLR

Synopsis
Clear interrupt event branching.

Syntax
INTCLR

Parameters
None.

Executable From Keyboard?
No.

Remarks
INTCLR restores normal operation with respect to user interrupts. [INTERRUPT], SIGNAL 1,
and SEND no longer automatically interrupt the program and branch to a specific INTSET
statement number.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 134 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
Intclr

See also
INTSET, SIGNAL, SEND

INTSET

Synopsis
Enable branch to statement on interrupt events.

Syntax
INTSET label: | stmt.no

Parameters
label: is a user-defined name identifying a statement line.
stmt.no is a unique positive integer that identifies a statement line.

Executable From Keyboard?
No.

Remarks
INTSET sets the selected label: or stmt.no to receive control each time an interrupt character is
pressed or a message is waiting to be received. The [INTERRUPT] action may be assigned to any
character, but it is normally defined as CTRL-C. INTCLR removes the branching, and further
interrupt requests or messages are ignored.
A program branch is defined to transfer execution to a pre-defined statement when either an
'interrupt' character is pressed or a message is transmitted to your port via the SEND or SIGNAL
statements.
The interrupt handling routine can do any processing desired and return to the main program as if
the branch never occurred. Secondary interrupts are inhibited until the program clears the initial
interrupt. This is done using the ERR(3) function, which also yields the original interrupted
statement number. Generally, an interrupt handling routine loops until all interrupts or messages are
received. The main body of the program is resumed using the statement:

stmt.no Jump ERR(3)

or
stmt.no Jump ERR(3);ERR(7)

The latter form is required if multi-statement lines are used within the program.
The interrupt function should not use the ERR(3) function other than shown above unless it is re-
entrant and stacks multiple return locations.

Examples
Intset 1000 ! Branch on Signal, CTRL C

Intset USER ! Branch on Signal, CTRL C

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 135 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

INTCLR, SEND, SIGNAL

JUMP

Synopsis
Transfer control immediately to another location.

Syntax
JUMP stmt.no {; sub.stmt} {, num.var}

Parameters
stmt.no is a numeric expression whose integer value is a statement line number.
sub.stmt is a numeric expression that identifies a sub-statement in a statement.
num.var is a variable of numeric type that is set to the statement number following JUMP.

Executable From Keyboard?
No.

Remarks
The stmt.no is any num.expr which, after evaluation is truncated to an integer and used as the
statement number to branch to. The optional sub.stmt is any num.expr which, after evaluation is
truncated to an integer and used as the sub-statement on that line. JUMP performs an unconditional
branch to the selected statement (and sub-statement). On multi-statement lines, sub-statements are
numbered starting at 1.
If the optional num.var is supplied, it will be set to the statement number of line following JUMP.
This is similar to the GOSUB statement, as a subsequent JUMP to this variable will essentially
perform a RETURN. The num.var will is set to zero when the JUMP is the last statement of a
program.
JUMP statements are in no way affected by the RENUMB command. Therefore, they are not an
acceptable substitute for GOTO or GOSUB when a literal stmt.no can be used.
JUMP is best used in conjunction with system functions that supply statement numbers, retaining
the program's ability to be renumbered.
The JUMP statement is illegal in a procedure.

Examples
Jump K*10

Jump Spc(10)

Jump ERR(1);ERR(4),J

See also
ERR, ESCSET, ERRSET, INTSET, GOSUB, GOTO

KILL

Synopsis
Delete file(s).



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 136 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
KILL filenames {AS driver-class | driver-name } {, filenames {AS driver-class | driver-name } }
...

Parameters
filenames is a string literal or expression containing one or more space separated filenames.
driver-class specifies the driver-class.
driver-name specifies the driver-name.

Executable From Keyboard?
Yes.

Remarks
If an error occurs, the statement is aborted and any remaining filenames within the str.lit or str.expr
are not deleted. Furthermore, other filenames are not processed.
The result of deleting a file that is currently in use or open is operating system dependent. On some
operating systems, an error will be generated. On other operating systems, the effect is to remove
the entry of the filename from the system directory preventing it from being opened again. When
the last user closes the file, the system releases the disk space. Prior to closing, all types of access,
including extending the file, is permitted.

Examples
KILL "23/ABC 23/DEF"

KILL A$,B$,C$

See also

LET

Synopsis
Assign values to variables.

Syntax1
{LET} var.name = expr { ; var.name = expr } ...

Syntax2
{LET} str.var = str.expr TO str.expr {: num.var}

Syntax3
{LET} str.var = num.expr USING str.expr {,str.expr ...}

Parameters
var.name is a variable name.
expr is a series of constants, variables, functions, and operators to define a desired computation.
str.var is a variable of string data type.
str.expr is an expression yielding a string value or a string variable.
num.var is a variable of numeric data type.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 137 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Executable From Keyboard?
Yes.

Remarks
The type of expr must match that of var.name except for the following cases:
if var.name is numeric, then expr must either be numeric or a string expression that begins with a
number in character form.
if var.name is a string, then expr must either be a string, a number, or a date.
if var.name is a date, then expr must either be a date or a string expression that begins with a date in
character form.

In each of the special cases, expr will be converted to the type of var.name.

If var.name is a structure variable, then expr must be a structure variable whose members match the
types of the members of var.name.
The LET verb is optional, and is assumed when not entered. Although entry of the LET verb is
optional, it is printed whenever the program is listed.
Multiple assignments may appear on a single line separated by semicolons.

Z=100;Q=1;N=0;A$="TXXX"

Numeric formatting is performed within a LET statement with the USING operator. This is
functionally equivalent to the EDIT statement.

Let D$=X Using "##,###.##"

Let E$=X Using "##,###.##",Y,Z

In the above examples, X is formatted into the USING string. This string is then assigned to the
str.var. If the str.var is not DIMed as large as the USING string, the USING string is truncated.
This will result in a loss of the corresponding right most digits of X.
Note that the USING operator is not part of the LET statement, but is instead a general purpose
operator that can be used wherever a string expression is accepted and in any statement.
The TO operator allows assignment of string data to terminate upon encountering a given str.expr.
The str.expr may be a single or multiple character string. The optional num.var returns the character
position at which assignment stopped.

Let N$="ABCDEF%GHIJKL"

Let S$=N$ To "%":K

returns: S$="ABCDEF",K=7

If the optional num.var is used, only the first character of the second str.expr will be used to perform
the search. This form of the TO operator is recognized only in the LET statement.

Examples
Let V=1

Let T$=1/3

Let A=42;T=17;R7=91

Let B[7]=(A*T)+(R7/4) Using "#####"

Let A$="1234565";T=A$;B$=A$ To "45":T1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 138 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Let D#="January 2, 1996 11:00"

See also
DEF STRUCT, COM

LIB

Synopsis
Specify alternate directories to locate program files.

Syntax
LIB str.expr | num.var

Parameters
str.expr is an expression yielding a string value or a string variable which indicates a space-
separated list of relative or absolute directory pathnames.
num.var is a variable of numeric data type which is set to a single directory number.

Executable From Keyboard?
No.

Remarks
A value of -1 may be used to clear a defined library logical unit.
The library unit is the first unit searched by CALL for a subprogram file, unless the subprogram
filename itself specifies a full pathname.
SPC 23 is used to determine the current library logical unit, however its return value is only valid
when the library logical unit is numbered.

Examples
Lib -1

Lib "pgms menus"

See also
CHAIN, OPTION CHAIN ALTERNATE DIRECTORIES, SWAP

LINE

Synopsis
Draw a line on a display device.

Syntax
LINE {chan.no;} {@x1,y1;} TO @x2,y2; { TO @x2,y2; } ...

Parameters
chan.no identifies a valid channel number.
x1,y1 are the column, row coordinates of the start of a line.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 139 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

x2,y2 are the ending column, row coordinates of a line.
Executable From Keyboard?

Yes.
Remarks

Line drawing is a function of the window and printer drivers. If running on a character terminal,
your terminal description file must contain a definition for the mnemonic #,#LINETO.
If @x1,y1 is not specified, the current cursor position is assumed.
TO is a keyword which must be followed by the ending coordinate position of the line segment.

Examples
Line @3,3; To @30,3;

Line @3,3; To @3,9; TO @30,9;

Line To @30,1;

See Also
BOX

LOOP

Synopsis
End a DO loop block.

Syntax
LOOP { WHILE bool.expr | UNTIL bool.expr }

Parameters
None.

Executable From Keyboard?
No.

Remarks
The WHILE or UNTIL bool.expr provides the loop with a specific termination condition. WHILE
provides for looping as long as the bool.expr remains true, whereas UNTIL provides for looping as
long as the bool.expr remains false - that is until it becomes true.
The optional WHILE or UNTIL clause may be placed on the line containing the LOOP statement
to ensure that at least one iteration is performed.
Upon execution of the LOOP statement, execution resumes at the statement following the
corresponding DO if the bool.expr is true. If the bool.expr is false, execution resumes at the
statement following the LOOP.
Each LOOP must have exactly one matching DO statement. The compiler ensures that all loops are
properly matched. Although not recommended, branching from outside to inside a DO loop will not
cause an error, rather the program will remain in the loop until it terminates. The DO statement
itself need not be executed to commence looping.

Examples
Do



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 140 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

done = 1

Print done

If done Exit Do

Loop

See also
DO, DO UNTIL, DO WHILE, EXIT DO

MAP

Synopsis
Assign a logical index or an item number to an index or field name.

Syntax
MAP chan.expr str.expr

Parameters
chan.expr is driver-class dependent channel expression.
str.expr is an expression yielding a string value.

Executable From Keyboard?
Yes.

Remarks
Often it is necessary to work with a subset of fields within a database or provide for later changes
in the field content or order within the file. The MAP statement allows a program to 'marry' a
structure definition to the current file's data dictionary.
This kind of dynamic record access not only insulates the application from certain modifications to
the file structure, but also could be used by individual programs to limit record accesses to only
those fields which are directly used. Depending on the format of the underlying record data (which
is subject to the rules of the actual file being driven; FoxPro, etc.), this may circumvent
unnecessary data conversion and thereby boost performance.
MAP can also be used to define the logical index or directory number used within the application.
This statement allows a program to be written using a hard-coded directory number, which is then
logically mapped to the physical directory number within the file.

Examples
Map #2, 0, 0, -1; "CustNum"

Map #2, 0, 1, -1; "Name"

Map #2, 0, 2, -1; "YtdSales"

Map #2,1; "ByCustNum"     ! map ByCustNum key to index # 1

See also
MAP RECORD

MAP RECORD



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 141 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Assign an alternate item number mapping.

Syntax
MAP RECORD chan.no AS struct.name

Parameters
chan.no is a valid channel number.
struct.name is a structure tag name which was defined using DEF STRUCT.

Executable From Keyboard?
Yes.

Remarks
Often it is necessary to work with a subset of fields within a database or provide for later changes in
the field content or order within the file. The MAP RECORD statement allows a program to 'marry'
a structure definition to the current file's data dictionary.
struct.name is the name of a template DEF STRUCT structure definition which is to be aligned
with the fieldnames of the database, or named index within the database. struct.name members must
have ITEM fieldname or dictionary name definitions.
MAP RECORD defines an alternate item number mapping at run-time. This statement allows a
custom (sub-) record schema for record access, but does so dynamically by the item's fieldname.
The fieldnames given within the Customer structure are used to align each member to its current
item number within the file. For example, if the field "Addr", which is item 1 in the structure, is
currently item 4 in the physical record, a MAP RECORD would cause the driver to perform the
necessary item-number translation so that any further access to item 1 will actually access item 4.
This kind of dynamic record access not only insulates the application from certain modifications to
the file structure, but also could be used by individual programs to limit record accesses to only
those fields which are directly used. Depending on the format of the underlying record data (which
is subject to the rules of the actual file being driven; FoxPro, etc.), this may circumvent unnecessary
data conversion and thereby boost performance.

Examples
Map Record #2 As CUSTREC

See also
MAP

MAT =

Synopsis
Copy an entire matrix.

Syntax
MAT destination.var.mat = source.var.mat

Parameters
destination.var.mat is any destination numeric matrix variable.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 142 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

source.var.mat is any source numeric matrix variable.
Executable From Keyboard?

Yes.
Remarks

The destination.var.mat must be at least as large as the source.var.mat. In the following example,
matrix A is dimensioned as [5,5] and matrix B as [6,6]:
Mat B=A is acceptable.
Mat A=B Is illegal since A is not large enough to contain all of the elements in B.
The copy is performed element by element. An error or integer truncation can occur if the
precisions are not compatible. Row and column zero are not copied. MAT = cannot be used to copy
single element arrays.

Examples
Mat T=D0

Mat T[4,4] = D9

Mat T[5]=G

See also
DIM, FOR, NEXT

MAT +

Synopsis
Add elements from two matrices.

Syntax
MAT destination.var.mat = source.var.mat1 + source.var.mat2

Parameters
destination.var.mat is any destination numeric matrix variable.
source.var.mat1 is any source numeric matrix variable.
source.var.mat2 is any source numeric matrix variable.

Executable From Keyboard?
Yes.

Remarks
The two matrices being added must be exactly the same dimensions (rows and columns). The
destination.var.mat, if not already defined, is dimensioned at the current default precision for the
same number of rows and columns as the source.var.mat. An error or integer truncation can occur if
the precisions are not compatible. Row and column zero are not added.
The same matrix variable may appear on both sides of the equation.

A[X,Y]=A[X,Y]+B[X,Y]

The sum, matrix D, of matrix A and matrix B is:
D[X,Y]=A[X,Y]+B[X,Y]



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 143 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

for each matrix element.
Examples

Mat T=D0+A9

Mat D0=D0+J

See also

MAT *

Synopsis
Multiply elements of two matrices.

Syntax
MAT destination.var.mat = [ source.var.mat1 | (num.lit ) ] * source.var.mat2

Parameters
destination.var.mat. is any destination numeric matrix variable.
source.var.mat1 is any source numeric matrix variable.
num.lit is a numeric literal.
source.var.mat2 is any source numeric matrix variable.

Executable From Keyboard?
Yes.

Remarks
MAT * performs a multiplication, establishing a new matrix equal to the product of two matrices.
Scalar multiplication allows each element of a matrix to be multiplied by a constant.
Following the rules of matrix multiplication, if we multiply matrix A dimensioned [X,Y] by matrix
B dimensioned [R,S], then the resulting matrix will be dimensioned [X,S]. An error or integer
truncation can occur if the two precisions are not compatible. Row and column zero elements are
not multiplied.
The same matrix variable may not appear on both sides of the equation.
Scalar multiplication causes each element of the given matrix to be multiplied by the value of the
num.lit. The num.lit must be in parentheses, and immediately follow the equal sign (=).

Examples
Mat D=A*B

Mat Q=X*X

Mat C=(5)*A

See also

MAT CON

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 144 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Create a constant matrix.
Syntax

MAT destination.var.mat = CON { “[“num.expr1{, num.expr2 }”]” }
Parameters

destination.var.mat is any destination numeric matrix variable.
num.expr1 is a numeric expression yielding a dimension.
num.expr2 is a numeric expression yielding a dimension.

Executable From Keyboard?
Yes.

Remarks
Each element of the destination.var.mat is set to the constant value one. Row and column zero are
not set.
The optional num.expr1 and num.expr2 are evaluated, truncated to integer and used to select a new
working size. The total number of elements in the new size cannot exceed that of the old. A single
element array can be converted to a matrix or vice versa as long as the total number of elements
does not exceed the original DIMensioned size. For example, a [4,4] matrix has 25 actual elements
and could be re-declared as CON[25].
A constant other than one can be accomplished using a combination of the CON function and
Scalar multiplication:

Mat A=CON \ Mat B=(5)*A \!Fill B with 5's.

Any array created by a MAT statement with a single dimensions assumes a second dimension of
one. For example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Examples
Mat A=CON

Mat D0=CON[7,X/2]

See also

MAT IDN

Synopsis
Create an identity matrix.

Syntax
MAT destination.var.mat = IDN { “[“num.expr1 {, num.expr2 } “]” }

Parameters
destination.var.mat is any destination numeric matrix variable.
num.expr1 is a numeric expression yielding a dimension.
num.expr2 is a numeric expression yielding a dimension.

Executable From Keyboard?
Yes.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 145 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Remarks
The matrix function IDN establishes an identity matrix of all zeroes with a diagonal of ones.
Any matrix multiplied by an identity matrix of the same size results in the original matrix. For
example: If matrix A is dimensioned [3,3] and matrix B is an identity matrix also dimensioned
[3,3], the result of: Mat C=A*B produces matrix C equal to A. Row and column zero are not
affected by IDN.
The optional num.expr1 and num.expr2 are evaluated, truncated to integer and used to select a new
working size for the array. The total number of elements in the new size cannot exceed that of the
old. A single element array can be converted to a matrix or vice versa as long as the total number of
elements does not exceed the original DIMensioned size. For example, a [4,4] matrix has 24 actual
elements and could be re-declared as IDN[25]. An identity array is an array of all zeros.
Any array created by a MAT statement with a single dimensions assumes a second dimension of
one. For example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Examples
Mat Q=IDN
Mat T=IDN[4,4]

Mat A8=IDN[X,Y]

See also
DIM

MAT INPUT

Synopsis
Assign keyboard/file input to a matrix.

Syntax
MAT INPUT {chan.expr} var.list

Parameters
chan.expr is driver-class dependent channel expression.
var.list is a list of comma separated numeric matrix variables.

Executable From Keyboard?
Yes.

Remarks
MAT INPUT is used to assign values to an entire matrix. The values are accepted from either
keyboard (operator) input, or through a channel (file or device).
Execution of a MAT INPUT statement pauses the program after output of a ? to your terminal. The
program is then suspended and data input is accepted. The user would enter all matrix items,
separating each item with either a comma , or [ENTER] (return). MAT INPUT does not complete
until all elements have been accepted.
The array elements are assigned by rows, starting with [1,1] thru [1,n], then continuing with [2,1]
thru [2,n], etc. Row and column zero are not assigned. For example, a 4 by 4 matrix might be
entered as:



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 146 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

17,42,87,12 <-

18,14,26,14 <-

15,0,18,29 <-

34,29,86,69 <-

Using MAT INPUT from a channel is similar to terminal MAT INPUT, except the data is read
from the channel and must include row and column zero elements. The data must be separated by
either commas or [EOL] (return), and cannot be in the format generated by a MAT PRINT #.
Any array created by a MAT statement with a single dimensions assumes a second dimension of
one. For example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Example
Mat Input T

Mat Input A,B[4,10],C

Mat Input #3;X

Mat Input #2,R,20;E1,E2

See also
INPUT, MAT PRINT

MAT INV

Synopsis
Invert a matrix.

Syntax
MAT destination.var.mat = INV(source.var.mat)

Parameters
destination.var.mat is any destination numeric matrix variable.
source.var.mat is any source numeric matrix variable.

Executable From Keyboard?
Yes.

Remarks
The matrix function INV establishes one square matrix as the inverse of another.
Only square matrices (number of rows = number of columns) may be inverted. Both matrices must
also be the same precision and dimension. Row and column zero are not affected by INV.
The DET function supplies the determinant of the last matrix inverted by your program, e.g. if two
matrices are inverted before the DET function is used, the determinant returned will be from the
second inversion.

Examples
Mat C=INV(A)

Mat R7=INV

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 147 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

DET, DIM

MAT PRINT

Synopsis
Print contents of matrix(ces).

Syntax
MAT PRINT {chan.expr } var.mat.list { , | ; }

Parameters
chan.expr is a driver-class dependent channel expression.
var.mat is a list of comma or semicolon separated numeric matrix variables.

Executable From Keyboard?
Yes.

Remarks
Each var.mat is printed in character form without subscripts. Each variable may be followed by
either a comma (,) or a semicolon (;). A comma will cause the matrix variable preceding it to be
spaced using comma fields. These are generally 15 characters long. A semicolon will cause minimal
spacing between elements. Elements are normally preceded by a space or "-", indicating negative or
positive, and will be followed by one space. When all items in a matrix row have been output, two
blank lines are output to produce double spacing between rows.
Row and column zero elements are only printed for MAT PRINT when the data is directed through
a channel.
If a channel is specified to MAT PRINT, output is attempted to that channel. If the selected
channel is not open, output is sent to the terminal.

Examples
Mat Print A

Mat Print I,J

Mat Print X;Y;Z;

Mat Print #3,T;H1,S1

See also

MAT RDLOCK

Synopsis
Read an array, matrix or string with locking.

Syntax
MAT RDLOCK chan.expr var.list

Parameters
chan.expr is a driver-class dependent channel expression.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 148 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

var.list is a list of comma separated variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

MAT RDLOCK transfers data into any dL4 data type. The operation is similar to a READ
statement, except that an entire array or matrix is transferred; including row and column zero
elements. If the specified var is a string, its entire specified length is transferred including zero-byte
terminators.
If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size
and precision.
If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are
transferred including zero-bytes if support by the file type and driver (refer to the dL4 Files and
Devices reference manual).
MAT RDLOCK transfers data and unconditionally locks the record.. The data record remains
locked until a non-locking operation is performed by that same program to the same channel. While
a record is locked, other users will be unable to access the record.
MAT RDLOCK is identical to MAT READ omitting the trailing semicolon.
See the MAT READ statement for details on the transfer of data to different types of files.

Examples
Mat Rdlock #3,R1,100;A

Mat Rdlock #C,R;A$

See also
MAT READ

MAT READ

Synopsis
Read a matrix from DATA or a channel.

Syntax1
MAT READ chan.expr var.list { ; }

Syntax2
MAT READ var.mat.list

Parameters
chan.expr is a driver-class dependent channel expression.
var.list is a list of comma separated variables of any dL4 data types.
";" unlocks the record after a successful MAT READ.

Executable From Keyboard?
Yes.

Remarks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 149 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax 1:
MAT READ transfers data into any dL4 data type. The operation is similar to a READ statement,
except that an entire array or matrix is transferred; including row and column zero elements. If the
specified var is a string, its entire specified length is transferred including zero-byte terminators.
If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size
and precision.
If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are
transferred including zero-bytes if support by the file type and driver (refer to the dL4 Files and
Devices reference manual).
The optional semicolon (;) terminator eliminates the automatic record-lock applied to the supplied
record in the chan.expr. Applications may also utilize MAT RDLOCK for operations with locking
transfers.
Syntax 2:
MAT READ attempts to transfer data into each dL4 data type listed in the statement. Transfer of
each element terminates at a comma (,) or at the end of the DATA statement. The format of the data
is left to the user. Attempting to read string data into a numeric variable produces the error DATA
of wrong type (numeric/string).
MAT READ transfers data sequentially from DATA statements until the entire matrix has been
assigned. Row and column zero are not read.
See the READ and DATA statements for other rules governing reading from DATA statements.

Examples
Mat Read #3,R1,100;A,B$,C[12]

Mat Read #C,R;A$

Mat Read A[2,2], B$

Mat Read B$, J

See also
READ, DATA, MAT WRITE, READ

MAT TRN

Synopsis
Transpose a matrix.

Syntax
MAT destination.var.mat = TRN( source.var.mat)

Parameters
destination.var.mat is any destination numeric matrix variable.
source.var.mat is any source numeric matrix variable name.

Executable From Keyboard?
Yes.

Remarks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 150 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

The matrix function TRN is used to establish one matrix as the transposition of another.
Transposition causes each element [X,Y] of the original matrix to be moved to element [Y,X] of the
transposed matrix. Note that this also causes the dimension of the transposed matrix to be the
reverse of the original. For example:

Original matrix [3,4] Transposed matrix [4,3]

1 2 3 4 1 5 9

5 6 7 8 2 6 10

9 10 11 12 3 7 11

4 8 12

An error or integer truncation can occur if the two matrix precisions are not compatible. Row and
column zero are not affected by TRN.
Any array created by a MAT statement with a single dimensions assumes a second dimension of
one. For example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Examples
Mat C=TRN(A)

Mat R7=TRN

See also
DIM

MAT WRITE

Synopsis
Write a variable to a channel.

Syntax
MAT WRITE chan.expr var.list { ; }

Parameters
chan.expr is a driver-class dependent channel expression.
var.list is a list of comma separated variables of any dL4 data types.
";" unlocks the record after a successful MAT WRITE.

Executable From Keyboard?
Yes.

Remarks
MAT WRITE transfers data from any dL4 data type to the file opened on the supplied chan.expr.
The operation is similar to a WRITE statement, except that an entire array or matrix is transferred;
including row and column zero elements. If the specified var is a string, its entire specified length is
transferred including zero-byte

terminators.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 151 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

and precision.
If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are
transferred including zero-bytes if support by the file type and driver (refer to the dL4 Files and
Devices reference manual).
The optional semicolon (;) terminator eliminates the automatic record-lock applied to the supplied
record in the chan.expr. Applications may also utilize MAT WRLOCK for operations with locking
transfers.

Examples
Mat Write #3,R1,100;A,B$,C[12]

Mat Write #C,R;A$

See also
MAT READ, WRITE

MAT WRLOCK

Synopsis
Write a variable to a channel with locking.

Syntax
MAT WRLOCK chan.expr var.list

Parameters
chan.expr is a driver-class dependent channel expression.
var.list is a list of comma separated variables of any dL4 data types.

Executable From Keyboard?
Yes.

Remarks
MAT WRLOCK transfers data from any dL4 data type to the file opened on the supplied
chan.expr. The operation is similar to a WRITE statement, except that an entire array or matrix is
transferred; including row and column zero elements. If the specified var is a string, its entire
specified length is transferred including zero-byte terminators.
If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned
size and precision.
If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are
transferred including zero-bytes if support by the file type and driver (refer to the dL4 Files and
Devices reference manual).
MAT WRLOCK transfers data and unconditionally locks the record. The data record remains
locked until a non-locking operation is performed by that same program to the same channel.
While a record is locked, other users will be unable to access the record.
See the MAT WRITE statement for details on the transfer of data.

Examples
Mat Wrlock #3,R1,100;A



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 152 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Mat Wrlock #C,R;A$

See also
MAT READ, WRITE

MAT ZER

Synopsis
Zero an entire matrix.

Syntax
MAT var.mat = ZER { "[" num.expr1 {, num.expr2 } "]" }

Parameters
var.mat is any numeric array or matrix variable.
num.expr1 is a numeric expression yielding a dimension.
num.expr2 is a numeric expression yielding a dimension.

Executable From Keyboard?
Yes.

Remarks
The matrix function ZER allows each element of a matrix to be set to zero. Row and column zero
are not set. To set the elements of row and column zero to a zero use the CLEAR statement.
The optional num.expr1 and num.expr2 are evaluated, truncated to integer and used to select a new
working size for the array. The total number of elements in the new size cannot exceed that of the
old. A single element array can be converted to a matrix or vice versa as long as the total number of
elements does not exceed the original DIMensioned size. For example, a [4,4] matrix has 25 actual
elements and could be re-declared as ZER[24].
Any array created by a MAT statement with a single dimensions assumes a second dimension of
one. For example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Examples
Mat C=ZER

Mat R7=ZER[4,4]

See also
CLEAR

MEMBER

Synopsis
Define a member associated with a specific structure.

Syntax1
MEMBER {%prec | prec% ,} var.list {, { %prec | prec% ,} var.list} ...

Syntax2



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 153 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

MEMBER {%prec | prec% ,} var.name [: ITEM id] { : DECIMALS digits} { :RAW }
Syntax3

MEMBER {%prec | prec% ,} var.name [: KEY id option.list] { : DECIMALS digits}
Parameters

prec indicates the precision number defined for the variable.
var.list is a list of comma separated variable names of any dL4 data types.
var.name is the name of a variable.
id is a string or a numeric literal identifying a fieldname or an item number.
digits is a numeric literal identifying the number of decimal digits.
option.list is a list of UPPERCASE, ASCENDING, DESCENDING, DUPLICATES, UNIQUE,
VARLEN, and/or PACKED key options, each preceded by a plus sign ("+").

Executable From Keyboard?
No.

Remarks
MEMBER var.name is any legal variable name, or precision declaration in the form:  %prec or
prec%. var.name may be any dL4 data type. The syntax and function of MEMBER statements are
nearly identical to that of DIM.
A structure definition itself may contain one or more structures, arrays, or arrays of structures. To
define a structure which includes a structure, a MEMBER is expressed as follows:

Member var.name. { [expr {, ... }] } As structname

var.name. is the name within the structure whose members are defined by the structure definition
structname. structname must be an existing structname which has been previously defined.
The names of structure members are distinct from any other names outside the structure; e.g.
Data.Q$ is distinct from Q$ which is distinct from Data1.T.Q$.
The members of a structure are physically contiguous in memory, and are ordered in memory as
defined by DEF STRUCT. Individual structure members cannot be re-dimensioned.
The order in which members of a structure are declared is important because this determines the
order in which values are read from a DATA statement, or transferred to/from a file, etc.
The RAW option enables special file access behavior similar to OPTION FILE ACCESS RAW
but applied only to the specified structure member when used in an ADD RECORD, READ
RECORD, or WRITE RECORD statement.

Examples
Def Struct StatMem

Member CustName$. As FullName

Member %4, Income

Member City$[40]

End Def

See also
OPTION FILE ACCESS RAW



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 154 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

MODIFY

Synopsis
Change filename or a file’s attributes.

Syntax
MODIFY str.expr {AS driver-class | driver-name }

Parameters
str.expr is a string expression consisting of an original file.spec.str, followed by new file attributes
or a new filename.
driver-class specifies the driver-class.
driver-name specifies the driver-name.

Executable From Keyboard?
Yes.

Remarks
The original file.spec.str specifies the file to be changed. The new filename, if included, selects a
new name or location for the original file.
If the file consists of two or more subfiles, each file will be modified. For example, an Index
Contiguous file might consist of a data file and an index file. All these files would be copied to the
respective destination filename.
If the source filename contains a lu or directory specifier, these must also precede the destination
filename or the source filename is relocated to the current working directory.
Refer to the dL4 Files and Devices reference manual for more information on specific file types.

Examples
Modify "2/FILE 23/OLDFILE"! Move the file

Modify "PAYROLL <77>"

A$= "JUNK" \ Modify A$ + " <E666>"

See also

MOVE

Synopsis
Move the components of a window.

Syntax
MOVE {chan.expr} @x,y;

Parameters
chan.expr is a driver-class dependent channel expression.
x,y are the destination column, row coordinates for the window components.

Executable From Keyboard?



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 155 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Yes.
Remarks

The @x,y parameter corresponds to the column, row coordinates of the upper left corner of the
window.
Depending on the driver, it is possible to move the window on the screen or control which part of
the window is displayed. Refer to the dL4 Files and Devices reference manual for more
information about windows.

Examples
Move #1;@I,I;

See also

NEXT

Synopsis
Iterate a FOR/NEXT program loop.

Syntax
NEXT num.var

Parameters
num.var is a variable of numeric data type.

Executable From Keyboard?
No.

Remarks
The NEXT statement must have been preceded by execution of a FOR statement defining the
parameters of the loop. Nested FOR/NEXT loops are paired based on the num.var used as the
index variable.
Upon execution of the NEXT, the loop's step value is added to the index. If the new index exceeds
the loop's final value, normal program execution resumes at the statement following the NEXT;
otherwise, the index value is updated by the step and execution reverts back to the statement
following the associated FOR. If a step was not specified on the associated FOR statement, it is
assumed to be one.
When a loop terminates, the index variable contains the first value not used within the loop.

Examples
Next I

See also
FOR, WEND, WHILE

ON



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 156 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Perform conditional branch on value of expression.

Syntax
ON num.expr [GOSUB | GOTO] label: | stmt.no

Parameters
label: is a user-defined name identifying a statement line.
stmt.no is a unique positive integer that identifies a statement line.

Executable From Keyboard?
No.

Remarks
The num.expr is any numeric expression which, after evaluation is truncated to an integer n. The
program will then branch to the nth label: or stmt.no in the given list. If no label: or stmt.no
corresponds to n, then execution continues with the statement following the ON.
GOTO and GOSUB work precisely as their singular counterparts. Branching will be to the first
sub-statement of the statement number given, and the statement must exist.

Examples
On Q Goto 200,300,400,500,600

On Q Goto two, three, four, five

On (Sgn(A)+2) Goto 300,450,1000 ! Neg, Zero, Pos

On (A/100) Gosub 600,750,840,950

See also
GOTO, GOSUB

OPEN

Synopsis
Open an existing file.

Syntax1
OPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
OPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to
the file.
file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.
driver-class specifies the driver-class, instead of using a default driver-class derived from the



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 157 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

file.spec.
driver-name specifies the driver-name, instead of using a default driver-class derived from the
file.spec.
file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.

Executable from Keyboard?
Yes.

Remarks
The OPEN statement links a selected file or device to the specified channel. The file must already
exist on the system or an error is generated.
Multiple str.expr's may be specified to open several files on successive channel numbers. Any new
channel number (channel) in the filename list will cause assignment of channels to continue from
that number.
In applications, if the specified channel is already in use, a CLOSE statement must be performed
prior to an OPEN.
Most files to which a user has access may be opened. The same file may be simultaneously opened
by other users, and may be opened on more than one channel. If a file is already opened for
exclusive access via EOPEN by another process, an error is generated.
OPEN will link the selected file for read/write access and update each file's last access date.
A file may not be OPEN if it, or its directory does not have read permission for the user requesting
access. If the file is read-only to the user, an implied ROPEN is performed and only read
operations are allowed.
If a file.spec.str begins with a single $ character, the filename will be opened as an output pipe and
the rest of the file.spec.str will be passed to the operating system as parameters to the pipe. If a
file.spec.str begins with a "$$", the filename will be opened as an input pipe and the rest of the
file.spec.str will be passed to the operating system as parameters to the pipe. Refer to the dL4 Files
and Devices reference manual for a description of the pipe driver.

Examples
Open #1,"12/DATAFILE","FILE2",#4,"/usr/path/AR.CHECK"

Open #3,"$LPT",L$+A$ !EXPRESSION IS LU+FILENAME

Open #D,""

See also
BUILD, CLOSE, EOPEN, ROPEN, WOPEN

OPTION

Synopsis
Specify runtime option(s) for the current program.

Syntax
OPTION { DEFAULT } opt.spec setting {, opt.spec setting } ...

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 158 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

opt.spec is a runtime option specifier.
setting is a runtime option parameter.

Executable From Keyboard?
No.

Remarks
The OPTION statement is used to specify various runtime options for the current program unit.
Each of the options shown below are processed at compile-time and may be set once in each
program unit, applying to the whole unit. An OPTION DEFAULT statement sets runtime
options for all program units within a program file (it does not set options for libraries used by the
program).
Unlike global environment variables, OPTION settings follow a program from system to system
and are preserved in all forms of the program.
Default Alternatives

OPTION ARITHMETIC DECIMAL OPTION ARITHMETIC IRIS DECIMAL

OPTION ARITHMETIC ICE BINARY

OPTION ARITHMETIC IEEE DECIMAL

OPTION ARITHMETIC EXTENDED IEEE

OPTION ARITHMETIC NATIVE

OPTION ARITHMETIC BITS DECIMAL

OPTION DATE FORMAT STANDARD OPTION DATE FORMAT NATIVE

OPTION COLLATE STANDARD OPTION COLLATE NATIVE

OPTION ANGLE RADIANS OPTION ANGLE DEGREES

OPTION BASE YEAR 1988 OPTION BASE YEAR numconst

OPTION FOR NESTING 8 OPTION FOR NESTING numconst

OPTION GOSUB NESTING 8 OPTION GOSUB NESTING numconst

OPTION TRY NESTING 8 OPTION TRY NESTING numconst

OPTION COMMA SPACING 15 OPTION COMMA SPACING numconst

OPTION USING DECIMAL IS PERIOD OPTION USING DECIMAL IS COMMA

OPTION FILE ACCESS STANDARD OPTION FILE ACCESS RAW

OPTION FILE UNIT IS WORDS OPTION FILE UNIT IS BYTES

OPTION DISPLAY AUTO LF ON OPTION DISPLAY AUTO LF OFF

OPTION CHAIN FAILURE IS RETURNED OPTION CHAIN FAILURE IS ERROR

OPTION CLOSE FAILURE IS ERROR OPTION CLOSE FAILURE IS IGNORED

OPTION IF BY LINES OPTION IF BY STATEMENTS

OPTION INPUT TIMEOUT SIGNAL ON OPTION INPUT TIMEOUT SIGNAL OFF

OPTION ZERO DIVIDED BY ZERO IS ERROR OPTION ZERO DIVIDED BY ZERO IS LEGAL

OPTION STRINGS STANDARD OPTION STRINGS RAW

OPTION STRINGS HAGEN



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 159 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

OPTION STRING SUBSCRIPTS STANDARD OPTION STRING SUBSCRIPTS IRIS

 
OPTION STRING REDIM IS ERROR OPTION STRING REDIM IS LEGAL

OPTION OPEN AUTO CLOSE OFF OPTION OPEN AUTO CLOSE ON

OPTION RETURN BY STATEMENTS OPTION RETURN BY LINES

OPTION NUMERIC FORMAT STANDARD OPTION NUMERIC FORMAT NATIVE

OPTION INPUT BUFFER 256 OPTION INPUT BUFFER numconst

OPTION CHAIN ALTERNATE DIRECTORIES ON OPTION CHAIN ALTERNATE DIRECTORIES OFF

OPTION ARGUMENT CHECKING STANDARD OPTION ARGUMENT CHECKING IS WEAK

OPTION DIALECT STANDARD OPTION DIALECT IRIS

OPTION DIALECT IRIS1

OPTION DIALECT BITS

OPTION DIALECT BITS1

OPTION DIALECT IMS

OPTION DIALECT IMS1   (Release 9.1)

OPTION AUTO DIM ON OPTION AUTO DIM OFF

OPTION FLUSH AFTER STATEMENT OFF OPTION FLUSH AFTER STATEMENT ON

OPTION RECORD LOCK TIMEOUT –1 OPTION RECORD LOCK TIMEOUT numconst

OPTION PROGRAM TAG "" OPTION PROGRAM TAG strconst

OPTION PROGRAM FILE STANDARD OPTION PROGRAM FILE IS RUN ONLY

OPTION PROGRAM FILE IS PROTECTED

OPTION GLOBAL COM OFF OPTION GLOBAL COM ON

OPTION CALL DL4ERROR OFF OPTION CALL DL4ERROR ON

The OPTION ARITHMETIC EXTENDED IEEE is identical to OPTION ARITHMETIC
IEEE DECIMAL except that it maps 1% variables to 16-bit signed binary integers and 2%
variables to 32-bit signed binary integers.
The OPTION USING DECIMAL [IS PERIOD | IS COMMA] only controls the meaning of
period (".") and comma (",") in USING mask strings, not which character is output. The output
character is controlled by OPTION NUMERIC FORMAT [STANDARD | NATIVE] and the
operating system locale setting.
The OPTION INPUT BUFFER numconst specifies the size in characters of the input buffer
used by the INPUT and MAT INPUT statements.
The OPTION ZERO DIVIDED BY ZERO IS [ ERROR | LEGAL ] controls whether dividing
zero by zero is an arithmetic error.
The OPTION STRING SUBSCRIPTS [STANDARD | IRIS] controls the handling of the
subscript if it evaluates to zero. String subscript values of zero are not normalized by default
(STANDARD). Zero string subscripts are normalized when OPTION STRING SUBSCRIPTS
IRIS is used, such that a starting subscript of 0 becomes 1, with an ending subscript of 0 being
treated as if no ending subscript were given.
The OPTION STRING REDIM IS [ERROR | LEGAL] controls whether a string variable can
be redimensioned without first FREEing the variable. By default, redimensioning a string variable



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 160 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

to a different size generates an error.
The OPTION CHAIN ALTERNATE DIRECTORIES [ON | OFF] controls whether the
CHAIN and SPAWN statements use a search path to locate programs. By default (ON) the Lib
dirname of the program unit is searched first. The directory of the calling program is searched
next. Finally, the users current working directory is searched. If disabled (OFF), no search path is
used and the program file is located just as in the OPEN statement.
The OPTION ARGUMENT CHECKING [STANDARD | IS WEAK] controls whether empty
brackets ("[]") are required in order to pass array variables as arguments to subprograms (Call by
Filename). Normally, empty brackets are required. This option can only be used in an OPTION
DEFAULT statement.
The OPTION DATE FORMAT [STANDARD | NATIVE] controls the date input/output
formats. STANDARD specifies the USA format of MM/DD/YY and NATIVE specifies the
format as determined by the system locale setting.
The OPTION AUTO DIM [ON | OFF] enables or disables auto-dimensioning of variables.
The OPTION FLUSH AFTER STATEMENT [OFF | ON] enables a flushing of the record
buffer at the end of each write statement for those file drivers that support a flush record without
unlock operation.
The OPTION RECORD LOCK TIMEOUT numconst sets the default record lock timeout
period in tenth seconds for I/O statements that do not specify a timeout period. This option only
effects I/O to disk file and database drivers. The value of numconst must be between –1 (wait
forever) and 36000 inclusive.
The OPTION PROGRAM TAG strconst places an ASCII string constant in the program file for
use by external utilities. Under Unix, this option can be used to place a revision string in the
program file for use with standard Unix program utilities.
The OPTION DIALECT [ STANDARD | IRIS | IRIS1 | BITS | BITS1 | IMS] sets multiple
options. The default option settings should serve best for most IRIS programs. The statement
OPTION DIALECT IRIS is equivalent to OPTION STRING SUBSCRIPTS IRIS. The
statement OPTION DIALECT IRIS1 adds the additional option OPTION ZERO DIVIDED
BY ZERO IS LEGAL and allows intrinsic CALLs to return results into subscripted string
arguments.
BITS users should add the following lines to each program:

OPTION DIALECT BITS
This is equivalent to adding the lines:

OPTION FILE ACCESS RAW,FILE UNIT IS BYTES,DISPLAY AUTO LF OFF
OPTION CHAIN FAILURE IS ERROR,CLOSE FAILURE IS IGNORED
OPTION IF BY STATEMENTS,INPUT TIMEOUT SIGNAL OFF,STRINGS RAW
OPTION OPEN AUTO CLOSE ON,RETURN BY LINES

For further BITS compatibility, the line
OPTION DIALECT BITS1

is equivalent to OPTION DIALECT BITS, but also enables BITS style FOR/NEXT behavior,
BITS USING mask features, returning results to intrinsic CALL arguments that are subscripted
strings, and an initial precision of 4%.
For IMS compatibility, the line
OPTION DIALECT IMS



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 161 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

is equivalent to OPTION DIALECT IRIS1 with some minor changes to USING mask
behavior.

OPTION DIALECT IMS1   (Release 9.1)
is equivalent to OPTION DIALECT IMS followed by OPTION GLOBAL COM ON
and OPTION CALL DL4ERROR ON

OPTION GLOBAL COM [OFF | ON]   (Release 9.1)
causes variables in COM statements to be passed to external procedures and to all
subsequent programs invoked by CHAIN, CALL, or SWAP

OPTION CALL DL4ERROR [OFF | ON]   (Release 9.1)
calling the subprogram "dl4error" whenever an error occurs before invoking any local
error handler (such as TRY or IF ERR). If the debugger is in use, the error will be reported
in the debugger before the "dl4error" subprogram is run. The subprogram is loaded by first
searching the directory of the current program and then the normal program search list
(LIBSTRING and/or DL4LUST). If the subprogram "dl4error" cannot be found, normal
error handling will proceed. The "dl4error" subprogram is passed three parameters: the
error number, the line number of the error, and the name of the program in which the error
occurred. If an error occurs within the "dl4error" subprogram, normal error handling is
used and "dl4error" will not be called recursively.

OPTION PROGRAM FILE IS RUN ONLY (Release 10.4.4)
The program must be saved using the run-only ("-ro") option.

OPTION PROGRAM FILE IS PROTECTED (Release 10.4.4)
Requires that the program be saved using a PSAVE OSN. Note that these options do not
apply the specified protection, but instead report an error if the protection is not used.

Examples
Option Date Format Native

See also
FOR, GOSUB, TRY

PAUSE

Synopsis
Suspend program operation.

Syntax
PAUSE num.expr

Parameters
num.expr is an expression yielding tenth-seconds pause time.

Executable From Keyboard?
No.

Remarks
The num.expr is any numeric expression which, after evaluation is truncated to an integer and used
to specify a delay in program operation. The delay is limited to an integer between 0 and (232)-1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 162 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

representing the number of tenth-seconds to delay.
This is the most accurate method of pausing the execution of a program. Other methods, such as
finite program loops, will be affected by the current usage of the system and most likely yield
varying results.
The program is unconditionally suspended for the number of tenth-seconds specified in delay. An
[ESCAPE] without ESCape branching or [ABORT] terminates a pause.

Examples
Pause 30

Pause Fna(Q7)

Pause A*10

See also
SIGNAL

PORT

Synopsis
Attach and control other ports.

Syntax
PORT num.expr1, num.expr2, num.var1 {, expr} ...

Parameters
num.expr1 is an expression used to select a target port number.
num.expr2 is an expression used to select the PORT statement mode.
num.var1 is a variable of numeric data type used to received operational status.
expr is an expression or variable.

Executable From Keyboard?
Yes.

Remarks
The PORT mode is a num.expr which, after evaluation is truncated to an integer and used to select
an operation for PORT. There are 10 modes as determined by the second parameter:
Mode Operation Performed.
   0 Attach selected port
   1 Place an attached port in command mode
   2 Transmit a command string to an attached port
   3 Return an attached port's operational status
   4 Return the name of the current running program of a specified port
   5 Return the position of the current running program of a specified port
   6 Return record lock status of the program running on a specified port
   7 Return user information for a specified port



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 163 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

   8 Return information about open channels on a specified port.
   9 Determine if a specified file is open on a a specified port.
num.var1 is used to return the exception status of the operation. The meaning of num.var1 depends
upon the mode selected.
The PORT statement allows a port to be attached to a program. Once attached, commands may be
transmitted to the port for normal processing, and the current status or state of the attached port can
be controlled and monitored. If the attached port has a keyboard, it may be used as any other normal
terminal. However, commands transmitted will override any current keyboard operation.
Mode 0—Attach Selected Port
Syntax

PORT num.expr1, 0, num.var1 {, num.expr2 }
A PORT mode 0 statement must be issued once for each port being attached. Once attached, the
port remains so until signed-off (sending a BYE command or executing SYSTEM 0 to the port).
num.expr2 is evaluated and truncated to an integer and used to select a different account for the
attached port when using mode 0. The account should be expressed as G*256+U, where G and U
are the desired group and user numbers respectively. The Group and User numbers must be in the
range 0 to 255. If not specified, the group and user id of the program executing the attach is set. The
meaning of Group and User numbers is operating system dependent. The ability to start a port using
group or user ids different from the calling program will require the use of a privileged account on
most operating systems.
PORT Mode 0 begins by attempting to attach the port. If the port is already running under dL4, the
attach operation is complete and successful.
If the port is not currently running dL4, a background process is created as the supplied port
number. It assumes the callers' environment and current working directory. It then becomes a unique
process linked to the supplied port number. This port is then available for CALL $TRXCO
commands, PORT, SEND, RECV, and SIGNAL statements from any other dL4 user as well as the
program performing the initial PORT Mode 0.
When sending commands to a port which is connected to a terminal and keyboard, you must ensure
that port is already running dL4 before sending commands. Otherwise, a phantom port is created
for the supplied port number. If a user later attempts entry into Basic using the same port number,
entry into Basic will be rejected.
Upon completion, the status variable is set to indicate
0. Successful, port is now attached.
1. The selected port is already logged-on to the system and in-use.

2.
All available ports are already in use. In some configurations, the allowed number of
concurrent users is set less than the actual number of ports configured. This indicates that
either another port or phantom port must be signed-off, or the number of concurrent users
increased on your license.

3. Illegal account number selected. The selected group or user number is out of the range 0-
255.

 
Mode 1—Place an Attached Port in Command Mode

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 164 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

PORT num.expr1, 1, num.var1
PORT Mode 1 sends an ESCape Override Character [ABORT] to the selected port, terminating
any running program and placing the port into command mode.
Upon completion, the status variable is set to indicate:
0. Successful, the selected port is now in command mode.
1. The select port is not attached.

 
Mode 2—Transmit Command String to Attached Port
Syntax

PORT num.expr1, 2, num.var1, str.expr
str.expr is used to send the command string to the specified port.
PORT Mode 2 requires that a command string be supplied following the status variable. The string
data in command string is then transmitted to the selected port. This command string may contain
any legal command input for a terminal. Any command, such as NEW, LIST, BYE, RUN, etc.,
may be transmitted, as well as program statements. If a terminal is connected to the attached port,
the command string is echoed as it is processed on the attached port. An attached port connected to
a terminal may also receive commands from its keyboard.
A command string cannot be transmitted unless the attached port is in an 'input ready' state. A
PORT Mode 3 status check is suggested prior to sending a command.Upon completion, the status
variable is set to indicate:
0. Successful, command transmitted and accepted.
1. The selected port is not attached.
2. The selected port is not in an 'input ready' state.

 
Mode 3—Return Attached Port's Operational Status
Syntax

PORT num.expr1, 3, num.var1, num.var2
PORT Mode 3 requires that a return value (num.var2) be supplied following the status
variable(num.var1). This variable will receive a value indicating the port's operational status. A
PORT mode 3 should always precede any mode 2 command transmission to check for 'input ready'.
It may also be used to monitor the current state of the attached port.
0. Successful, operational status returned.
1. The selected port is not attached.
The value returned as the operational status consists of a mode, an 'Input Ready' flag, and an 'Output
in Progress' flag.
This value may be divided into its respective parts as follows:

Assume X = value returned by PORT mode 3.
If X>32767 Then 'Input Ready' on attached port.

The 'Input Ready' flag must be removed from the value prior to testing the 'Output in Progress' flag,
since both input and output may be in progress.

If X>32767 Then X=X-32768 \! Remove flag.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 165 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

If X>16383 And X<32768 Then 'Output in Progress'

The attached port's current mode can be determined by:
Let M=X Mod 16 \! Retrieve mode.

Mode Current State
0 Idle. At command mode or logged-off.
1,2 Command input or execution.
3 Run. Program execution in progress.
4,5 List. Program listing in progress.
6 Statement execution in immediate mode.
7 Get. Program being loaded from text file.
8 Initial Run. Becomes mode 3.
9,10 Enter. Program statement entry using ENTer.

 
Mode 4—Return Name of Current Program of Specified Port
Syntax

PORT num.expr1, 4, num.var1, str.var
PORT mode 4 returns in str.var the name of the current program of a specified port. For example,
the statement:

Port P,4,S,F$

will return in F$ the name of the program running on port P. As with PORT mode 3, a status is
returned in S indicating success (zero) or failure (one, port not attached). Under some operating
systems, only a privileged user (such as the Unix root account) can use PORT mode 4 to examine
ports that belong to different user ids.

 
Mode 5—Return Current Program Position of Specified Port
Syntax

PORT num.expr1, 5, num.var1, str.var
PORT mode 5 returns in str.var the current execution position of the current program of a specified
port. For example, the statement:

Port P,5,S,L$

will typically return in L$ the line number and library name, if any, of the statement currently being
executed by the program running on port P. As with PORT mode 3, a status is returned in S
indicating success (zero) or failure (one, port not attached). Under some operating systems, only a
privileged user (such as the Unix root account) can use PORT mode 5 to examine ports that belong
to different user ids.

 

Mode 6—Return Record Lock Status of Specified Port
Syntax

PORT num.expr1, 6, num.var1, num.var2, num.var3



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 166 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

PORT mode 6 returns the record lock status of the specified port in num.var2 and and the
conflicting port number in num.var3. For example, the statement:

Port P,6,S,B,N

will return one in B if port P has been waiting for a record lock for more than 20 seconds and it will
return zero in B if the port is not blocked. If the port is blocked, the port number of the program that
has locked the record will be returned in N. If the port number is not available, N will be set to -1.
As with PORT mode 3, a status is returned in S indicating success (zero) or failure (one, port not
attached). Under some operating systems, only a privileged user (such as the Unix root account) can
use PORT mode 6 to examine ports that belong to different user ids.

 
Mode 7—Return User Information of Specified Port
Syntax

PORT num.expr1, 7, num.var1, str.var1, str.var2 {, var.list }
PORT mode 7 returns the current user information for the specified port in str.var1 and str.var2.
Additional information can be returned in optional string variables in var.list. For example, the
statement:

Port P,7,S,U$,W$

will, for port P, return in U$ the user name and in W$ the workstation name. The optional string
variables in var.list, if specified, receive the group name, current directory, terminal type, account
number, and group number. Values not supported by the operating system will be returned as "". As
with PORT mode 3, a status is returned in S indicating success (zero) or failure (one, port not
attached). Under some operating systems, only a privileged user (such as the Unix root account) can
use PORT mode 7 to examine ports that belong to different user ids.

 
Mode 8—Return Open Channel Information for Specified Port
Syntax

PORT num.expr1, 8, num.var1, num.expr2, num.expr3, struct.array.var}
PORT mode 8 returns open channel information for the specified port in struct.array.var. A range
of channel numbers to examine is specified using num.expr2 as the starting channel number and
num.expr3 as the ending channel number. The information is returned in the array variable
struct.array.var which is an array of structures using the following structure definition:

Def Struct CHANINFO

Member 1%,ChanNum

Member Path$[200]

Member 3%,RecordNum

Member 1%,RecordState

End Def

The member names, dimensioned size of the Path$ member, and the numeric precisions of the other
structure members can be varied as desired. The filename returned in Path$ may be truncated if it is
longer than Path$ or if it exceeds system limitations. If the number of open channels in the specified
range is less than the dimensioned size of 'chaninfo.[]', then the first unused element of the array
will have a ChanNum value of -1. If the number of open channels in the specified range is greater
than the dimensioned size of 'chaninfo.[]', the extra channels will be ignored. As with PORT mode



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 167 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

3, a status is returned in num.var1 indicating success (zero) or failure (one, port not attached).
Under some operating systems, only a privileged user (such as the Unix root account) can use
PORT mode 8 to examine ports that belong to different user ids.

 
Mode 9— Determine if a Specified File is Open on a Specified Port
Syntax
PORT num.expr1, 9, num.var1, str.expr, num.expr2, num.var2
PORT mode 9 determines which channel, if any, on the port specified by num.expr1 is open to the
file str.expr with record num.expr2 locked. If num.expr2 is negative, the record lock status will not
be checked. If a match is found, the channel number is returned in num.var2. If no match is found,
num.var2 is set to -1. As with PORT mode 3, a status is returned in num.var1 indicating success
(zero) or failure (one, port not attached).

Examples
Port 8,0,S \ If S Stop ! attach & check status

Port P,1,S \ If S Stop ! abort & get ready

Port P*2,2,E,C$[50] \ If E Stop ! send command

Port X,3,Y,Z \ If Y Stop ! get current mode & stat

See also
SWAP, SPAWN

PRINT

Synopsis
Format values and output formatted string to a file or a device.

Syntax
PRINT {chan.expr} { USING str.expr ; } var.list { , | ; }

Parameters
chan.expr is a driver-class dependent channel expression. The standard output channel is used when
the chan.expr is omitted or the channel number is -4.
str.expr is a string expression used for formatting numeric values.
var.list is a list of comma or semicolon separated variables of any dL4 data types passed to this
program.

Executable From Keyboard?
Yes.

Remarks
The var.list consists of variables, literals, or expressions; numeric, date, or string. Each item in the
var.list must be separated by either a comma (,) or a semicolon (;). A comma performs a TAB to the
next comma field before output of the next item. This is generally 15 characters long, but can be
changed with the OPTION COMMA SPACING statement. A semicolon prevents additional
spacing in the output.
Numerics are output preceded by a '-' or space indicating negative or positive, and followed by one



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 168 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

space (The STR$ function may be used to omit leading and trailing spaces). Strings are output
exactly as stored, from the supplied starting position terminating at the first zero-byte terminator.
No preceding or trailing spaces are output.

When all items in the var.list are output, a new-line is output to advance the terminal to the next
line (or mark end of line in a text file). This can be suppressed by using a comma or semicolon as
the last character in the PRINT statement. In the case of a comma, a TAB is still performed.
The USING operator formats numeric data for columnar output. It may also be used to imbed
commas, asterisk check fill, floating dollar signs and other special output formats. It must be after
any chan.expr and before the var.list, and only one is allowed per statement. For additional
information, see the string operator USING.
An output column counter (base zero) is maintained for each channel holding the current character
position on the output line. This counter is reset anytime a new-line is output (usually a return) or
an @0,y cursor positioning operation is performed.
The TAB function is used to skip the terminal to a specific column. Its form is:

Tab (num.expr)

The num.expr must be a positive value. A TAB to a position less than the current position or greater
than the device width may be ignored depending on the driver.
After all items in the var.list are placed into the terminal buffer, it is flushed immediately. No
SIGNAL 3,0 is required to start output, and is ignored if executed.
If a chan.expr is specified for PRINT, the output is redirected to the selected channel. If the
channel is not open, output is transmitted to the terminal. This allows a program to selectively
output to the terminal or a printer by including an OPEN of the printer pipe on the selected
channel. A separate output column counter is maintained for each channel opened, so that the TAB
and comma operator will operate on applications doing both screen and file output operations.
PRINT # is generally used to output to a text file, or pipe such as a line printer. The most common
form used for output to a line printer is:

Print #chan.expr; var.list

The optional record, byte displacement and time-out specifications of a chan.expr are normally
unused, as line-oriented data is generally of variable length. Each successive PRINT # continues its
transfer immediately following the previous, unless a new record or byte displacement is specified.

Examples
Print "AVAILABLE";TAB(40);A*100;"$";Z

;@0,23;’CL’;"Error in Program";

Print #K; Using T$;X,Y,Z,Z/10

See also
OPTION

RANDOM

Synopsis
Seed random generator for RND function.

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 169 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

RANDOM num.expr
Parameters

num.expr is an expression yielding a numeric random number seed value.
Executable From Keyboard?

Yes.
Remarks

The num.expr is evaluated, truncated to a positive integer and used to seed the system's pseudo-
random number generator. Seeding implies that a sequence is selected and initiated based on the
value supplied. A seed value of zero selects a further random sequence based upon the current
system time.
Typically, a non-zero seed value is used during program debugging, causing the RND function to
yield the same sequence of numbers with each successive run. Once the program is completed, a
RANDOM 0 is issued to produce better random selection.

Examples
Random 5

Random 0

Random ((N*100)/E^2)

See also

RDLOCK

Synopsis
Read record and keep record locked.

Syntax
RDLOCK chan.expr var.list

Parameters
chan.expr is a driver-class dependent channel expression.
var.list is a list of comma separated variables of any dL4 data types.

Executable From Keyboard?
Yes.

Remarks
RDLOCK transfers data into user variables.
If the variable in the list is an array.var, optional subscripts may be specified. If given, these are
evaluated, truncated to integer and used to select a single element. If no subscripts are supplied,
only the first element is transferred. The entire array may be transferred using the notation "[ ]".
If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size
and precision.
If the variable in the list is a string or binary variable, its size may be controlled by subscripts.
RDLOCK transfers data and unconditionally locks the record. The data record remains locked until
a non-locking operation is performed by that same program to the same channel. While a record is



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 170 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

locked, other users will be unable to access the record.
RDLOCK is identical to READ omitting the trailing semicolon.

Example
Rdlock #3,R1,100;A

Rdlock #C,R;A$

See also
READ, WRLOCK, OPTION FILE ACCESS

READ

Synopsis
READ variables from DATA statements or channel.

Syntax1
READ var.list

Syntax2
READ chan.expr; var.list { ; }

Parameters
chan.expr is a driver-class dependent channel expression.
var.list is a list of comma separated variables of any dL4 data types.
";" unlocks the record after a successful READ.

Executable From Keyboard?
Yes.

Remarks
Syntax1:
An array.var or mat.var with subscripts specifies only that single element. Omission of a subscript
selects only the first element.
READ begins transferring data sequentially from the lowest numbered DATA statement found in
the program. Subsequent READ statements resume transfer at the next element of the DATA
statement. After all of the items in a given DATA statement have been read, reading continues
with the next highest numbered DATA statement. When all DATA statements have been read, any
subsequent will produce the error 'Out of Data'. The RESTOR statement can be used at any time
to start reading from a specific DATA statement.
READ attempts to transfer data into each variable listed in the var.list. Transfer of a variable
terminates at a comma (,) or at the end of the DATA statement. You may not transfer string data
into any numeric variable. String items must be enclosed in quotes (" ").

 
Syntax2:
If the variable in the list is an array.var or mat.var, only the first element is read. Subscripts may
be used to select any individual element to be transferred. The entire array may be transferred
using the "[ ]" notation. The number of bytes transferred is based upon the variable's dimensioned



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 171 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

size. The transfer is performed according the rules for a num.var.
If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned
size and precision.
If the variable in the list is a string or binary variable, its size may be controlled by subscripts.
Refer to the dL4 Files and Devices reference manual for file and driver specific details of data
transfer.
The optional semicolon (;) terminator is used by dL4 applications to release the automatic record-
lock applied to the supplied record in the chan.expr.

Examples
Read A,B,D[10],A[4,4]

Read A$

Read #3,R1,100;A,B$,C[12];

Read #C,R;A$

See also
DATA, INPUT, MAT READ, RDLOCK, READ, SEARCH, WRITE, WRLOCK

READ RECORD

Synopsis
Read an entire record structure.

Syntax
READ RECORD chan.expr; struct.var

Parameters
chan.expr is a driver-class dependent channel expression.
struct.var is a variable of structure data type.

Executable From Keyboard?
Yes

Remarks
The READ RECORD statement is similar to the normal READ of a record except for the
requirement that a struct.var is supplied and the computation and override of the item number for
each member.

Examples
Read Record #2,RecAccess;CustRec.

See also
WRITE RECORD

RECV

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 172 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Receive a message.
Syntax

RECV num.var1, [ str.var | [num.var2, num.var3]] {, num.expr}
Parameters

num.var1 is a variable of numeric data type to receive the sender's port number.
str.var is a variable of string data type to contain the received message.
num.var2 and num.var3 are variables of numeric data type to contain the received message.
num.expr is an expression yielding a number specifying a maximum wait period.

Executable From Keyboard?
Yes.

Remarks
num.var1 receives the sender's port number, or -1 if no messages are waiting for your port.
str.var receives a string message.
num.var2 and num.var3 receive 2 numeric messages. If the second parameter is a num.var, two
numeric variables must be specified. Their two values are then received. The two variables need not
be the same precision.
The optional num.expr is any numeric expression which, after evaluation is truncated to an integer
to specify a delay period (in tenth-seconds) during which the program awaits a message. If zero, or
not included, no pause is invoked, but any currently waiting message will be received. Any message
appearing during a specified delay allows RECV to accept the transmitted data and resume program
execution immediately. If no message appears during the entire delay, port is set to -1.
If the program has an INTSET branch enabled, any message sent to your port will cause a branch
to the selected statement. The interrupt handling routine can then perform a RECV to receive the
message.
RECV is identical in operation to SIGNAL 2.

Examples
Recv P,A,B,600 ! Wait 60 seconds

Recv P,A$

See also
SIGNAL, SEND

REM

Synopsis
Insert program comment.

Syntax
REM {comment }

Parameters
comment is a sequence of characters.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 173 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Executable From Keyboard?
No.

Remarks
The REM statement allows the placement of comments within a program. A REM statement is
ignored during execution, but may be referenced within the program.
When REM statements are entered, all characters following the REM up to the end of line are
considered the comment. This includes leading and trailing spaces and control characters.
A ! may be used to abbreviate the verb REM during entry. During listing, REM is listed if it is the
first statement of the line, otherwise ! is displayed. When a REM statement is processed during
program execution, the statement is ignored. Branching (GOTO, GOSUB, etc.) to REM statements
is acceptable with little program overhead.
Note that, since all characters following a REM are considered part of the REM, the REM is
always the last statement on it's line.

400 Print A \ Rem OUTPUT TOTAL \ Goto 200

Line 400 outputs the value of A and continues with the next program line. The "Goto 200" is
considered to be part of the comment.

Examples
Rem Request input of customer name

Gosub 1000 ! Go receive response

See also

RESTOR

Synopsis
Reset to first data item in a DATA Statement

Syntax
RESTOR label: | stmt.no

Parameters
label is a user-defined name identifying a statement.
stmt.no is any valid dL4 statement.

Executable From Keyboard?
Yes.

Remarks
RESTORE resets the DATA statement pointer to the first data item of the first DATA statement in
the program, just as when the program started.
Including an optional label: or stmt.no sets the pointer the first data item of the first DATA
statement encountered at or past that label: or stmt.no.
If no further DATA statements are found, the pointer will be set to return an "Out of DATA" error
during the next READ.

Examples



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 174 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Restor MIDDLE:

Restor 2200

See also
DATA, READ

RETRY

Synopsis
Re-execute last TRY block.

Syntax
RETRY

Parameters
None.

Executable From Keyboard?
No.

Remarks
RETRY may be used within the ELSE block(s) to repeat the last TRY block.

Examples
Try

Open #2,"cust.master"

Print "Opened cust.master on channel 2"

Else

Print "Attempting to open cust.master file again"

Retry

End Try

See also
TRY, END TRY

RETURN

Synopsis
Return from a GOSUB subroutine call.

Syntax
RETURN {num.expr }

Parameters
num.expr is a numeric value specifying the return point relative to the calling GOSUB statement.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 175 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Executable From Keyboard?
No.

Remarks
The RETURN statement is used with GOSUB and indicates the end of a program subroutine.
A normal RETURN (or RETURN +0) resumes execution at the statement following the matched
GOSUB. A value of +1 would branch to the second statement following the GOSUB (the first
statement past a normal RETURN). A value of -1 would branch to the statement of the GOSUB
itself.
The OPTION RETURN BY LINES statement can be used to enable relative return by lines
rather than statements.

Examples
Return

Return +1

See also
GOSUB, OPTION

REWIND

Synopsis
Reset a file to the beginning.

Syntax
REWIND chan.no {, chan.no } ...

Parameters
chan.no is a valid channel number.

Executable From Keyboard?
Yes.

Remarks
The REWIND statement resets the selected channel's current file position to the beginning of the
file. The position is reset to record 0, byte displacement 0. If the next file transfer does not specify a
record or byte displacement, the transfer will start at the first data byte of the file.
The effect of REWIND is to reset the current file position as when the channel was initially
opened. REWIND is typically used with Text Files accessed sequentially.
A REWIND operation is ignored when issued to a channel linked to a pipe.
REWIND is identical in operation to SETFP #channel, 0, 0 ;

Examples
Rewind #T, #7, #(J*2)

See also
SETFP



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 176 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

ROPEN

Synopsis
Open an existing file for Read-Only access.

Syntax1
ROPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
ROPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to the
file.
file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.
driver-class specifies the driver-class, instead of using a default driver-class derived from the
file.spec.
driver-name specifies the driver-name, instead of using a default driver-class derived from the
file.spec.
file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.

Executable From Keyboard?
Yes.

Remarks
The ROPEN statement opens files for read-only access with record locking disabled. This feature
permits an application to read records that are currently locked by other processes. This form of
open is supported by the Portable Formatted, Portable Indexed Contiguous, UniBasic Formatted,
UniBasic Indexed Contiguous, and FoxPro Full-ISAM drivers. Note: reading records that are
currently locked may return partially updated or inconsistent data.
A file may not be ROPENed if it, or its directory does not have read permission for the user
requesting access.
ROPEN is equivalent to an OPEN statement which specifies "<WL>" as an access option.

Examples
Ropen #1,"DATAFILE","FILE2",#4,"AR.CHECK"

Ropen #1,"23/MMFILE" As "Full-ISAM"

See also
BUILD, CLOSE, EOPEN, OPEN, WOPEN

SEARCH (STRING)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 177 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Search string for a sub-string.

Syntax
SEARCH source.str.expr, destination.str.expr, num.var

Parameters
source.str.expr is any source string expression.
destination.str.expr is any target string expression.
num.var is a variable of numeric data type which receives the character index of the target within
the source, or zero if destination.str.expr is not found in source.str.expr.

Executable From Keyboard?
Yes.

Remarks
source.str.expr is searched for the first occurrence of destination.str.expr. If found, num.var is set to
the character position of the located substring. If not found, a zero is returned. If the source being
searched is a single str.var, it may include a starting subscript if desired, and searching begins at the
selected position. Note however that any position returned will be relative to this starting position.
When performing multiple SEARCH operations on a single string, it is best to initialize a num.var
to 1; adjusting for each located identical sub-string.

290 Let J=1

300 Search T$[J],"H-",R

310 If R Then Let J=(J+R)-1

Here, destination.str.expr is adjusted for the offset caused by a starting subscript. If the substring is
not found, destination.str.expr is returned as zero. The adjustment needed for any given starting
subscript 'A' can be defined as:

actual position in string = starting subscript + location - 1
Searching terminates when a null character is encountered in the source.str.expr. Entry of the verb
SEARCH followed by a # character is interpreted as a file SEARCH statement and treated as such.

Example
Search P$+A$,".",K

Search A$[J],"TIME",K \ J=J+K-1

See also
POS function

SEARCH (TRADITIONAL)

Synopsis
Access or create an index in a keyed file.

Syntax
SEARCH chan.no, num.expr1, index.no {, num.expr2} ; str.var, num.var1, num.var2



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 178 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
chan.no is any valid channel number..
num.expr1 is an expression yielding a number specifying the desired operation.
num.expr2 is an expression yielding a number specifying the timeout value.
index.no is a numeric expression whose integer value identifies an index in the file.
str.var is a variable of string data type which contains the source and destination key.
num.var1 is a variable of numeric data type in which the record number is returned if the operation
succeeds.
num.var2 is a variable of numeric data type which contains the return status value.

Executable From Keyboard?
Yes.

Remarks
In the following tables, mode is the operation as selected by the value of num.expr1.
Summary of SEARCH Operations
Mode OPERATION
    0 Define and Create indices within a Contiguous Data File.
    1 Return miscellaneous index information.
    2 Search for an exact key.
    3 Search for the next highest key.
    4 Insert a new key into an index.
    5 Delete an existing key from an index.
    6 Search for the previous key (Search Backward).
    7 Unused, included for compatibility.
    8 Maintain the B-Tree insertion algorithm for an index.
    9 Temporarily same as Mode 6 - Reserved for future use.
Detailed Table of SEARCH Operations
Mode Index Status Operation Performed
    0 1<d<63 For a new Indexed File, sets the key length of the selected index to the

number of bytes specified by num.var1. Indices must be defined starting
at one and proceed sequentially.

    0 0 Freeze the file definition and build the ISAM portion of the file. Total
number of initial data records is specified by the num.var1.

    1 >0 Return the key length of the specified index in bytes.
    1 0 =0 Returns the record number of the First Real Data Record.
    1 0 =1 Return the number of available records in the file.
    1 0 =2 Allocate and return a new record for the application.
    1 0 =3 Return a record to the file that is no longer needed. Deleted records will

be reused before the file is extended.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 179 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

    1 0 =4 Return in num.var1 the number of records in the file.
    1 0 =5 Return in num.var1 the number of records in the file.
    1 0 =6 Set the First Real Data Record to the value supplied in num.var1. This

option is only available during file structuring.
    1 0 =7 Return the current number of records in use (allocated) in the data portion

of the file.
    2 Search the specified index for the exact match of the supplied key. If

found, return the full key in the supplied key variable, and the associated
record number in num.var1. num.va2r is set to 0 if the key was found, and
1 if the key was not in the index.

    3 Search the specified index for the first key whose value logically exceeds
the supplied key. If found, num.var2 is set to 0, the full key is returned in
str.var, and the associated record number is returned in num.var1.

    4 Insert key into the specified index using the supplied num.var1 as the
associated pointer. The record should have been previously allocated
using mode 1, status = 2 above. A status of 0 indicates a successful
operation. If the key already exists in the index, a 1 is returned as
num.var2.

    5 Delete the supplied key from the specified index. If successful, num.var1
is returned as the associated pointer, and the num.var2 is set to 0. A
num.var2 of 1 indicates an unsuccessful operation; ie, the key was not
found in the index. The record should be returned to the file using mode
1, status = 3 above.

    6 Search the specified index for the first key whose value is logically less
than the supplied key. If found, num.var2 is set to 0, the full key is
returned in str.var, and the associated record number is returned in
num.var1.

    7 No operation. Reserved for future use.
    8 B-Tree algorithm maintenance. If num.var1 is negative, return in

num.var1 the current B-Tree algorithm for index. If num.var1 is positive,
change the insertion algorithm to the value passed in num.var1. Set to
zero (default) for random insertion, 1 for increasing insertion, 2 for
decreasing insertions.

    9 Temporarily, the same as Mode 6. Reserved for future use.
Table of SEARCH status return values
Value Description of status
    0 No error, the Index operation was successful.
    1 Operation was unsuccessful; i.e. key not found.
    2 End of index. Given on modes 3, 6 and 9 when the beginning or end of the index is reached.
    3 End of data; all records are allocated.
    4 File has no Indices, cannot perform an Indexed File operation.
    5 Indexed file structure error; given when key length DIM is less than the actual size of the

key from an Index on Modes 2, 3, 6 and 9. Indicates a DIMension error or structure
problem, possibly a c-tree file structuring error.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 180 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

    6 Index number not in sequence during creation. You must sequentially define all directories.
    7 File is not a Contiguous File.
    8 File is already Indexed.
    9 Value of record is negative or too large.
  10 Illegal Index Number.

Example
Search #5;4,1,K$,R1,E \ If E Call KeyExists

E=3 \ Search #J,1,0,K$,R1,E \ If E Call Process(K$,R1,E)

See also
SEARCH (Modern)

SEARCH (MODERN)

Synopsis
Locate a key.

Syntax
SEARCH rel.op, chan.no, index.no{,num.expr};{ var.list}

Parameters
rel.op is a relational operator.
chan.no is any valid channel number.
index.no is a numeric expression whose integer value identifies an index in the file.
num.expr is an expression yielding a number specifying the timeout value.
var.list is a list of comma separated variables of any dL4 data types passed to this program.

Executable From Keyboard?
Yes.

Remarks
The SEARCH statement has been streamlined for use with full ISAM data files.

SEARCH relation #c,index; structure

Where relation is =, >, >=, <, <=, index selects the directory for the operation and structure is any
structure variable which defines the key parts.

Search = #C, I; Key. !Exact search

Search > #C, I; Key. !Search Greater

Search < #C, I; Key. !Search Less

Search >= #C, I; Key. !Search Greater or Equal

Search <= #C, I; Key. !Search Less than or Equal

Search < #C,1; !Position to last key of Index 1

Search > #C,1; !Position to first key of Index 1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 181 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

The SEARCH statement is used with full ISAM data files to specify an index and set a current
record position within the file for further READ and WRITE RECORD statements. It is not
necessary to issue repeated SEARCH statements unless a random repositioning is required. If the
SEARCH succeeds, the current record position is set accordingly and the index used becomes the
current index. Relative record access forward or backward is then performed using this index.
When used in conjunction with full ISAM files, the application would perform an initial SEARCH
and read the current record. A loop, such as WHILE or DO can then used to read next or previous
through the file.
When SEARCH is used with older-style indexed files, structure variables can still be used by
defining a structure containing the traditional parameters supplied to a SEARCH statement. Only
the modes =, >, < are supported for Indexed files.

Examples
! This is an example of the Search statement

Def Struct CUSTREC

Member CustNum$[6] : Key "CustNum"

Member Name$[24] : Item "Name"

Member 3%,YtdSales : Item "YtdSales"

End Def

Dim CustRec. As CUSTREC

Dim %1, RecAccess

Open #2,"cust.masterfi" As "Full-ISAM"

Map Record #2 As CUSTREC

RecAccess = -2 ! read current record

! sequentially read through a Full-ISAM file,

! from beginning to end

Search > #2,1;

 
Do

Try Read Record #2,RecAccess;CustRec. Else Exit Do

Print CustRec.CustNum$, CustRec.Name$, CustRec.YtdSales

RecAccess = -1 ! read next (ascending) record

Loop

 
If Spc(8) <> 52 Print "Unexpected Error: "; Spc(8)

! end of sequential search and now about to delete a specific !

! record first delete the record associated with key value

! 011692, and then search for the deleted key to show that the

! key and record were actually deleted

 



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 182 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

For I = 1 to 2

Try

Search = #2,1;"4549DL"

Read Record #2, -2;CustRec.

Delete Record #2

Print "Deleted Customer Number: 4549DL"
Else

Print "Key '4549DL' not found" ! look for this key

End Try

Next I

Close

See also
SEARCH (Traditional)

SELECT CASE

Synopsis
Conditionally execute blocks of statements depending upon the value of an expression.

Syntax1
SELECT CASE expr
CASE [num.lit | [num.lit TO num.lit] | [IS rel.op num.lit]] {, [num.lit | [num.lit TO num.lit] | [IS
rel.op num.lit]]} ...

stmts
CASE ELSE

stmts
ENDSELECT

Syntax2
SELECT CASE expr
CASE [str.lit | [str.lit TO str.lit] | [IS rel.op str.lit]] {, [str.lit | [str.lit TO str.lit] | [IS rel.op str.lit]]}
...

stmts
CASE ELSE

stmts
ENDSELECT

Parameters
expr is an expression which is evaluated for subsequent selection within the entire block.
stmts is any block of dL4 BASIC statements.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 183 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

num.lit is a numeric literal.
rel.op is a relational operator.
str.lit is a string literal.

Executable From Keyboard?
No.

Remarks
The SELECT CASE statement organizes blocks of statements which are dependent upon the
value of a single expression.
For each expr value which requires further processing by the application, a CASE selection is
specified. These may be in the form of a single expression which is compared for equality, an
inclusive range of values specified in the form expression TO expression, or a value which results
in a true relation, such as IS > 50. Multiple conditions, separated by comma may be specified.
stmts are those statements which are to be executed for the selected condition.
CASE ELSE is optional and the associated stmts are executed when no other CASE expression
matched the value of the primary expr. If present, CASE ELSE must be the last CASE in the
block.

Examples
! This is an example of the Select Case statement

Print 'CS'

Choice = 1

Do Until Choice = 6

Select Case Choice

Case 1

Print @15,Choice + 15;"This is case 1"

Case 2 To 3

Print @15,Choice + 15;"This is case 2 or 3"

Case Is > 3

Print @15,Choice + 15;"This is case greater than 3"

Case Else

Print @15,Choice + 15;"This is default case"

End Select

Choice = Choice + 1

Loop

See also
CASE, ENDSELECT

SEND

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 184 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Transmit a message to another port.
Syntax

SEND num.expr1, [str.var | [num.var2, num.var3]]
Parameters

num.expr1 is an expression yielding a number specifying the receiver's port number.
str.var is a variable of string data type containing the message to transmit.
num.var2 and num.var3 are variables of numeric data type containing messages to transmit.

Executable From Keyboard?
Yes.

Remarks
If the second parameter is numeric, two numeric expressions must be specified. Their two values
are then transmitted. The two variables need not be the same precision.
It is up to the program on the receiving port to execute the appropriate RECV or SIGNAL 2
statement to receive the type (string/numeric) of data transmitted. If that program has an INTSET
branch enabled, SEND will cause an interrupt to occur in it.
SEND is identical in operation to SIGNAL 1.

Examples
Send 12,22,33

Send P,A$

See also
RECV, SIGNAL

SET

Synopsis
Set driver-class dependent information in a channel.

Syntax
SET chan.expr expr.list

Parameters
chan.expr is a driver-class dependent channel expression.
expr.list is an arbitrary number of comma separated expressions or variables of any dL4 data types.

Executable From Keyboard?
Yes.

Remarks
Refer to the dL4 Files and Devices reference manual for information on a specific driver.

Examples
Set #1,0,0,0;CustRec.Name$, "Name"



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 185 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Set #1,0,1,0;CustRec.Address1$, "Address1"

Set #1,0,3,0;CustRec.City$, "City"

Set #1,0,4,0;CustRec.State$, "State"

Set #1,0,5,0;CustRec.Zip, "Zip"

See also
GET

SETFP

Synopsis
Set file position for next access.

Syntax
SETFP chan.expr

Parameters
chan.expr is a driver-class dependent channel expression.

Executable From Keyboard?
Yes.

Remarks
A semicolon must terminate the chan.expr.
SETFP specifies a new file position on a channel for the next sequential access READ, WRITE,
etc. not specifying a record or byte displacement. If the next transfer specifies its own record and
byte displacement position, the former position is overridden. The byte displacement specification
is optional and, if not included, will default to byte zero of the selected record.
SETFP to record 0, byte displacement 0 is identical in operation to a REWIND.

Examples
Setfp #6,R,I;

Setfp #5,0,0; ! Same as REWIND #5;

See also
REWIND, READ, WRITE

SIGNAL 1 | 2

Synopsis
Transmit/Receive a message.

Syntax1
SIGNAL 1, num.expr1, [str.expr | [num.expr2, num.expr3]]

Syntax2
SIGNAL 2, num.var1, [str.var | [num.var2, num.var3]] {, num.expr4}



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 186 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
num.expr1 is an expression yielding a number specifying the destination port number.
str.expr is an expression yielding a string specifying the destination message.
num.expr2 and num.expr3 are expressions yielding numbers specifying the destination message.
num.var1 is a variable of numeric data type receiving the sender's port number.
num.var2 and num.var3 are variables of numeric data types to contain the receive message.
num.expr4 is an expression yielding a number specifying a maximum wait period.

Executable From Keyboard?
Yes.

Remarks
Syntax1:
The string expression or 2 num.expr values are placed into the communication buffer for
transmission to the selected port. Messages may be transmitted to your current port number, or
any port number that is logged on. An error 153 is returned if the destination port is invalid.
Messages are FIFO (First in, First out). Messages include those transmitted using SEND,
SIGNAL 1, and CALL $TRXCO.
If numeric data is transmitted, full floating point precision is transmitted. When numeric values are
received with SIGNAL 2, they are converted to the precision of the supplied value1 and value2
num.vars.
An error is generated if the communication file is full, or an illegal port number is specified.
Messages transmitted to a port not signed into a dL4 process are discarded, and no error is
generated.
Messages awaiting a port are deleted when that port ends its session.
Syntax2:
The optional delay for SIGNAL 2 is any num.expr which, after evaluation is truncated to an
integer to specify a delay period (in tenth-seconds) during which the program awaits a message. If
zero, or not included, no pause is invoked, but any currently waiting message is received. Any
message appearing during a specified delay allows SIGNAL to accept the transmitted data and
resume program execution immediately. If no message appears during the entire delay, port is set
to -1.
A scan is performed for the oldest SIGNAL 1 or SEND message transmitted to your port number.
If found, port is set to the port number of the sender. If no messages are waiting, port is set to -1.
The received message is copied into string or value1 and value2 as specified. It is the programs'
responsibility to select the same format (str.var or 2 num.vars) used by the sender. The sender's
port number is returned in the supplied port variable. Typically, an application designer chooses
one format for all message

transmission and reception.

If delay is specified and no message is waiting, the program is paused for the specified number of
tenth-seconds. If any message is transmitted during the delay, the pause is terminated allowing
immediate reception. A -1 is returned in port if no message is received within the delay period.

The [SIGNAL] input character (usually CTRL B) transmits a message of 2 numeric zeros or a



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 187 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

null string to your current port which may be retrieved using SIGNAL 2.
All messages may be cleared by performing repeated SIGNAL 2 statements until port is returned
with -1, or by issuing a SIGNAL 6.
If the program has an INTSET in effect, transmission of a message by another port or [SIGNAL]
character performs an interrupt branch.
Messages awaiting a port number are deleted when that port number ends its session.

Examples
Signal 1,P,A,B*100

Signal 2,P,A,B,300 !Wait 30 seconds

See also
RECV, SEND

SIGNAL 3

Synopsis
Suspend program operation.

Syntax
SIGNAL 3, num.expr

Parameters
num.expr is an expression yielding tenth-seconds pause time.

Executable From Keyboard?
Yes.

Remarks
The program is unconditionally suspended for the number of tenth-seconds specified in delay. An
[ESCAPE] without ESCape branching or [ABORT] terminates a pause. If the application has an
INTSET defined, the [INTERRUPT] or [SIGNAL] will terminate the pause and perform the
branch.
If delay is zero, the statement is ignored and no pause is performed.

Examples
Signal 3,30 !Pause 3 seconds

See also
PAUSE

SIGNAL 5

Synopsis
Receive system signal.

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 188 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

SIGNAL 5, num.var1, num.var2, num.var3 {, num.expr4 }
Parameters

num.var1 is an expression yielding the transmitter's port number.
num.var2 is a variables of numeric data type receiving the type of system message.
num.var3 is a variables of numeric data type receiving specific system message.
num.expr4 is an expression yielding a number specifying a maximum wait period.

Executable From Keyboard?
Yes.

Remarks
A scan is made for the oldest system message directed to your port number. If no system message
is waiting, port is set to -1.
If a system message is waiting, port is set to -2, value1 is set to the type of system message, and
value2 returns specific information.
The only system message currently implemented is for INPUT timed-out. This occurs when an
application performs an INPUT TIM, and the input times-out without response from the
keyboard. port is set to -2, value1 is set to 0, and value2 is set to the number of characters entered
prior to time-out.
Unless OPTION INPUT TIMEOUT SIGNAL OFF is used, programs performing an INPUT
TIM should immediately follow with a SIGNAL 5 to check the sense of the timed input and
prevent overflowing communication resources. If port returns -1, a response was entered within
the prescribed time limit.

Examples
Signal 5,P,A,B,300 !Wait 30 seconds

See also
SIGNAL 6

SIGNAL 6

Synopsis
Clear outstanding signals.

Syntax
SIGNAL 6, num.expr1, num.var2, num.var2

Parameters
num.expr1 is an expression yielding a number to specify a signal type.
num.var2 are variables of numeric data type used for syntax only.

Executable From Keyboard?
Yes.

Remarks
All user messages, system messages or both may be cleared using SIGNAL 6. The type selects the
messages to be cleared from the system:



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 189 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

type Function Performed
-1 Remove all user messages; SIGNAL 1, SEND.
-2 Remove all system messages.
-3 Remove both user and system messages.
SIGNAL 6 may be used to clear the message queue for this port number. Messages are
automatically deleted when a port ends its session (BYE, SYSTEM 0, or terminated SPAWN
commands).

Examples
Signal 6,-3,A,A

See also
SIGNAL 5

SIZE

Synopsis
Select the size of a window component.

Syntax
SIZE { chan.expr } w,h

Parameters
chan.expr is a driver-class dependent channel expression.
w,h are the width and height for the window component.

Executable From Keyboard?
Yes.

Remarks
Depending on the driver, it is possible to change the size of the window on the screen or control
which part of the window is displayed. Refer to the dL4 Files and Devices reference manual for
more information about windows.

Examples
! This is an example of the Size statement

Dim S$[1]

Print 'CS'

W = 41 \ H = 12

Open #1,{" Windows ","TITL",W,H} As "Window"

For I=1 TO 5

Print #1;"1234567890123456789012345678901234567890"

Size #1; W - (I * 2), H - (I * 2)

Read #1;S$

Erase #1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 190 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Next I

See also
MOVE, WINDOW

SPAWN

Synopsis
Launch a background BASIC program.

Syntax1
'SPAWN filename {, num.var }

Syntax2
SPAWN num.expr, filename {, num.var }   (Release 9.1)

Parameters
num.expr is an optional numeric expression, if set to 1 will pass global COM variables.
filename is a string literal or expression containing a name which is optionally preceded by a
relative or absolute directory pathname.
num.var is a numeric variable in which the program's port number is returned.

Executable From Keyboard?
No.

Remarks
SPAWN creates another process to run the BASIC program. This child process inherits the current
environment and current working directory. All channels are closed, and no COM or CHAIN
WRITE variables may be passed.
SPAWN is simpler than the PORT or CALL TRXCO() functions to launch a phantom port into a
BASIC program. It is especially suited for launching background reports, spoolers and other
programs communicated with using SEND, RECV or SIGNAL.
When the program terminates to command mode or BASIC program mode from STOP, non-
trapped error, END, CHAIN "", or SYSTEM 0/1, the process terminates releasing the port.
SPAWN locates an unused port number scanning backward from the value of the runtime
parameter MAXPORT.
The optional port num.var is returned with the port number assigned to the background program.
SEND and SIGNAL, as well as CALL TRXCO() and PORT statements may be used to
communicate with a port initiated by SPAWN.

Examples
Spawn "1/SPOOLER"

Spawn A$,K ! Start program, get port number

Spawn Mode, Program$, PortNum

See also
PORT, SIGNAL, SYSTEM



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 191 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

STOP

Synopsis
Abnormally terminate a program.

Syntax
STOP {str.expr}

Parameters
str.expr is an expression yielding a string value.

Executable From Keyboard?
No.

Remarks
The STOP statement terminates a running program and is functionally identical to the SUSPEND
statement.
str.expr is an optional string expression to be displayed.
If the program was executed from the SCOPE Interactive Development Environment (IDE) a
STOP statement causes program execution to cease, and returns the user to debug mode.
The STOP statement is usually used to indicate an error condition or some other abnormal mode of
program termination. A STOP statement, non-trapped [ESCAPE] or [ABORT] causes program
execution to cease. The program is left in the partition , channels remain open, and variables retain
their values. The user is returned to debug mode with the display:

--> [0] program:stmt.no;sub-stmt.no

program - Root program

STOP = str.expr

STOP at program:stmt.no statement

Type ? for help

dbg>

program is the filename of the current BASIC program, stmt.no is the statement number containing
the STOP, sub-stmt.no is the statement within the line, and statement is the actual BASIC
statement.
If the running program was started by SWAP, the various levels are displayed:

--> [1] program2:80;1

  program2 - SWAPed

    [0] 60;1

STOP = in program2

STOP at program2:80 STOP "in program2"

Type ? for help

dbg>

This example indicates that a STOP occurred in program2, which was swapped to from a program
at line 60;1 in that program.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 192 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

If the program was executed from another environment, such as the Operating System prompt, via
the applicable RUN filename command, the user is returned to that environment with a display:

STOP at program:stmt.no;sub-stmt.no

str.expr

prompt

program is the filename of the current BASIC program, stmt.no is the statement number containing
the STOP, sub-stmt.no is the statement within the line, and prompt is the

environment prompt.

If the running program was started by SWAP, the various levels are displayed:
STOP at program2:80;1

SWAP at program1:60;1

in program2

$

Other statements may follow a STOP in the program.
Examples

100 Stop

220 Stop "Irrecoverable error, contact support"

See also
SUSPEND

SUB

Synopsis
Define a subroutine.

Syntax
SUB proc.name ({parm.list })

Parameters
proc.name is the procedure name.
parm.list is a list of variables associated with parameters passed, optionally followed by three dots
("...").

Executable From Keyboard?
No.

Remarks
SUB declares a subroutine which operates as a separate program block within a program unit. A
subroutine operates upon, and return values through, supplied parameters passed by reference.
A proc.name may be from one-to-thirty-two characters in length. Structures may be passed and
operated upon.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 193 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Whenever a subroutine is to be used before its definition within the current program unit or
program, or physically resides in another program, a DECLARE statement must occur before its
first use.
Subroutines may be written to allow the caller to pass other than a fixed list of parameters.
Parameter types and number are not checked by the compiler or interpreter. Rather, it is left to the
subroutine to process each of the arguments passed by a caller.
To define a subroutine of this type, the following general forms are supported:

Sub name (...)
The definition of the subroutine itself specifies '...' informing the compiler and interpreter to leave
the parameter type and number checking to the subroutine.
Any structure variable in parm.list must be followed by an "AS struct.name" clause or an "AS *"
clause. Using an "AS *" clause allows the subroutine to accept any structure as a legal argument,
but the parameter can only be used in user defined intrinsics such as CALL GETSTRUCT() or as an
argument to another procedure that has an "AS *" parameter.
Any array variable in parm.list must be followed by empty brackets ("[]"). When using a subroutine
with array parameters, array variables must be followed by empty brackets ("X = SampleIt(Y[])").
It is also permitted to define a subroutine which has a known (required) list of parameters, followed
by additional optional parameters. Optional parameters must be the last parameters in the function
definition. The following example requires a numeric parameter and a string parameter, followed by
an optional number of parameters.

Sub proc.name (parameter1, parameter2$, ... }
Subroutines of this type utilize the ENTER statement to accept optional parameters.

Examples
Sub VerifyDate(D$, ...)

See also
FUNCTION

SUSPEND

Synopsis
Abnormally terminate a program.

Syntax
SUSPEND {str.expr}

Parameters
str.expr is an expression yielding a string value.

Executable From Keyboard?
No.

Remarks
The SUSPEND statement is functionally identical to the STOP statement.
str.expr is an optional string expression to be displayed.
If the program was executed from the SCOPE Interactive Development Environment (IDE) a



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 194 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

SUSPEND statement causes program execution to cease, and returns the user to debug mode.
The SUSPEND statement is usually used to indicate an error condition or some other abnormal
mode of program termination. A SUSPEND statement, non-trapped [ESCAPE] or [ABORT]
causes program execution to cease. The program is left in the partition , channels remain open, and
variables retain their values. The user is returned to debug mode with the display:

--> [0] program:stmt.no;sub-stmt.no

program - Root program

STOP = str.expr

STOP at program:stmt.no statement

Type ? for help

dbg>

program is the filename of the current BASIC program, stmt.no is the statement number containing
the SUSPEND, sub-stmt.no is the statement within the line, and statement is the actual BASIC
statement.
If the running program was started by SWAP, the various levels are displayed:

--> [1] program2:80;1

  program2 - SWAPed

    [0] 80;1

STOP = in program2

STOP at program2:60 SUSPEND "in program2"

Type ? for help

dbg>

This example indicates that a SUSPEND occurred in program2, which was swapped to from a
program at line 60;1 in that program.
If the program was executed from another environment, such as the Operating System prompt, via
the applicable RUN filename command, the user is returned to that environment with a display:

STOP at program:stmt.no;sub-stmt.no

str.expr

prompt

program is the filename of the current BASIC program, stmt.no is the statement number containing
the SUSPEND, sub-stmt.no is the statement within the line, and prompt is the environment prompt.
If the running program was started by SWAP, the various levels are displayed:

STOP at program2:80;1

SWAP at program1:60;1

in program2

$

Other statements may follow a SUSPEND in the program.
Examples

100 Suspend



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 195 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

220 Suspend "Irrecoverable error, contact support"

See also
STOP

SWAP

Synopsis
Suspend current program and execute another BASIC program.
(Release 9.1, modes 3 & 4 added)
(Release 10.5, modes 100, 110 & 120 added)

Syntax
SWAP { num.expr,} filename
SWAP Mode, filename, arg1, arg2, ..., argN (Release (10.5))

Parameters
num.expr selects whether channels and common variables are to be passed to the SWAPped
program.
filename is a string literal or expression containing a dL4 BASIC program filename which is
optionally preceded by a relative or absolute directory pathname.

Executable From Keyboard?
No.

Remarks
num.expr is a mode which, after evaluation is truncated to an integer to select channel and common
variable pass-along into the SWAP program. If mode is omitted, mode 2 is assumed.
SWAP suspends execution of the current program, saves all open channels and variables, and then
executes the child program. This child (swapped) program inherits the current environment,
variables, open channels, and current working directory from the parent (calling program).
The argN arguments can be expressions, numeric variables, string variables, array elements, or
entire array variables (using the same "[]" suffix as in CALL statements). Array arguments cannot
be re-dimensioned in the subprogram.
The selected filename.expr is loaded following the same rules as CHAIN. Common variables
declared using COM or CHAIN WRITE statements following the SWAP statement, and open
channels passed to the child process are processed according to the mode as follows:
mode Function Performed
    0 Close all open files in the child. Do not pass any common variables, i.e. ignore COM and

CHAIN WRITE.
    1 Pass all open channels to the child, and process the common variables according to the

rules for COM or CHAIN WRITE. Passes global COM variables, but the parent
program will not see any changes to the COM variables when the SWAP program exits.

    2 (default) Close all open files for the child, but process any common variables according to
the rules for COM or CHAIN WRITE. Passes global COM variables, but the parent
program will not see any changes to the COM variables when the SWAP program exits.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 196 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

    3 Passes COM variables and open channels and returns any changes values to the parent
program.

    4 Passes COM variables only and returns any changes values to the parent program.
    100 Supports all mnemonics according to the terminal type and performs normal dL4 terminal

initialization.
    110 Uses a "dumb" or "glass tty" terminal definition that does not support display mnemonics

and leaves the terminal state unchanged.
    120 Supports all mnemonics according to the terminal type and, if uniBasic window tracking

is enabled, preserves the screen (the screen is cleared before the dL4 subprogram is
executed and restored after the subprogram exits)

The parent is the initial program that executed the SWAP statement.
The child is each program executed by the SWAP statement . The parent is suspended while the
child runs. When a child terminates, the parent continues automatically, unaware of the events of
the child.
A child can itself be considered a parent if it performs a SWAP statement. SWAP statements may
nest until memory is exhausted. A unique relationship exists between the parent and child
programs. Variables and File Positions all flow forward from parent to child, however no
information is passed back to the parent upon termination of a child.
When a child inherits open files, the Operating System uses the same entries in the dL4 channel
table. A child can change its copy of the current pointers as well as add or remove locks on records.
These operations may confuse the parent.
When the SWAP program terminates using END, SYSTEM, or CHAIN "", the calling program
resumes execution at the statement immediately following the SWAP. To the caller, it appears as if
the SWAP statement never occurred.
If a non-trapped [ESCAPE], [ABORT] or STOP statement occurs, the swapped program is
terminated to BASIC debug mode to allow debugging. Execution of a termination statement while
in debug mode (END, SYSTEM, or CHAIN ""), terminates the swap level and resumes execution
in the calling program.
Data may be passed from a swapped program back to the calling program using temporary files, or
by placing it into the type-ahead buffer using CALL $INPBUF. Data may be passed using modes
3, 4, 100, 110 & 120. Data may not be transferred to the calling program using common variables.
Important: a child program can communicate with other ports using CALL 98, etc., and assumes
the same port # as the parent.

Examples
Swap "23/PROGRAM3"

Swap 0,A$

Swap 100,"Path Name",A$,B[]

See also

CHAIN, SPAWN

SYSTEM



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 197 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Execute operating system specific commands.

Syntax1
SYSTEM str.expr [,num.var]

Syntax2
SYSTEM num.expr {, expr} { ; num.expr {, expr}} ...

Parameters
str.expr is a command passed to the native operating system.
num.var is a variable of numeric data type to return the status.
num.expr is an expression yielding an operation to be performed.
expr is a numeric or a string expression, or a variable, yielding a parameter.

Executable From Keyboard?
Yes.

Remarks
num.expr may be a mode which, after evaluation is truncated to an integer and used to specify the
operation to be performed. Some modes require a second parameter which is any num.expr which,
after evaluation is truncated to an integer. The parameters are separated by the mode using a
comma.
Multiple SYSTEM modes may be invoked separating each with a semicolon.
str.expr is passed directly to the Operating System. This command can be used to launch another
application, or perform a system command. If an optional num.var follows, the status that is
returned from the Operating System is stored.
Following execution of the system command by the operating system, the program resumes
operation.
If the system command performs any output, your screen will be compromised unless a new
Window was opened prior to, and closed after, the SYSTEM command.
mode Operation Performed
    0 Terminate a session (BYE command). You may also terminate other users by including a

port number as an additional parameter. The general form:   SYSTEM 0,N terminates
port N.

    1 Clear the port's program partition (issue a NEW command), and stop the program.
    4 Un-assign all non-common variables. This allows re-dimensioning of partition space as

long as all variables to be used are re-assigned.
    5 Un-assign all variables. Same effect as SYSTEM 4, except common variables (COM

and CHAIN WRITE) are also affected.
    8 Enable terminal echo. Each character input will be echoed by the system to the terminal.
    9 Disable terminal echo. Each character input is received by the system, but not echoed to

the terminal. This feature allows for password or other secretive input.
  14 Enable Binary Input mode. All characters input are directly accepted as data. This

includes end-of-line, requiring the use of character limited INPUT.

  15 Disable Binary Input mode. Normal character processing is resumed.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 198 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

  16 Enable Binary Output mode.
  17 Disable Binary Output mode.
  20 Enable Trace mode.   See Trace Mode.
  21 Disable Trace mode.
  26 Automatic limited input. Causes character limited input to terminate when the specified

number of characters have been entered. Affects INPUT statement.
  27 Disable Automatic limited input. Causes character limited input to require an [ENTER]

(usually return) to be entered, even after the specified limit has been reached. Entry of
each extra character sounds the terminal bell until end-of-line is entered.

  28 Get value of Environment Variable. This function requires the special form: SYSTEM
28, str.var where str.var initially contains the name of an environment variable. If found,
its value is overwritten in the string, otherwise the str.var is set to "". If SYSTEM 29 has
been used to set an alternate source and the value is not found in the environment, then
the alternate source will be searched.

  29 Set alternate sources of Environment Variables. This function requires a special form:
SYSTEM 29, str.var where str.var contains an alternate source path for variables that are
not defined in the environment. On Windows systems, this path is an application registry
key within the user or system software keys. This mode is not supported on Unix
systems.

  30 Execute the native operating system command specified by the subsequent string
parameter and, optionally, return the command status in a numeric parameter. This
function requires one of two special forms: SYSTEM 30,str.expr or SYSTEM
30,str.expr,num.var. The operating system command is not permitted to perform input or
output to the user terminal and thus the command execution is invisible to the user.

  31 Execute the client operating system command specified by the subsequent string
parameter, wait for the command to complete, and, optionally, return the command status
in a numeric parameter. This function requires one of two special forms: SYSTEM
31,str.expr or SYSTEM 31,str.expr,num.var. If the application is running remotely, the
command will be executed on the local system. For example, if a user is connecting to
the application system via the dL4Term terminal emulator, the command will be
executed on the user’s Windows system on which dL4Term is running. If the application
is running under dL4 for Windows, this mode is identical to 'SYSTEM
"command",status'. This mode can only be used with supported terminal emulators and
may require configuration of the client system software to enable local command
execution.

  32 Get the amount of available space on a file system in units of 512 bytes. This mode
requires a special form: SYSTEM 32, str.expr,num.var where str.expr is the path of a
directory or file on the file system and num.var is a variable that receives the number of
available 512 byte blocks.

  33 Start the client operating system command specified by the subsequent string parameter
and, optionally, return the initialization status in a numeric parameter. Unlike SYSTEM
31, the statement does not wait for the completion of the command. This function
requires one of two special forms: SYSTEM 33,str.expr or SYSTEM
33,str.expr,num.var. If the application is running remotely, the command will be
executed on the local system. For example, if a user is connecting to the application
system via the dL4Term terminal emulator, the command will be executed on the user’s
Windows system on which dL4Term is running. If the application is running under dL4
for Windows, the command will run on the same system as the application. This mode



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 199 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

can only be used with supported terminal emulators and may require configuration of the
client system software to enable local command execution.

  34 (Release 7.1)   Enables converting terminal input characters to uppercase.
  35 (Release 7.1)   Disables converting terminal input characters from uppercase, back to

normal input
  36 (Release 9.1)   Causes the next WINDOW OPEN statement to create a non-scrolling

window. Can be restored after the execution of a WINDOW OPEN statement or
explicitly restored by the statement SYSTEM 37 statement.

  37 (Release 9.1)   Expicitly resets the WINDOW OPEN with scrolling enabled. See
SYSTEM 36 for non-scrolling option.

  38 (release 9.3)   Where the string S$ contains the activation characters. After SYSTEM 38
is used to define the special characters, the mnemonic 'BACTSP' is used to enable
activate on special character mode and the mnemonic 'EACTSP' is used to disable the
mode.

  39 (Release 10.3)   Will try to open "string" on the user's PC where "string" can be a URL
(to open the URL in the default browser), a file (to open the file in the application
associated with the file extension such as ".pdf"), or an executable program. The variable
"S" will be set to zero if "string" was successfully opened and non-zero if the program
couldn't be opened. Unlike SYSTEM 31, the statement does not wait for the open to
finish and exit. URLs must begin with "http://" or "https://". In the default configuration,
the user will be prompted via a message box to permit or deny running the command. As
with SYSTEM 31 and SYSTEM 33, the DWORD registry value

100 (Release 7.1)   Add new keys to the current key list, modify existing keys or to delete the
key list. Format of the statement is 
SYSTEM 100,"keyname","passphrase","cipher" 
where 
"keyname" is a string expression that specifies the key name. 
"passphrase" is a string expression that specifies the passphrase. 
"cipher" is the name of the encryption algorithm. 
Keys can be deleted fron the current key list by using: 
SYSTEM 100,"keyname","","" 
The entire current key can be deleted by using "" as the key name. 
SYSTEM 100,"","",""

101 (Release 7.1)   Is used to generate a key file string image that contains all of the keys
from the current key list (except those that begin with "SYS_"). The format is: 
SYSTEM 101,S$   "S$" is any string variable.

102 (Release 7.1)   Restores encryption keys from the key file.

Each port is returned to its normal operational modes (8, 15, 17, 19, 21, and 26) when a program is
completed or aborted.

Examples
System 14;16;

See also

TRACE



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 200 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis

Control non-interactive statement tracing.
Syntax

TRACE [ OFF | [ ON { chan.no }]]
Parameters

chan.no is a valid channel number.
Executable From Keyboard?

Yes.
Remarks

Trace mode is used when it is desirable to observe the statement number program flow without
performing single steps. SYSTEM 20 or TRACE ON enables tracing; SYSTEM 21 or TRACE
OFF turns trace off. These statements may be used in immediate mode, or imbedded within specific
code segments of a program. For each statement executed, the statement number stmt.no and sub-
statement number sub-stmt.no (statements on the same BASIC line) is printed. The current program
and procedure names will be printed if the names are available.
The TRACE ON statement can be followed by an optional channel number for redirecting trace
output to a file or driver.
The channel number that is given must be opened prior to executing the TRACE statement. If the
channel is subsequently closed, trace output defaults to the terminal. The following information is
output during trace mode:

[statement number; sub-statement number]

Tracing is automatically disabled when another program is loaded using CHAIN, SWAP, or
SPAWN.

Examples
Trace On

Trace Off

Trace On #5

See also
SYSTEM 20, SYSTEM 21

TRY

Synopsis
Specify a statement/block to execute when an error occurs in a specific statement/block.

Syntax1
TRY stmt1 ELSE stmt2

Syntax2
TRY

stmts



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 201 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

ELSE IF bool.expr
stmts

ELSE
stmts

END TRY
Parameters

stmt1 and stmt2 are any valid dL4 BASIC statements.
bool.expr is an expression evaluated to produce a boolean value.
stmts is any block of dL4 BASIC statements.

Executable From Keyboard?
No.

Remarks
TRY provides for the temporarily redirection of error branching within a block. If any program
error branching is in effect, it is temporarily suspended for any error other than ESCAPE for the
duration of the TRY statement or block. Error branching is restored upon the completion of the line
or block.

Examples
Try

Open #2,"cust.master"

Print "Opened cust.master on channel 2"

Else

Print "Unexpected Error: ";Spc(8); " at line ";Spc(10)

End Try

Print "Terminating program"

Close

See also
RETRY

UNLOCK

Synopsis
Unlock current locked record.

Syntax
UNLOCK chan.no {, chan.no} ...

Parameters
chan.no is any valid channel number.

Executable From Keyboard?
Yes.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 202 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Remarks
Any record locked by your program on the specified channel becomes unlocked. For most drivers,
no error is generated if no record has been locked. A record locked by another user cannot be
unlocked.
Generally, UNLOCK is only used in special circumstances, such as having one file open on two
channels. In this case, UNLOCK can be used to prevent the program from locking itself out of a
record.
The statement WRITE # channel ;; is identical to UNLOCK.

Examples
Unlock #5, #K, #K+1

See also
READ, WRITE

WEND

Synopsis
End a WHILE block.

Syntax
WEND

Parameters
None.

Executable From Keyboard?
No.

Remarks
Each WEND statement must match exactly one previous WHILE statement. The compiler ensures
that all loops are properly matched.

Examples
Print 'CS'

Counter = 5

While Counter

Print Counter,

Counter = Counter - 1

Wend

Print

See also
DO, ENDIF, LOOP, NEXT

WHILE



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 203 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Begin a loop to be performed as long as the expression is true.

Syntax
WHILE bool.expr

Parameters
bool.expr is an expression evaluated to produce a boolean value.

Executable From Keyboard?
No.

Remarks
Program loops may be established using the WHILE and WEND statements as a means of
blocking a set of repeated statements. WHILE and WEND statements provide additional flexibility
and looping control beyond the simple FOR / NEXT.
WHILE provides for looping as long as the bool.expr remains true. The bool.expr is tested prior to
performing each loop. The loop is terminated once the bool.expr is false.
WHILE is identical in behavior to DO WHILE ... LOOP.
Unlike FOR, WHILE loops may nest indefinitely. In addition, each WHILE loop must contain
exactly one matching WEND statement. The compiler ensures that all loops are properly matched.
Although not recommended, branching from outside to inside a WHILE loop will not cause an
error, rather the program will remain in the loop until it terminates. The WHILE statement itself
need not be executed to commence looping.

Goto Label

While Value > 100

Print Value;

Label: Value = Value + 1

Wend

Examples
Print 'CS'

Counter = 5

While Counter

Print Counter,

Counter = Counter - 1

Wend

Print

See also
DO, DO LOOP, DO WHILE , FOR, LOOP

WINDOW CLEAR



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 204 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Clear all Dynamic Windows and screen.

Syntax
WINDOW CLEAR

Parameters
None.

Executable From Keyboard?
Yes.

Remarks
The recommended method for using Windows under dL4 is to open a channel to the Window
driver as described in the Window driver section of the dL4 Files and Devices reference manual.
The WINDOW statements are provided for compatibility and programmer convenience.
WINDOW CLEAR clears all Windows back to Window Zero and clears the screen.

Examples
Window Clear

See also
WINDOW CLOSE

WINDOW CLOSE

Synopsis
Delete current Dynamic Window and repaint the original underlying data.

Syntax
WINDOW CLOSE

Parameters
None.

Executable From Keyboard?
Yes.

Remarks
The recommended method for using Windows under dL4 is to open a channel to the Window driver
as described in the Window driver section of the dL4 Files and Devices reference manual. The
WINDOW statements are provided for compatibility and programmer convenience.
WINDOW CLOSE deletes the current Window repainting the original underlying data. MSC(33)
and MSC(34) now reflect the size of the previous Window and MSC(42) is decremented. A
Window must always be deleted at the same parent / child SWAP level it was created. For example,
you perform a WINDOW OPEN in program A, then CHAIN to program B, which in turn
performs a SWAP or [Hot-Key] swap to program C (a child of B). If program C opens any
windows, then WINDOW CLOSE should be performed before returning control to program B. A
WINDOW CLOSE will be performed automatically for any windows that program C opened, but
did not close.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 205 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
Window Close

See also
WINDOW CLEAR

WINDOW MODIFY

Synopsis
Change the size or position of the current Dynamic Window.

Syntax
WINDOW MODIFY @x1,yl; [SIZE w,h; | TO @x2,y2;] {USING str.expr}

Parameters
x1,y1 are the column, row coordinates of the upper left corner.
w,h identify the width and height.
x2,y2 are the lower right column, row coordinates.
str.expr is a string expression yielding a window title.

Executable From Keyboard?
Yes.

Remarks
The recommended method for using Windows under dL4 is to open a channel to the Window driver
as described in the Window driver section of the dL4 Files and Devices reference manual. The
WINDOW statements are provided for compatibility and programmer convenience.
WINDOW MODIFY is used to change the size of the current Window based upon the supplied
parameters. Functions MSC(33) and MSC(34) are updated to reflect the current size. The size of a
Window may be changed as many times as desired but it cannot extend beyond the original
parameters specified to WINDOW OPEN. If the Window must be enlarged, perform a WINDOW
CLOSE, followed by another WINDOW OPEN. WINDOW MODIFY may be used to create
your own borders, to modify the border created by WINDOW OPEN, or implement a series of
panes inside a Window that can be accessed randomly.
WINDOW MODIFY merely redefines the writable region inside a window. The window itself is
not actually closed and re-opened. No underlying data is revealed or hidden by this statement.

Examples
Window Modify @7,7 To @62,18;

Window Modify @7,7; Size 80,24; Using "Help"

See also
WINDOW OPEN

WINDOW OFF

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 206 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Redirect screen I/O from Dynamic Window to root window.
Syntax

WINDOW OFF
Parameters

None.
Executable From Keyboard?

Yes.
Remarks

The recommended method for using Windows under dL4 is to open a channel to the Window driver
as described in the Window driver section of the dL4 Files and Devices reference manual. The
WINDOW statements are provided for compatibility and programmer convenience.
WINDOW OFF temporarily redirects output to the root window channel. Further screen
operations are not output to the current window and access outside the current Window is allowed.
If Dynamic Window was previously on and protected fields were used, they won't be protected.
WINDOW OFF and ON may also be used when secondary Windows (other than the first full-
screen) are opened, and access to the full screen is desired. When Dynamic Windows is turned off,
cursor access is to the full screen. When Dynamic Windows is again turned on, the cursor is
logically re-positioned to the last tracked position. Turning Dynamic Windows off to modify data
outside the screen should be limited to the display of errors or messages in a common area. The
Dynamic Window system is unaware of any changes to the screen.

Examples
Window Off

See also
WINDOW ON

WINDOW ON

Synopsis
Redirect screen I/O to current Dynamic Window.

Syntax
WINDOW ON

Parameters
None.

Executable From Keyboard?
Yes.

Remarks
The recommended method for using Windows under dL4 is to open a channel to the Window driver
as described in the Window driver section of the dL4 Files and Devices reference manual. The
WINDOW statements are provided for compatibility and programmer convenience.
WINDOW ON enables Dynamic Windows and should precede any other WINDOW function. The



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 207 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Dynamic Window system is initialized by clearing the screen. Subsequent WINDOW ON
statements are ignored.
WINDOW OFF and ON may also be used when secondary Windows (other than the first full-
screen) are opened, and access to the full screen is desired. When Dynamic Windows is turned off,
cursor access is to the full screen. When Dynamic Windows is again turned on, the cursor is
logically re-positioned to the last tracked position. Turning Dynamic Windows off to modify data
outside the screen should be limited to the display of errors or messages in a common area. The
Dynamic Window system is unaware of any changes to the screen.

Examples
Window On

See also
WINDOW OFF

WINDOW OPEN

Synopsis
Create a new Dynamic Window.

Syntax
WINDOW OPEN @x1,yl; [SIZE w,h; | TO @x2,y2;] {USING str.expr}

Parameters
x1,y1 are the column, row coordinates of the upper left corner of the Window.
w,h identify the Window width and height.
x2,y2 are the lower right column, row coordinates of the Window.
str.expr is a string expression yielding a Window title.

Executable From Keyboard?
Yes.

Remarks
The recommended method for using Windows under dL4 is to open a channel to the Window driver
as described in the Window driver section of the dL4 Files and Devices reference manual. The
WINDOW statements are provided for compatibility and programmer convenience.
@ specifies a crt.expr in the form of a Cursor Address. x1 is any num.expr which, after evaluation is
truncated to an integer to select the Upper Left Column for the Window. y1 is any num.expr which,
after evaluation is truncated to an integer to select the Upper Left Row. Following the crt.expr must
be a semicolon.
SIZE selects the size of a Window in columns and rows. TO specifies the size using a crt.expr in
the form of a Cursor Address of the last character position in the Window. Either form may be used.
If SIZE is used, w is any num.expr which, after evaluation is truncated to an integer to select the
number of columns. h is any num.expr which, after evaluation is truncated to an integer to select the
number of rows. If TO is specified, x2 is any num.expr which, after evaluation is truncated to an
integer to select the Lower Right Column for the Window. y2 is any num.expr which, after
evaluation is truncated to an integer to select the Lower Right Row. Following the crt.expr must be
a semicolon.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 208 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

The optional USING str.expr is any string expression to be centered and printed as the title of a
Window. The size must be less than the number of columns in the Window, or it is truncated. The
inclusion of USING specifies that a graphical border is to be placed around the Window. The
str.expr may be a null-string for a box without heading. The specification of a graphical border
reduces the usable space in the Window by one row, and column on the top, bottom and each side.
Whenever a program terminates, Dynamic Windows is turned off. If a program is terminated by
[ESCAPE], [ABORT], STOP, or Breakpoint, debugging is permitted and Windows remain open,
otherwise all Windows are cleared.

Examples
Window Open @5,5; To @60,20; Using "Help"

Window Open @0,0; Size 80,24;

See also
WINDOW MODIFY

WOPEN

Synopsis
Open an existing file for Write-Only access.

Syntax1
WOPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
WOPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to
the file.
file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.
driver-class specifies the driver-class, instead of using a default driver-class derived from the
file.spec.
driver-name specifies the driver-name, instead of using a default driver-class derived from the
file.spec.
file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.

Executable From Keyboard?
Yes.

Remarks
Similar to the OPEN statement except access is write-only.

Examples
Wopen #2,"cust.masterfi" AS "Full-ISAM"



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 209 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

See also
BUILD, CLOSE, EOPEN, OPEN, ROPEN

WRITE

Synopsis
Write variables to a channel.

Syntax
WRITE chan.expr var.list'Italic text {;}

Parameters
chan.expr is a driver-class dependent channel expression.
var.list is a list of comma separated variables of any dL4 data types.
";" unlocks the record after a successful WRITE.

Executable From Keyboard?
Yes.

Remarks
WRITE transfers data from any dL4 data type to the file opened on the selected chan.expr.
If the variable in the list is an array.var or mat.var, only the first element is written. Subscripts may
be used to select any individual element to be transferred. The number of bytes transferred is based
upon the variable DIMensioned size. The transfer is performed according the rules for the array
element type.
If the variable in the list is a simple num.var or date.var, the transfer size is controlled by the
DIMensioned size and precision.
If the variable in the list is a str.var, its size may be controlled by subscripts. Refer to the dL4 Files
and Devices reference manual for a description of how each specific file type and driver transfer
data.
The optional semicolon (;) terminator is used to release the automatic record-lock applied to the
supplied record in the chan.expr.

Examples
Write #3,R1,100;A,B$,C[12]

Write #C,R;A$

See also
READ, READ RECORD, MAT WRITE, WRITE RECORD, WRLOCK

WRITE RECORD

Synopsis
Write an entire structure.

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 210 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

WRITE RECORD chan.expr struct.var {;}
Parameters

chan.expr is a driver-class dependent channel expression.
struct.var is a variable of structure data type.
";" unlocks the record after a successful WRITE.

Executable From Keyboard?
Yes.

Remarks
The WRITE RECORD statement is similar to normal WRITE of a record except that item
numbers may be supplied by the ITEM option of the MEMBER statement.
The example illustrates the use of structures and the new statements on an old-style existing
Indexed or Contiguous file.

Def Struct DRCR

Member 3%, Debit : Item 0 !Note item displacement is

Member 3%, Credit : Item 6 !relative to where we begin

!transfer

End Def

Def Struct Cust

Member Number$[8] : Item 0

Member Name$[30] : Item 10

Member Addr$[30] : Item 42

Member Balance. As DRCR : Item 74

Member 1%,LastOrderNumb# : Item 86

End Def

Dim Customer. As Cust

Write Record #c,r,b,t;Customer.

is identical to:
Write #c,r,b+0,t;Customer.Number$

Write #c,r,b+10,t;Customer.Name$

Write #c,r,b+42,t;Customer.Addr$

Write #c,r,b+74+0,t;Customer.Balance.Debit

Write #c,r,b+74+6,t;Customer.Balance.Credit

The starting (or supplied) byte displacement is incremented by any ITEM declaration within the
structure. Since the structure Customer contains the structure DRCR as Balance beginning at offset
74, the original definition of the structure DRCR has starting offsets of zero. If one were to transfer
a DRCR structure separately, a starting offset of 74 would have to be supplied in the transfer
statement itself.

Examples
Write Record #2, -2;CustRec.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 211 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

See also
READ RECORD

WRLOCK

Synopsis
Write record and keep record locked.

Syntax
WRLOCK chan.expr var.list

Parameters
chan.expr is a driver-class dependent channel expression.
var.list is a list of comma separated variables of any dL4 data types.

Executable From Keyboard?
Yes.

Remarks
WRLOCK # transfers data from any dL4 data type into the file opened on chan.expr.
If the variable in the list is an array.var, optional subscripts may be specified. If given, these are
evaluated, truncated to integer and used to select a single element. If no subscripts are supplied,
only the first element is transferred.
If the variable in the list is a simple num.var or date.var, the transfer size is controlled by the
DIMensioned size and precision.
If the variable in the list is a string or binary variable, its size may be controlled by subscripts. All
characters are transferred including zero-bytes.
WRLOCK transfers data and unconditionally locks the record. The data record remains locked
until a non-locking operation is performed by that same program to the same channel. While a
record is locked, other users will be unable to access the record.
WRLOCK is identical to WRITE omitting the trailing semicolon.
See the WRITE statement for additional details.

Examples
Wrlock #3,R1,100;A

Wrlock #C,R;A$

See also
RDLOCK, WRITE

CHAPTER 8 - INTRINSIC CALLS AND FUNCTIONS
INTRODUCTION



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 212 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

This chapter presents the standard user defined CALLs and functions included with dL4. These
procedures and functions must be DECLAREd before used in a BASIC program, i.e.:

Declare Intrinsic Sub TrxCo, Logic, InpBuf

Declare Intrinsic Function FmtOf

This chapter does not describe the CALLs, such as DXOpen and DXGET, that are specific to
dynamicXport applications. Please see the dynamicXport manuals for information concerning those
CALLs.

FUNCTION ADDMD5?

Synopsis
Calculate intermediate MD5 checksum for multiple string or binary values.

Syntax
ADDMD5? (expr, {, bin.expr} )

Parameters
expr is a string or binary expression which specifies the value on which to calculate the MD5
checksum.
bin.expr is an optional expression which is the result of a previous ADDMD5? calculation.

Remarks
ADDMD5? calculates and returns as a 128 byte binary value an intermediate value of the MD5
checksum of expr. This intermediate value must be passed to a subsequent call to the MD5?
function to generate a final MD5 checksum. The optional binary argument bin.expr can be used to
pass the intermediate MD5 result value from a previous call to ADDMD5? to calculate a combined
checksum of several variables. The checksum is calculated against the dimensioned size of strings
so that null characters can be included in the checksum. Subscripts can be used to limit the number
of characters included in the checksum. So that string values will produce the same checksum
values on all platforms, each UNICODE character of a string is forced into a most-significant-byte-
first ordering for checksum calculation. An error will be generated if an illegal number of
parameters, parameter type, or parameter value is used.

Examples
Dim CheckSum?[16], Temp?[128]

Temp? = AddMD5?(C$)

CheckSum? = MD5?(X$[1,Len(X$)],Temp?) !Calculate checksum of C$+X$

See also
CRC32, MD5?

FUNCTION ADDSHA1?

Synopsis
Calculate intermediate SHA1 checksum for multiple string or binary values.   (Release 9.3)

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 213 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

ADDSHA1? (expr, {, bin.expr} )
Parameters

expr is a string or binary expression which specifies the value on which to calculate the SHA1
checksum.
bin.expr is an optional expression which is the result of a previous ADDSHA1? calculation.

Remarks
ADDSHA1? calculates and returns as a 128 byte binary value an intermediate value of the SHA1
checksum of expr. This intermediate value must be passed to a subsequent call to the SHA1?
function to generate a final SHA1 checksum. The optional binary argument bin.expr can be used to
pass the intermediate SHA1 result value from a previous call to ADDSHA1? to calculate a
combined checksum of several variables. The checksum is calculated against the dimensioned size
of strings so that null characters can be included in the checksum. Subscripts can be used to limit
the number of characters included in the checksum. So that string values will produce the same
checksum values on all platforms, each UNICODE character of a string is forced into a most-
significant-byte-first ordering for checksum calculation. An error will be generated if an illegal
number of parameters, parameter type, or parameter value is used.

Examples
Dim CheckSum?[20], Temp?[128]

Temp? = AddSHA1?(C$)

CheckSum? = SHA1?(X$[1,Len(X$)],Temp?) ! Calculate checksum of C$+X$

See also
CRC32, SHA1?, SHA256?, ADDSHA256?, MD5?, ADDMD5?

FUNCTION ADDSHA256?

Synopsis
Calculate intermediate SHA256 checksum for multiple string or binary values.   (Release 9.3)

Syntax
ADDSHA256? (expr, {, bin.expr} )

Parameters
expr is a string or binary expression which specifies the value on which to calculate the SHA256
checksum.
bin.expr is an optional expression which is the result of a previous ADDSHA256? calculation.

Remarks
ADDSHA256? calculates and returns as a 128 byte binary value an intermediate value of the
SHA256 checksum of expr. This intermediate value must be passed to a subsequent call to the
SHA256? function to generate a final SHA256 checksum. The optional binary argument bin.expr
can be used to pass the intermediate SHA256 result value from a previous call to ADDSHA256? to
calculate a combined checksum of several variables. The checksum is calculated against the
dimensioned size of strings so that null characters can be included in the checksum. Subscripts can
be used to limit the number of characters included in the checksum. So that string values will
produce the same checksum values on all platforms, each UNICODE character of a string is forced
into a most-significant-byte-first ordering for checksum calculation. An error will be generated if an



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 214 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

illegal number of parameters, parameter type, or parameter value is used.
Examples

Dim CheckSum?[32], Temp?[128]

Temp? = AddSHA256?(C$)

CheckSum? = SHA256?(X$[1,Len(X$)],Temp?) ! Calculate checksum of C$+X$

See also
CRC32, SHA256?, SHA1?, ADDSHA1?, MD5?, ADDMD5?

CALL ASC2EBCDIC

Synopsis
Convert string between Unicode and EBCDIC character sets.

Syntax
CALL ASC2EBCDIC (str.var { ,num.expr})

Parameters
str.var is a string variable containing the string to translate to or from EBCDIC.
num.expr is an optional expression select the translation mode.

Remarks
The string is translated from EBCDIC to Unicode if num.expr is zero or not specified. If num.expr
is non-zero, then the string is translated from Unicode to EBCDIC. An error 38 is generated if
str.expr contains any characters that cannot be translated. This procedure is compatible with
UniBasic CALL 53.

Examples
Call Asc2EBCDIC(Rec$)

See also
CALL ATOE, CALL ETOA

FUNCTION ASCII$

Synopsis
Format a string using backslashed octal notation. (Release (10.5))

Syntax
ASCII$ (str.expr)

Parameters
str.expr is the string expression to be formatted.

Remarks
The ASCII$() function formats the string argument using backslashed octal notation ("\ooo\") for
all non-ASCII characters. ASCII characters are copied unchanged.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 215 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
Print ASCII$(S$[I,J])

See also
HEX$

CALL ATOE

Synopsis
Convert string from Unicode to the EBCDIC character set.

Syntax
CALL ATOE (str.var)

Parameters
str.var is the string to translate.

Remarks
An error 38 is generated if str.var contains any characters that cannot be translated. This procedure
is compatible with UniBasic CALL $ATOE.

Examples
Call AtoE(Value$)

See also
CALL ETOA, CALL ASC2EBCDIC

CALL AVAILBLKS

Synopsis
Get amount of available file space

Syntax
CALL AVAILBLKS(num.expr, num.var)

Parameters
num.expr is an expression which specifies the logical unit to check.
num.var is a variable that receives the amount of available space, in 512 byte blocks, on the file
system that contains the logical unit specified by num.expr.

Remarks
This procedure is compatible with UniBasic CALL 117. The SYSTEM 32 statement provides a
more general method of checking for available file space.

Examples
Call AvailBlks(LU,NBLKS)

See also
SYSTEM 32



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 216 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL AVPORT

Synopsis
Find available port number.

Syntax
CALL AVPORT (num.var {,num.expr1 {,num.expr2}})

Parameters
num.var is a variable which is set to the first available port number in the specified port number
range or -1 if no port is available.
num.expr1 is an optional expression which specifies the beginning of the port number range.
num.expr2 is an optional expression which specifies the end of the port number range.

Remarks
If num.expr2 is not specified, the end of the port number range is assumed to be the maximum port
number. If num.expr1 is not specified, the beginning of the port number range is assumed to be
zero. If the end of the port number range is less than the beginning, then the port number search will
be performed downwards from the end of the range.

Examples
Call AvPort(P)

Call AvPort(PortNum, 100)

Call AvPOrt(PortNum, 1000, 900)

See also
PORT, CALL TRXCO

FUNCTION BASE64$

Synopsis
Encode binary value as a printable base 64 value.

Syntax
BASE64$ (bin.expr)

Parameters
bin.expr is a binary string expression.

Remarks
BASE64$ encodes the binary string bin.expr as a printable base 64 character string. Base 64 is used
for some forms of MIME encoding. An error will be generated if an illegal number of parameters,
parameter type, or parameter value is used.

Examples
C$ = Base64$(C?)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 217 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

See also
BASE64?

FUNCTION BASE64?

Synopsis
Decode base 64 string into a binary string.

Syntax
BASE64? (str.expr)

Parameters
str.expr is a string expression which is a binary string encoded in base 64.

Remarks
BASE64? decodes the base 64 string str.expr into a binary string. Base 64 is used for some forms of
MIME encoding. An error will be generated if an illegal number of parameters, parameter type, or
parameter value is used.

Examples
C? = Base64?(C$)

See also
Base64$

CALL BITMANIP

Synopsis
Manipulate Numeric BIT.

Syntax
CALL BITMANIP (num.expr, num.var1, num.var2 {, num.var3})

Parameters
num.expr is a mode which, after evaluation, is truncated to an integer to specify one of the following
operations: Reset, Set, Test, AND, OR, XOR, Complement.
num.var1 is used to select one binary argument to the CALL.
num.var2 is used to select a second binary argument to the CALL.
The optional num.var3 is used to return information from the CALL.

Remarks
mode is any num.expr which, after evaluation, is truncated to an integer to specify one of the
following operations:

mode Operation Selected
    0 Reset (zero) bit number num.var1 in variable num.var2. num.var3 returns bit

num.var1 before reset.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 218 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

    1 Set bit number num.var1 in variable num.var2 to one. num.var3 returns bit
num.var1 before set.

    2 Test bit number num.var1 in variable num.var2. num.var3 returns zero if the bit is
zero or 2 15-num.var1 if the bit is one.

    3 AND variable num.var1 to variable num.var2 and store result in num.var2 . A
logical AND produces a one in each bit position set in both num.var1 and
num.var2.

    4 OR variable num.var1 to variable num.var2 and store result in num.var2. A logical
OR produces a one in each bit position set in either num.var1 or num.var2 or both.

    5 XOR variable num.var1 to variable num.var2 and store result in num.var2. A
logical XOR (exclusive OR) produces a one in each bit position set in either
num.var1 or num.var2 but not in both.

    6 Complement (NOT) variable num.var1 and store result in variable num.var2. Each
one bit is set to zero and vice-versa.

CALL BITMANIP provides bit manipulation on integer variables in the range 0 thru 65535
(1777778).

One-word arithmetic and logical operations are also provided.
The following table illustrates the effect of the logical operations:

X Y X AND Y X OR Y X XOR Y NOT Y
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1
1 1 1 1 0

Examples
Call Bitmanip(M,A,B,F)

See also
CALL LOGIC

CALL BITSNUMSTR

Synopsis
Store/Load BITS representation of a number.

Syntax1
CALL BITSNUMSTR (num.expr1, num.expr2, bin.var)

Syntax2
CALL BITSNUMSTR (num.expr1, num.expr2, str.var)

Syntax3
CALL BITSNUMSTR (num.expr1, bin.expr, num.var)

Syntax4



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 219 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL BITSNUMSTR (num.expr1, str.expr, num.var)
Parameters

num.expr1 is a numeric expression yielding an index into bin.var or bin.expr at which to copy
num.expr2 or num.var.
num.expr2 is a numeric expression yielding a value to copy into bin.var.
bin.var is a binary variable into which the value of num.expr2 is copied.
str.var is a string variable into which the value of num.expr2 is copied.
bin.expr is a binary expression yielding a binary string from which a value is copied to num.var.
str.expr is a string expression yielding a binary string from which a value is copied to num.var.
num.var is a numeric variable into which a value is copied from bin.expr.

Remarks
CALL BITSNUMSTR may be used to convert between BITS numeric data and binary data.
Syntax1 converts a number to its BITS binary representation and stores it at the index position in
the binary string variable.
Syntax2 converts a number to its BITS string representation and stores it at the index position in
the string variable.
Syntax3 converts a BITS binary representation at the index position to a number and stores it in a
variable.
Syntax4 converts a BITS string representation at the index position to a number and stores it in a
variable.
The precision of the numeric variable determines the storage requirements.

Examples
Declare Intrinsic Sub BitsNumStr

Dim b?[20]

Dim %1,a1

a1 = 3

i = 1

Call bitsnumstr(i,a1,b?)

Print Hex$(b?)

Call bitsnumstr(i,b?,a1)

Print "The magic number was ";a1

End

See also

CALL BUILDKEY

Synopsis
Builds key definitions for a file.   (Release 7.1)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 220 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
CALL BUILDKEY (str.var1, str.var2, num.var, str.var3)

Parameters
str.var1 is a string variable, that contains the created key.
str.var2 is a string variable, which contains the data record of the key to be created.
num.var is a numeric variable, that contains the starting directory to be updated.
str.var3 is a string variable, which contains the beginning and ending positions in str.var2 that
creates the key.

Remarks
CALL BUILDKEY constructs a key value in the str.var1 arguement by copying characters from the
str.var2 according to the Nth key definition from str.var3 where N is num.var.
The string str.var3 consist of 1 or more key definitions, one for each directory. Each definition
begins and ends with an asterisk. Each definition consists of one or more six character numeric
strings in the form of "BBBEEE", where "BBB" is the offset in str.var2 at which to starting copying
the key and "EEE" is the offset at which to stop. The offsets and num.var are origin 1.
The format of strvar3 is "*BBBEEE(BBBEEE...}*(BBBEEE(BBBEEE...}*}..."
This procedure is compatible with UniBasic CALL 68.

Examples
Call BuildKey(Dest$,Record$,DirNo,KeyDef$)

See also

CALL BYTECOPY

Synopsis
Copy bytes from source to destination up to shorter of the two variables.

Syntax
CALL BYTECOPY (destination.var.name, source.var.name)

Parameters
destination.var.name is the destination variable name of any dL4 data type.
source.var.name is the source variable name of any dL4 data type.

Remarks
The BYTECOPY call may be used for low level manipulations, but should not be used by the
BASIC programmer except in special situations, as it will frequently cause a program or its files to
become non-portable.

Examples
! Demonstration of danger using BYTECOPY

Declare Intrinsic Sub ByteCopy

Dim %1,a1,%2,a2

a2 = 32767



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 221 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Print 'CS'

For i=1 to 3

Try

a1 = a2   ! PRECISION PROBLEM

Else

Print a2;" too large for assignment to %1 variable "

Print " Will use BYTECOPY to force assignment. "

Call ByteCopy(a1,a2)   ! FORCE THE ASSIGNMENT

End Try

Print

Print " Variable a2 is ";a2;" copied to variable a1 as ";a1

Print

a2 = a2 + 1

If i = 2 then a2 = 50000

Next I

End

See also
Declare Intrinsic Function FmtOf

CALL CALLSTAT

Synopsis
Get CALL subprogram level information

Syntax
CALL CALLSTAT (num.var1, str.var, num.var2)

Parameters
num.var1 receives the current CALL subprogram level (zero if in the main program).
str.var receives the name of the parent (CALLing) program.
num.var2 receives the line number of the CALL statement in the parent program.

Remarks
The arguments are optional and can be placed in various orders with the returned information
determined by the variable type and the preceding arguments. An error 38 is generated if the
arguments are illegal.

Examples
Call CallStat(level,parentname$,parentline)

See also
CALL CALLSTAT$



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 222 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

FUNCTION CALLSTAT$

Synopsis
Return description of the current program position at a specified level

Syntax
CALLSTAT$ (num.expr, str.var)

Parameters
num.expr specifies the procedure level to describe.
str.var receives the level type such as “Swap” or “ExtFunc”.

Remarks
The current level is specified as zero, the parent procedure is specified as one, and so on. An error
38 is generated if a non-existent level is specified or it the arguments are ilegal.

Examples
Print CallStat$(1, Type$)

See also
CALL CALLSTAT

CALL CHECKDIGITS

Synopsis
Validate numeric field.

Syntax
CALL CHECKDIGITS (str.expr)

Parameters
str.expr is an expression which specifies the string to validate.

Remarks
An error 38 is generated if str.expr contains any non-numeric characters or if the parameter is not a
string. A null string ("") is accepted as valid. This procedure is compatible with UniBasic CALL
22.

Examples
Call CheckDigits(Cost$)

See also
CALL CHECKNUMBER

CALL CHECKNUMBER

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 223 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Validate numeric field.
Syntax

CALL CHECKNUMBER (str.expr)
Parameters

str.expr is an expression which specifies the string to validate.
Remarks

An error 38 is generated if str.expr contains any characters other than digits (0 - 9), plus signs ("+"),
minus signs ("-"), or more than one decimal point ("."). This procedure is compatible with UniBasic
CALL 23.

Examples
Call CheckNumber(Cost$)

See also
CALL CHECKDIGIT

CALL CHECKSPC2DATE

Synopsis
Checks if the string date value is valid.   (Release 7.1)

Syntax
CALL CHECKSPC2DATE (str.var, num.expr)

Parameters
str.var is a string variable, that contains the value of the date to check if it's a valid date.
num.expr is a numeric expression, that returns the status if the date is valid.

Remarks
If num.expr is 0, the date string in str.var is valid. If num.expr is non-zero the date in str.var is not
valid. The date in str.var should be "MMDDYY" format. Unless the native date is set to
"DDMMYY", then the date in str.var is in "DDMMYY".
This procedure is compatible with UniBasic CALL 121.

Examples
Call CheckSPC2Date(Date$, Status)

See also
CALL CONVERTP2DATE, DIFFSPC2DATES

CALL CHSTAT

Synopsis
Get SWAP level information

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 224 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL CHSTAT (num.var1, str.var, num.var2)
Parameters

num.var1 receives the current SWAP subprogram level (zero if in the main program).
str.var receives the name of the parent (SWAPing) program.
num.var2 receives the line number of the SWAP statement in the parent program.

Remarks
The arguments are optional and can be placed in various orders with the returned information
determined by the variable type and the preceding arguments. An error 38 is generated if the
arguments are illegal.

Examples
Call ChStat(level,parentname$,parentline)

See also
SWAP

CALL CKSUM

Synopsis
Calculate file checksum.

Syntax
CALL CKSUM ({num.expr1, } str.expr , num.expr2, num.expr3, var, num.var)

Parameters
num.expr1 is an optional expression selecting the type of checksum.
str.expr is the file path.
num.expr2 is the 16-bit word starting offset of the file area to checksum.
num.expr3 is the 16-bit word ending offset of the file area to checksum. Use -1 to checksum the
entire file.
var is a numeric or binary variable that receives the calculated checksum.
num.var is an optional variable that receives the operation status.

Remarks
The checksum algorithm is selected by num.expr1 as follows:

omitted UniBasic compatible 16-bit checksum (var must be numeric)
0 UniBasic compatible 16-bit checksum (var must be numeric)
1 32-bit CRC checksum (var must be numeric)
2 16 byte MD5 checksum (var must be binary)
3 (Release 7.1)   Unibasic compatible checksum

If num.var is specified, then the following operation status is returned in the variable:
0 Successful
1 str.expr is not a string



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 225 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

3 num.expr1 (start offset) is negative
5 num.expr2 (end offset) is negative
6 num.expr1 (start) is greater than num.expr2 (end)
7 File not found

If num.var is not specified and the final status would have been non-zero, an error 38 will occur.
This procedure is compatible with UniBasic CALL $CKSUM except that mode 0 can produce
different results on some platforms (see CALL UBCKSUM).

Examples
Call Cksum(Filename$,Start,End,Checksum,Status)

See also
CALL UBCKSUM, CRC32, MD5?

CALL CLEARSTR

Synopsis
Fill string variable with nulls

Syntax
CALL CLEARSTR (str.var)

Parameters
Str.var is the string to clear.

Remarks
This procedure is compatible with UniBasic CALL 57. String variables can also be initialized to
nulls by the CLEAR statement.

Examples
Call ClearStr(X$)

See also
CLEAR

CALL CLOSEALL

Synopsis
Close all channels

Syntax
CALL CLOSEALL (expr)

Parameters
expr is an expression of any type. The expression value is not used by this CALL.

Remarks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 226 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

This procedure is compatible with UniBasic CALL 116. All channels can also be closed by the
following statement:

CLOSE
Examples

Call CloseAll(0)

See also
CLOSE

CALL CLU

Synopsis
Change current logical unit.

Syntax
CALL CLU (num.expr { , num.var})

Parameters
num.expr is an expression which specifies the new logical unit number or -1 to return to the default
working directory.
num.var is a numeric variable that receives the operation status. A status of 0 is successful, a status
of 1 indicates an invalid logical unit number, and a status of 2 occurs if the logical unit was not
found.

Remarks
An error 38 is generated if the type or number of parameters is incorrect This procedure is
compatible with UniBasic CALL $CLU. The CHDIR statement provides a more general method
of changing the current directory.

Examples
Call CLU(5)

See also
CHDIR

CALL CONVERTCASE

Synopsis
Convert selected characters to upper or lower case.

Syntax
CALL CONVERTCASE (num.expr1, str.expr {, num.expr2} )

Parameters
num.expr1 is an expression which selects the function to be performed
str.var is a string variable to be converted.
num.expr2 is an optional expression which specifies the index (origin 0) in str.var at which to begin



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 227 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

converting.
Remarks

The value of num.expr1 selects one of the following conversion modes:
Mode Function
    1 Convert all letters to upper case.
    2 Convert first letter only to upper case.
    3 Convert first letter of each word to upper case.
    4 Convert all letters to lower case.
    5 Convert first letter and any single “I” to upper case.
    6 Convert all letters to lower case and any single “I” to upper case.
This procedure is compatible with UniBasic CALL 43.

Examples
Call ConvertCase(1,C$)

See also
LCASE$, UCASE$

CALL CONVERTSPC2DATE

Synopsis
Converts as SPC(2) date to and from a string format.   (Release 7.1)

Syntax
CALL CONVERTSPC2DATE (str.var, num.var, num.expr)

Parameters
str.var is a string variable, that contains the value of the SPC(2) date.
num.var is a numeric variable, that contains the value of the SPC(2) date.
num.expr is a numeric expression, to convert the str.var to num.var or num.var to str.var.

Remarks
If num.expr is 0, the date string in str.var is converted and returned in num.var. If num.expr is non-
zero the date in num.var is converter and returned in str.var. The return value is normally in
"MMDDYY" format. Unless the native date is set to "DDMMYY", then the date is returned as
"DDMMYY".
This procedure is compatible with UniBasic CALL 120.

Examples
Call ConvertSPC2Date(Date$, Date, Mode)

See also
CALL CHECKSP2DATE, CALL DIFFSPC2DATES

CALL COPYARRAY



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 228 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
To copy ranges of array elements from one array to another or within an array.   (Release 7.3)

Syntax
CALL COPYARRAY (array.var1[], num.var2, array.var3[], num.var4, num.var5)

Parameters
array.var1[] is the destination array. The array type must match that of array.var3[].
num.var2 is a numeric variable, that is an index to the element at which to start copying to.
array.var3[] is the source array. The array can be of any type.
num.var4 is a numeric variable, that is an index to the element at which to start copying from.
num.var5 is a numeric variable, that is the number on elements to copy.

Remarks
COPYARRAY copies the number of elements specified by num.var5 from the array.var3[], starting
from element num.var4, to array.var1[] starting at element num.var2.
If the copy is performed within an array, the copy is performed such that overlapping ranges are
handled correctly.

Examples
Call CopyArray(Dest[], DestIdx, Src[], SrcIdx, NumElements)

See also
CALL COPYSTR

CALL COPYFILL

Synopsis
Copies values from a source variable to a destination variable space filling all strings, string array
elements, or string structure members.

Syntax
CALL COPYFILL (dest.var, source.var)

Parameters
dest.var is the destination variable
source.var is the source variable.

Remarks
"dest.var" and "source.var" must be of the same type.

Examples
Call CopyFill(String2$,String1$)

See also
CALL COPYARRAY & CALL COPYSTR



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 229 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL COPYSTR

Synopsis
Copy string to specified position

Syntax
CALL COPYSTR (str.var, num.expr, str.expr)

Parameters
str.var is the destination string.
num.expr is the index value in str.var at which the copy is performed. A value of one starts the copy
at the first character in str.var.
str.expr is the string value to copy.

Remarks
If the source string is longer than the destination area, the copy will be truncated. If num.expr is
negative or exceeds the size of str.var, nothing will be copied, but no error will occur. This
procedure is compatible with UniBasic CALL 30.

Examples
Call CopyStr(Dest$,DestIdx,Src$)

See also
CALL COPYARRAY

FUNCTION CRC16

Synopsis
Calculate 16 bit cyclic redundancy code of string value.

Syntax
CRC16 (num.expr1, num.expr2, str.expr, num.expr3 )

Parameters
num.expr1 is an expression which selects the type of CRC calculation.
num.expr2 is an expression which specifies the CRC polynomial.
Str.expr is a string expression which specifies the value on which to calculate the 16 bit CRC.
num.expr3 is an expression which is the result of a previous CRC calculation.

Remarks
CRC16 calculates and returns as a number the 16-bit CRC checksum of str.expr which must be a
string value. If num.expr1 is zero, a simple 8 bit sum is calculated. If num.expr1 is equal to one, a
16 bit CRC is calculated using num.expr2 as the CRC polynomial. The numeric argument
num.expr3 can be used to pass the CRC value from a previous call to calculate a combined CRC of
several variables. The CRC value is calculated against the DIMed size of strings so that null
characters can be included in the CRC value. Subscripts can be used to limit the number of
characters included in the CRC. So that string values will produce the same CRC values on all
platforms, each UNICODE character of a string is forced into a most-significant-byte-first ordering



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 230 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

for CRC calculation. An error will be generated if an illegal number of parameters, parameter type,
or parameter value is used.

Examples
CheckSum = CRC16(1,4129,Blk$,0) !Calculate XMODEM CRC of Blk$

See also
ADDMD5?, CRC32, MD5?, NCRC32

FUNCTION CRC32

Synopsis
Calculate 32 bit cyclic redundancy code of string or binary value.

Syntax
CRC32 (expr {, num.expr} )

Parameters
expr is a string or binary expression which specifies the value on which to calculate the 32 bit CRC
num.expr is an optional expression which is the result of a previous CRC calculation.

Remarks
CRC32 calculates and returns as a number the 32-bit CRC checksum of expr which must be either
a string or a binary value. The optional numeric argument num.expr can be used to pass the CRC
value from a previous call to calculate a combined CRC of several variables. The CRC value is
calculated against the DIMed size of strings so that null characters can be included in the CRC
value. Subscripts can be used to limit the number of characters included in the CRC. So that string
values will produce the same CRC values on all platforms, each UNICODE character of a string is
forced into a most-significant-byte-first ordering for CRC calculation. An error will be generated if
an illegal number of parameters, parameter type, or parameter value is used.

Examples
CheckSum = CRC32(C$) !Calculate CRC of C$ alone

CheckSum = CRC32(X$[1,Len(X$)],CheckSum) !Calculate CRC of C$+X$

See also
ADDMD5?, MD5?, NCRC32

CALL CUSTOMCHARACTERSET

Synopsis
Create custom character sets.

Syntax
CALL CUSTOMCHARACTERSET (num.expr ,str.expr {,num.var})

Parameters
num.expr is a numeric variable or expression specifying the various call functions.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 231 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

str.expr is a string variable or expression that contains the path of a dL4 profile text file.
num.var is a numeric variable specifying the status returned by the call.

Remarks
The intrinsic CALL, CustomCharacterSet, allows dL4 programs to create their own custom
character sets. These characters sets can be used with the OPEN and BUILD "charset=name"
option to read or write data in the custom character set. The character set must support a single byte
character set: each character in the character set must consist of a single byte (multibyte codes like
UTF-8 can not created).
The call requires a num.expr "mode" and a str.expr "filename" argument. In addition, the call may
receive an optional num.expr "status" variable argument.
The num.expr "mode" argument represents the various call functions. The available modes or
functions are:
Mode Functions
    0 Register or modify a user-defined character set.
    1 Register a user-defined character set, but do not modify an existing character set.

Return an error if the character set was previously registered.
    2 Register a user-defined character set, but do not modify an existing character set.

Do not return an error if the character set was previously registered.
Note that a character set can modified, but it can not be deleted. The character set will be available
until dL4 is exited.
The call will return an error if it is called with an invalid number of arguments or with an invalid
argument type.
The str.expr argument contains the path of a dL4 profile text file. This text file must contain three
sections: a "CharacterSetName" section, a "ToUnicode" table section, and a "FromUnicode" table
section.

[CharacterSetName]
Name=
Name=
Name=
  •
  •
  •
[ToUnicode]
  •
  •
  •
[FromUnicode]
  •
  •
  •



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 232 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

The "CharacterSetName" section consists of one or more names for the character set. Both the
"ToUnicode" and "FromUnicode" sections consist of zero or more lines in the following format:
<StartingUnicodeValue>-<EndingUnicodeValue>=<Custom Character Set Value>
An example of the profile file, using an imaginary character set follows:

[Character Set Name]
Name=Imaginary Character Set
Name=Synonym Character Set

 
[ToUnicode]
0x0020-0x007e=0x20
0x00a0-0x00a0=0xff
0x00a1-0x00a1=0xad
0x00a2-0x00a2=0xbd

 
[FromUnicode]
0x0020-0x007e=0x20
0x00a0-0x00a0=0xff
0x00a1-0x00a1=0xad
0x00a2-0x00a2=0xbd

The optional status variable num.var represents the status returned by the call. If the status variable
is not used, the call will return a BASIC error if it detects an error. If the status variable is specified,
then it will be set to either zero, indicating success, or a positive value indicating a specific error
status. The status values are:
Status Value Meaning
          0 No Error
          1 Profile file does not exist or cannot be opened
          2 Invalid CharacterSetName section
          3 Invalid ToUnicode section
          4 Invalid FromUnicode section
          5 Character set already registered
          6 Memory overflow
          7 Character set is too complex (this shouldn't occur for any real character set)
          8 Unexpected system error (such an I/O error reading the profile file)
          9 Unknown error (catchall for any other unexpected error)

Examples
Call CustomCharacterSet(0,"chardir/custom")

Call CustomCharacterSet(Mode,CharFn$,Error)

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 233 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL DATE

Synopsis
Verify and reformat a date.

Syntax
CALL DATE (str.expr, str.var, num.expr, num.var)

Parameters
str.expr is an expression which specifies the string to validate and reformat
str.var is a string variable that receives the reformatted date.
num.expr is the length of formatted output.
num.var is a numeric variable that receives the operation status.

Remarks
The source date in str.expr must have the format MMYY, MMDDYY, or MMDDYYYY. The
reformatted date in str.var will have the format YYMM, YYMMDD, or YYYYMMDD selected by
the length num.expr. If OPTION DATE FORMAT NATIVE is used, the current locale will be
used for date ordering. If the date is valid and reformatted successfully, a zero will be returned in
num.var, otherwise an error status of one will be returned. This procedure is compatible with
UniBasic CALL $DATE.

Examples
Call Date(srcdate$,destdate$,8,status)

See also
CALL VERIFYDATE

CALL DATETOJULIAN

Synopsis
Convert date string to julian date string.

Syntax
CALL DATETOJULIAN ({num.expr,} str.expr {,str.var {,num.var}})

Parameters
num.expr is an optional expression selecting the input and output date formats.
str.expr is an expression which specifies the string to convert.
str.var is an optional variable which receives the converted date string.
num.var is an optional variable that receives the status of the conversion (0 for success, 1 for illegal
date).

Remarks
Conversion modes:

num.expr Input Date Output Date Comment



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 234 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

      0 yymmdd yyddd year and day of year; e.g. 98365
      1 yymmdd ddddd days since January 1, 1968
      2 yymmdd yyyyddd 4 digit year and day of year; e.g.

1998365
      4 yyyymmdd yyddd 2 digit year and day of year; e.g. 98365
      5 yyyymmdd ddddd days since January 1, 1968
      6 yyyymmdd yyyyddd 4 digit year and day of year; e.g.

1998365
If num.expr is not specified, a conversion mode of 0 is assumed.
If str.var is not specified, then str.expr must be a string variable into which the converted date is
stored.
If num.var is not specified, then an illegal date will cause an error 38 to occur.
This procedure is compatible with UniBasic CALL 25.

Examples
Call DateToJulian(S$)

See also
CALL JULIANTODATE

FUNCTION DATEUSING$

Synopsis
Convert date to string using a mask.

Syntax
DATEUSING$ (date.expr, str.expr)

Parameters
date.expr is a date expression which specifies the date value to convert to a character string.
str.expr is a string expression that controls the formatting of the date value.

Remarks
The DATEUSING function parses the format mask str.expr replacing the date codes with the
values, derived from date.expr, shown in the table below. Any characters in the format mask that
are not part of a date code are left unchanged. The final string is returned as the function value.

Code Replacement value
D Numeric day of week (0 - 6, 0 is Sunday)
d Numeric day of week (0 - 6, 0 is Sunday)
DAY Day name in upper case (SUNDAY, MONDAY, ...)
day Day name in mixed case (Sunday, Monday, ...)
Day Day name in mixed case (Sunday, Monday, ...)
DY Abbreviated day name in upper case (SUN, MON, ...)
dy Abbreviated day name in mixed case (Sun, Mon, ...)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 235 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Dy Abbreviated day name in mixed case (Sun, Mon, ...)
DD Numeric day of month zero filled ("01" - "31")
Dd Numeric day of month space filled (" 1" - "31")
dD Numeric day of month space filled ("01" - "31")
dd Numeric day of month ("1" - "31")
DDD Numeric day of year zero filled ("001" - "366")
Ddd Numeric day of year space filled (" 1" - "366")
ddd Numeric day of year ("1" - "366")
HH Numeric hour of day zero filled ("00" - "23")
Hh Numeric hour of day space filled (" 0" - "23")
hH Numeric hour of day space filled (" 0" - "23")
hh Numeric hour of day ("0" - "23")
MM Numeric month of year zero filled ("01" - "12")
Mm Numeric month of year space filled (" 1" - "12")
mm Numeric month of year ("1" - "12")
MONTH Month name in upper case (JANUARY, FEBRUARY, ...)
Month Month name in mixed case (January, February, ...)
month Month name in mixed case (January, February, ...)
MON Abbreviated month name in upper case (JAN, FEB, ...)
Mon Abbreviated month name in mixed case (Jan, Feb, ...)
mon Abbreviated month name in mixed case (Jan, Feb, ...)
NN Numeric minute of hour zero filled ("00" - "59")
Nn Numeric minute of hour space filled (" 0" - "59")
nN Numeric minute of hour space filled (" 0" - "59")
nn Numeric minute of hour ("0" - "59")
PM "AM" for time before noon, "PM" for time afterward
pm "am" for time before noon, "pm" for time afterward
P "A" for time before noon, "P" for time afterward
p "a" for time before noon, "p" for time afterward
Q Numeric quarter of year ("1" - "4", 1 is Oct - Dec)
q Numeric quarter of year ("1" - "4", 1 is Oct - Dec)
SS Numeric second of minute zero filled ("00" - "59")
Ss Numeric second of minute space filled (" 0" - "59")
sS Numeric second of minute space filled (" 0" - "59")
ss Numeric second of minute ("0" - "59")
TH Ordinal number in upper case ("1ST", "2ND", ...)
th Ordinal number in lower case ("1st", "2nd", ...)
WW Numeric week of year zero filled ("01" - "53")
Ww Numeric week of year space filled (" 1" - "53")
wW Numeric week of year space filled (" 1" - "53")
ww Numeric week of year ("1" - "53")
YYYY Four digit year
YY Two digit year



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 236 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
Print DateUsing$(Tim#(0),”MM/DD/YY HH:NN:SS”)

See also
CALL DATETOJULIAN

CALL DBASE

Synopsis
Access a dBase file.

Syntax0
CALL DBASE (num.expr, str.expr1, num.var)

Syntax1
CALL DBASE (num.expr, str.expr2, str.expr3, num.var)

Syntax2
CALL DBASE (num.expr, str.expr2, str.var, num.var)

Syntax3
CALL DBASE (num.expr)

Parameters
num.expr is an expression which specifies the mode (0 – 5).
str.expr1 is the path of a dBase file.
str.expr2 is a field name from the dBase file.
str.expr3 is a field value.
str.var is a string variable that receives a field value from the dBase file.
num.var is a numeric variable that receives the status of the operation (0 if successful, 1 if the
operation failed).

Remarks
CALL DBASE is provided for compatibility with existing applications. New applications should
access dBase files using the OPEN, SEARCH, READ, and CLOSE statements.
The modes specified by num.expr are as follows:
Mode Operation
    0 Open a dBase file using syntax 0
    1 Search the currently open dBase file using syntax 1 to find a record in which the field

specified by str.expr2 has the value specified by str.expr3. The search starts at the
beginning of the file.

    2 Read a value from the current record using syntax 2. The value of the field specified by
str.expr2 is copied into str.var.

    3 Close the currently open dBase file using syntax 3.
    4 Search the currently open dBase file using syntax 1 to find a record in which the field

specified by str.expr2 has the value specified by str.expr3. The search starts at the current



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 237 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

record.
    5 Reposition the currently open dBase file to the first record using

syntax 3.

Examples
Call Dbase(0,”test.dbf”,status)

See also
OPEN, READ, SEARCH, CLOSE

CALL DECTOOCT

Synopsis
Convert decimal to octal.

Syntax
CALL DECTOOCT (num.expr, var)

Parameters
num.expr is an expression which specifies the number to convert to octal format.
var is a numeric or string variable that receives the converted octal value.

Remarks

The value of num.expr must be between -231 and 231 - 1 inclusive.
If var is a string variable, it should be dimensioned to at least 12 characters. The octal value will be
right justified to twelve

characters, space filled, and, if negative, prefixed with a minus sign.

If var is numeric, each octal digit of num.expr will become a decimal digit in var. For example, if
num.expr is 25, then 31 will be stored in var.
This procedure is compatible with UniBasic CALL 126.

Examples
Call DecToOct(value,octalvalue)

Call DecToOct(value,octalstring$)

See also
BSTR$

CALL DEVCLOSE

Synopsis
Close DEVxxxx pseudo-channels.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 238 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
CALL DEVCLOSE ({num.expr})

Parameters
num.expr is an optional expression which specifies the pseudo-channel number to close.

Remarks
CALL DEVCLOSE closes the specified pseudo-channel or, if num.expr wasn’t specified, all
pseudo-channels. A pseudo-channel is a hidden channel number opened via CALL DEVOPEN.
This procedure is compatible with UniBasic CALL $DEVCLOSE. New applications should use
the OPEN, READ, WRITE, and CLOSE statements to access devices.

Examples
Call DevClose(5)

See also
CALL DEVOPEN

CALL DEVOPEN

Synopsis
Open a DEVxxxx pseudo-channel.

Syntax
CALL DEVOPEN (num.expr, str.expr { expr ... })

Parameters
num.expr is an expression that selects the pseudo-channel number to open.
str.expr is an expression which specifies the device or driver to open.
expr is one of one or more optional driver arguments.

Remarks
This procedure is compatible with UniBasic CALL $DEVOPEN. New applications should use
the OPEN, READ, WRITE, and CLOSE statements to access devices.

Examples
Call DevOpen(Cost$)

See also
CALL DEVCLOSE, CALL DEVREAD, CALL DEVWRITE, CALL DEVPRINT

CALL DEVPRINT

Synopsis
Print to a DEVxxxx pseudo-channel.

Syntax
CALL DEVPRINT (num.expr1, num.expr2, num.expr3, num.expr4 { , expr ...})



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 239 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
num.expr1 is the pseudo-channel number to print to.
num.expr2 is the record number to print to.
num.expr3 is the item number or record offset to print to.
num.expr4 is a timeout value in tenths of a seconds or -1 for no timeout.
expr is one of one or more optional values to print as defined by the driver.

Remarks
This procedure is compatible with UniBasic CALL $DEVPRINT. New applications should use the
OPEN, READ, WRITE, and CLOSE statements to access devices.

Examples
Call DevPrint(5, -1, -1, 100, "Hello.")

See also
CALL DEVOPEN, CALL DEVCLOSE, CALL DEVREAD, CALL DEVWRITE

CALL DEVREAD

Synopsis
Read from a DEVxxxx pseudo-channel.

Syntax
CALL DEVREAD (num.expr1, num.expr2, num.expr3, num.expr4 { , var ...})

Parameters
num.expr1 is the pseudo-channel number to read from.
num.expr2 is the record number to read from.
num.expr3 is the item number or record offset to read from.
num.expr4 is a timeout value in tenths of a seconds or -1 for no timeout.
var is one of one or more variables to read into as defined by the driver.

Remarks
This procedure is compatible with UniBasic CALL $DEVREAD. New applications should use the
OPEN, READ, WRITE, and CLOSE statements to access devices.

Examples
Call DevRead(7, -1, -1, 100, Rec$)

See also
CALL DEVOPEN, CALL DEVCLOSE, CALL DEVWRITE, CALL DEVPRINT

CALL DEVWRITE

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 240 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Write to a DEVxxxx pseudo-channel.
Syntax

CALL DEVWRITE (num.expr1, num.expr2, num.expr3, num.expr4 { , expr ...})
Parameters

num.expr1 is the pseudo-channel number to write to.
num.expr2 is the record number to write to.
num.expr3 is the item number or record offset to write to.
num.expr4 is a timeout value in tenths of a seconds or -1 for no timeout.
expr is one of one or more optional values to write as defined by the driver.

Remarks
This procedure is compatible with UniBasic CALL $DEVWRITE. New applications should use
the OPEN, READ, WRITE, and CLOSE statements to access devices.

Examples
Call DevWrite(5, -1, -1, 100, "Hello.")

See also
CALL DEVOPEN, CALL DEVCLOSE, CALL DEVREAD, CALL DEVPRINT

CALL DIFFSPC2DATES

Synopsis
Returns in days the difference between two dates.   (Release 7.1)

Syntax
CALL DIFFSPC2DATES (str.var1, str.var2, num.var')

Parameters
str.var1 is a string variable that contains the date to check from.
str.var1 is a string variable that contains the date to check to.
num.var is a numeric expression that returns the the number of days difference.

Remarks
str.var1 is compared to str.var2 and the difference in the number of days is returned in num.var.
str.var1 and str.var2 must be in "MMDDYY" format unless the native date option is enabled and the
current locale selects "DDMMYY".
This procedure is compatible with UniBasic CALL 122.

Examples
Call DiffSPC2Date(Date1$, Date2$, NoDays)

See also
CALL CONVERTSPC2DATE, CALL CHECKSPC2DATE

CALL DRAWIMAGE



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 241 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Draw image file on screen or printer.

Syntax
CALL DRAWIMAGE ( {num.expr1} , str.expr ,num.expr2 , num.expr3 , num.expr4 , num.expr5)

Parameters
num.expr1 is an optional numeric variable or expression specifying a user channel (0 - 99) open to a
window or printer. An error will be generated if num.expr1 specifies a channel that is closed.
str.expr1 is a string expression containg the path of a JPEG, BMP, or other image file to be drawn.
num.expr2 and num.expr3 are numeric variables or expressions that specify the horizontal and
vertical coordinates of the upper left corner of a rectangle in which the image will be drawn.
num.expr4 and num.expr5 are numeric variables or expressions that specify the horizontal and
vertical coordinates of the lower right corner of a rectangle in which the image will be drawn.

Remarks
DRAWIMAGE draws image files such as JPEG or BMP files on a window or a printer. The
window or printer must support drawing images. Currently, drawing images is supported by dL4 for
Windows, the dL4Term terminal emulator, and the dL4/dL4Term Windows Printer driver. The
image will be drawn as large as possible within the specified rectangle while preserving the aspect
ratio of the image.

Examples
Call DrawImage("pictures/product.jpg",10,5,20,30)

Call DrawImage(printerchannel,"signature.jpg",0,55,80,58)

See also

FUNCTION DTFORMAT$

Synopsis
Formats an IMS date/time value according to a DATEUSING$ mask.   (Release 9.1)

Syntax
DTFORMAT$ ( num.expr , str.expr)

Parameters
num.expr is an IMS date value (DDDDD.SSSSS).
str.expr is a string expression that contains a DATEUSING$() format to which the date is to be
converted.

Remarks
DTFORMAT$ formats a IMS date in num.expr using a format passed in str.expr using a
DATEUSING$ mask.

Examples
Date$ = DTFormat$(IMSDateValue, Mask$)

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 242 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

FUNCTION DTPART

FUNCTION DTPART

Synopsis
Extract part of an IMS date/time value.   (Release 9.1)

Syntax
DTPART ( num.expr , num.expr)

Parameters
num.expr is an IMS date value (DDDDD.SSSSS).
num.expr is a numeric expression that contains the value of num.expr to extract. Following are the
valid extracting codes.
Code Description
    1 year (1 - 9999)
    2 quarter (1 - 4)
    3 month (1 - 12)
    4 day of year (1 - 366)
    5 day of month (1 - 31)
    6 day of week (0 - 6)
    7 week of year (1 - 53)
    8 hour of day (0 - 23)
    9 minute of hour (0 - 59)
  10 second of minute (0 - 59)

Remarks
DTPART extracts a part of the IMS date/time value (DDDDD.SSSSS) depending on the value in
num.expr.

Examples
PartValue = DTPart(IMSDateValue, Part)

See also
FUNCTION DTFORMAT$

CALL DUPCHANNEL

Synopsis
Duplicate existing open channels onto closed user channel numbers.

Syntax
CALL DUPCHANNEL (num.expr1,num.expr2)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 243 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
num.expr1 is a numeric variable or expression specifying a closed user channel (0 - 99), i.e. new
channel, onto which an open channel will be duplicated. An error will be generated if num.expr1
specifies a channel that is already open.
num.expr2 is a numeric variable or expression that selects the channel to duplicate. The value must
be an open user channel (0 - 99, i.e. old channel), standard input channel (-1), standard output
channel (-2), Dynamic Window standard input channel (-3), or Dynamic Window standard output
channel (-4). The standard input and output channels are the original base channels and not the
window channels used by Dynamic Windows. An error will be generated if num.expr2 specifies a
channel that is not open.

Remarks
Duplicate channels can be used to perform I/O in the same way as the original channels. The
primary use of DUPCHANNEL is to duplicate the standard input and output channels that are used
by INPUT and PRINT when a channel isn't specified. By duplicating the standard input or output
channel onto a user channel number, a program can apply channel oriented statements such as SET
to a standard channel. Because DUPCHANNEL duplicates the base standard input and output
channels, it can also be used to avoid window tracking when Dynamic Windows are active. Closing
the duplicate or original channel has no effect other than freeing the channel number unless all
copies of the original channel are closed.
The following program uses DUPCHANNEL to change the title of a window.

External Function ChangeWinTitle(oldchannel,NewName$)

Declare Intrinsic Sub DupChannel

Call DupChannel(99, oldchannel)

Set #99,-1073;NewName$

Clear #99

End Function 0

 
Open #1,{"--------","TITL",70,23} As "Window"

Input A

B = ChangeWinTitle(1," Test Win Name ")

Input A

Stop

Examples
Call DupChannel(1,2)

Call DupChannel(newchannel,oldchannel)

See also

CALL ECHO

Synopsis
Enable, disable, or toggle echo.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 244 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
CALL ECHO (num.expr)

Parameters
num.expr specifies how the echo mode is to be changed.

Remarks
Echo mode on the standard input channel is disabled if num.expr is zero, enabled if num.expr is
one, and toggled if num.expr is two. This procedure is compatible with UniBasic CALL ECHO.

Examples
Call Echo(0)

See also
Mnemonics

CALL EDITFIELD

Synopsis
Verify and format a string according to a format mask.

Syntax
CALL EDITFIELD(str.expr1, str.expr2, str.var)

Parameters
str.expr1 is a string expression which is verified and formatted according to the mask str.expr2.
str.expr2 is string expression containing a format mask.
str.var is a string variable that receives the formatted result.

Remarks
The mask str.expr2 may consist of any combination of the following characters:

A Fixed length alphabetic (A-Z). The current source character must be alphabetic.
N Fixed length numeric (0-9). The current source character must be numeric.
X Variable length alpha-numeric (any character). The current source character may be

any character.
V Variable length alphabetic. The current source character can be alphabetic. If not,

comparison continues with the next mask character.
Z Variable length numeric. The current source character can be numeric. If not,

comparison continues with the next mask character.
/ Field separator. The current source character may be any one of "/", ".", or "-".
. Decimal point. The current source character must be a ".", unless followed by "V"

or "Z" in the mask.
- Minus sign. The current source character must be "-", unless this is the first

character of the mask. If so, comparison continues with the next mask character.

Any other character that appears in the mask must appear in the source string in the corresponding



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 245 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

position.
CALL EDITFIELD verifies that a given string conforms to the specifications of another string,
termed a mask. The edit is performed by comparing the string with the mask , character by
character.
The following table illustrates some typical editing examples:

MASK EFFECT
-ZZZ.ZZ Allows a number between -999.99 and 999.99 with a maximum of 2 fractional

digits.
ANA
NAN

This mask is used for the Canadian Postal Code. The source string length must be 7
characters, with a space in the fourth position. Each letter and digit must be in its
fixed place.

NZZZ.NZ Allows a minimum of 1 digit before and after the decimal, and a maximum of 4
before and 2 after. The decimal point must exist. Note that "0.0" is allowed.

VVVNZZ Source "A45" results in edit of "A045".
In a sequence of fixed and variable length numeric edit characters ("N" and "Z"), the fixed length
character must appear before the variable length character. In numeric fields, an edit results in left
zero-filling of the field.
An error will occur if:
• Any parameter is not a string variable.
• Source does not conform to mask.
• Destination string dimension is too small.
• Same string used for source and destination.
This procedure is compatible with UniBasic CALL 29.

Examples
Call EditField(TelNo$, "(NNN)NNN-NNNN", Result$)

See also

CALL ENV

Synopsis
Change or retrieve the value of an environment variable.

Syntax
CALL ENV ({num.expr,} str.expr1, str.expr2)

Parameters
num.expr is an optional numeric expression specifying whether the environment variable should be
changed (num.expr is two or not specified), changed with an immediate effect on the current
program (num.expr is three), or retrieved into str.expr2 (num.expr is one and str.expr2 is a string
variable).
str.expr1 is a string variable or string expression specifying the name of the environment variable to
be changed.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 246 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

str.expr2 is a string variable or string expression specifying the new value to be given to the
environment variable named by str.expr1.

Remarks
CALL ENV places the definition "str.expr1 = str.expr2" into the environment of your process or
returns the value of the environment variable str.expr1 in the string variable str.expr2.
The effect of using CALL ENV to change the value of dL4 runtime parameters is undefined for the
running process unless num.expr is equal to 3.
When using mode 1 to retrieve environment variable values, the following special environment
variable names will be recognized and will return predefined values:
"PID" – Unix or Windows process id
"GID" – Unix group id (Unix only)
"UID" – Unix user id (Unix only)

Examples
Call Env("PATH","@")

Call Env(E$,V$)

Call Env(3,"LUMAP","1=C:\\userdata")

See also

FUNCTION ERRMSG$

Synopsis
Return specified message string.

Syntax
ERRMSG$(num.expr)

Parameters
num.expr is the message number of the message string to be returned.

Remarks
ERRMSG$ return message number num.expr from the message file initialized by CALL
INITERRMSG. If CALL INITERRMSG was not used or if the specified message does not exist,
an empty string ("") will be returned.

Examples
Msg$ = ErrMsg$(n)

See also
ERM$, CALL INITERRMSG

CALL ETOA

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 247 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Convert string from EBCDIC to the Unicode character set.
Syntax

CALL ETOA (str.var)
Parameters

str.var is the string to translate.
Remarks

An error 38 is generated if str.var contains any characters that cannot be translated. This procedure
is compatible with UniBasic CALL $ETOA.

Examples
Call EToA(Value$)

See also
CALL ATOE, CALL ASC2EBCDIC

CALL FIELDVAL

Synopsis
Validate whether a string contains a valid alphabetic, floating point, integer, date or month value
according to the specified mode. (Release 9.1)

Syntax
CALL FIELDVAL ( num.expr1, str.expr , num.expr2)

Parameters
num.expr1 is a numeric expression that contains the the mode to check the field format.
Mode Description
    1 Check if str.expr contains only alphabetic or space characters.
    2 Check if str.expr contains an integer or floating point number (no exponent) with options

leading spaces.
    4 Check if str.expr contains an integer value with optional leading spaces.
    8 Check if str.expr contains a MDDYY, MMDDYY, MDDYYYY or MMDDYYYY date

value with optional leading or trailing spaces.
  16 Check if str.expr contains an integer month number (1 - 12) wit optional leading spaces.
str.expr is a string variable, which contains the field to velidate.
num.expr2 is a numeric expression that contains the status of the validation. If str.expr is valid,
num.expr2 is set to zero, else it's set to 1.

Remarks
FIELDVAL validates str.expr by the specified mode (num.expr1) and returns the status
(num.expr2).

Examples
Call FieldVal(Mode, Field$, Status)

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 248 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL FILEINFO

Synopsis
Get file information.

Syntax
CALL FILEINFO (dir.expr, info.var, [[filename.var]] { , mode.expr { , index.var }})

Parameters
dir.expr is a string expression used when mode.expr is zero or omitted.
info.var is a numeric array.
filename.var is a string variable that specifies the file path if mode.expr is one and receives the
filename and some file attributes in both modes.
mode.expr is an optional numeric expression that specifies the CALL mode.
index.var is a numeric array.

Remarks
If mode.expr is omitted or zero, then the string expression dir.expr must be at least 14 bytes long
and contain a BITS directory.
Most of the file information is returned in info.var which is a one dimensional numeric array of at
least 25 elements with precision 2% or larger. Information returned is accessed by the elements:

[0] Account group (0-255).
[1] Account user (0-255).
[2] Attribute word as a numeric value Mode 0 only.
[3] File type (0-9), represents “O$BACTSI”.
[4] First disk address.
[5] Record length in bytes. For A[3]=0, returns 512 for text files and 65534 for non-text

file.
[6] File size in 512 byte blocks (represents both halves of an indexed file).
[7] Creation date in the form MMDDYY.
[8] Last access date in the form MMDDYY.
[9] Relative sector offset; Mode 0 only.
[10] Size of record map in sectors (INDX files Mode 0 only).
[11] Number of indices (Index files only).
[12] System time at last access in hours.
[13] Secondary attribute word as a numeric value; Mode 0 only.
[14] Logical unit number, as currently installed; Mode 0 only.
[15] DIRECTORY sector number; Mode 0 only.
[16] Word displacement into DIRECTORY sector; Mode 0 only.
[17] Unix style protection bits; Mode 1 only.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 249 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

[18] Number of items per record; Mode 1 only.
[19] Revision of UniBasic at time file was created; Mode 1 only.
[20] First Real Data Record as built; Mode 1 only.
[21] Byte offset to Record 0; size of header; Mode 1 only.
[22] Returns the files creation time in hours-since-BASEDATE.

Record length in element A[5] is 512 bytes for a text file and 65534 for a non-dL4 file of type
A[3]=0. The first block of the file is examined and is only considered text if all bytes are <0x80.
In mode 1, filename.var provides the path of the file to examine The variable filename.var should be
DIMensioned to at least 31 characters. Returned in filename.var is a 14-character name, truncated if
necessary. Supplemental attributes are returned in characters 15-29; <PRWdsEOxFQUgabKY>.
Lower-case letters refer to BITS attributes which are only returned when Mode 0 is used on a BITS
directory unpack.
The expression mode.expr is truncated to an integer and used to specify the operational mode for
the CALL. If omitted or 0, then a BITS DIRECTORY entry in directory is unpacked. Mode 1 is
used to locate and return information about the file contained in filename.var.
Additional information for Indexed-Contiguous or Formatted files is returned in index.var, a
numeric array. The array should be DIMensioned as index.var[128,1].
If the file is an Indexed-Contiguous file, the following information is returned:

index.var[0,0] Record length in bytes for file.
index.var[0,1] Current actual active record count.
index.var[X,0] Key length for Directory X.
index.var[X,1] Active Keys in Directory X or zero, if not available.

If the file is a Formatted file, the following item information is returned:
index.var[X,0] Item Type
index.var[X,1] Item length in bytes.

This procedure is compatible with UniBasic CALL 127. The information returned by mode 1 can
also be obtained using the CHF functions, the SEARCH statement, and the GET statement.

Examples
Call FileInfo(Dir$,Info[],Path$,1,IdxInfo[])

See also

FUNCTION FINDCHANNEL

Synopsis
Find available (closed) channel number.

Syntax
FINDCHANNEL ({ num.expr1, num.expr2} )

Parameters
num.expr1 is an optional expression that specifies the beginning of the channel number range.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 250 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

num.expr2 is an optional expression that specifies the end of the channel number range.
Remarks

FINDCHANNEL returns the channel number of the first closed channel in the specified channel
number range. If the start of the range is less than the end of the range, then the channel numbers
will be checked in descending order. The default channel number range is 99 to 0 (descending).

Examples
Chan = FindChannel()

Chan = FindChannel(80,99)

See also
OPEN, BUILD

CALL FINDF

Synopsis
Determine if file exists.

Syntax
CALL FINDF ( str.expr, num.var {, str.var})

Parameters
str.expr specifies the path of the file to check.
num.var receives the status of the file lookup (0 if the file is not found, 1 if the file is found)
str.var is an optional string variable that receives the absolute path of the file if it is found.

Remarks
This procedure is compatible with UniBasic CALL FINDF.

Examples
Call FindF(filename$,status)

See also

CALL FINDLEAST

Synopsis
Returns the argument index of the lowest value.   (Release 7.1)

Syntax
CALL FINDLEAST (num.var, str.var1 {,str.varN}...)

Parameters
num.var is a numeric variable which receives the location of the lowest value of the items
compared.
str.var1 is a string variable to be compared.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 251 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

str.varN are optional string variables to be compared
Remarks

CALL FINDLEAST compares str.var1 and all str.varN to find the string with the lowest value.
str.var1 may be an array of strings and, if so, must be the only string variable.
This procedure is compatible with UniBasic CALL 119.

Examples
Call FindLeast(N,S1$,A$,B$,C$)

Call FindLeast(N,S$[])

See also

CALL FLUSHALLCHANNELS

Synopsis
Flush all buffered file data to permanent storage.

Syntax'
CALL FLUSHALLCHANNELS ()

Parameters
None.

Remarks
FLUSHALLCHANNELS issues a DCC_SYNC command to each open channel to request the
driver to flush all modified data to permanent storage. This CALL is operating system dependent
and may not do anything on some operating systems.

Examples
Call FlushAllChannels()

See also

FUNCTION FMTOF

Synopsis
Return precison or dimension of variable.

Syntax
FMTOF (var )

Parameters
var is any non-structure variable.

Remarks
If var' is a numeric or date variable, FMTOF returns the actual precision ("%n") of the variable. If
var is a string, binary, or array variable, then FMTOF returns the dimensioned size of the variable.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 252 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
prec = FmtOf(X)

maxsize = FmtOf(T$)

See also
UBOUND, DIM

CALL FORCEPORTDUMP

Synopsis
Generate program dump on selected port number.

Syntax
CALL FORCEPORTDUMP ( num.expr1, num.expr2, num.var)

Parameters
num.expr1 is the dump mode.
num.expr2 is the port number on which the dump is to be generated.
num.var is the status of the dump request.

Remarks
The FORCEPORTDUMP intrinsic CALL causes the port number selected by num.expr2 to
produce a dump listing file. The dump format is identical to that of the ProgramDump() intrinsic
CALL and lists the current execution location of the target program, the CALL stack, current
variable values, the status of open channels, and various other values. If num.expr1 is zero, the
selected port will exit dL4 after producing the dump file. If num.expr1 is equal to one, the selected
port will resume execution after producing the dump. Because producing the dump interrupts and
possibly interferes with program execution, FORCEPORTDUMP should only be used for
debugging purposes.
FORCEPORTDUMP sets num.var to zero if the dump request was successfully sent to the
selected port. Sending the request does not guarantee that the dump will actually be produced. If an
error occurs while sending the request, num.var will be set to one. On some operating systems, such
as Unix, the caller of ForcePortDump() must either be the same user as that of the target port or be a
privileged user (such as root on Unix)
Because the contents of the program dump could reveal passwords and other restricted data, dump
output is controlled by the DL4PORTDUMP runtime parameter. If DL4PORTDUMP is not
defined for the selected port, then ForcePortDump() will not generate a dump. On Unix,
DL4PORTDUMP is an environment variable that must be set in each users environment (perhaps
set by the .profile script). Under Windows, the DL4PORTDUMP value can be supplied either as an
environment variable or as a string value in the registry:

HKEY_CURRENT_USER\Software\DynamicConcepts\dL4\Environment\dL4PortDump
HKEY_LOCAL_MACHINE\Software\DynamicConcepts\dL4\Environment\dL4PortDump

In any form, DL4PORTDUMP is the filename to which the dump will be written. DL4PORTDUMP
must be an absolute path. For example, under Windows, DL4PORTDUMP might be defined as
"D:\Dumps\DumpFile.txt". The following macro values can be used in a DL4PORTDUMP path
string:

%PORT% Port number of target port



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 253 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

%DATE% Current date ("YYMMDD")
%TIME% Current time ("HHMMSS")
%name% Value of environment variable "name"

These macro values, if used in the DL4PORTDUMP path, will be replaced by their current values.
For example, if DL4PORTDUMP was defined with the value "D:\Dumps\%PORT%.txt" and a
dump was triggered on port 15, then the dump would be written to the file "D:\Dumps\15.txt".

Examples
Call ForcePortDump(0,PortNum,Status)

See also
PORT, CALL PROGRAMDUMP

CALL FORMATDATE

Synopsis
Format date string.

Syntax
CALL FORMATDATE (str.expr {,str.var {,num.var {,num.expr}}})

Parameters
str.expr supplies the input date and, if str.var is not specified, receives the formatted date.
str.var is an optional variable that receives the formatted date.
num.var is an optional variable that receives the status of the conversion (0 for success, 1 for illegal
date).
num.expr is an expression that selects the input and output date formats.

Remarks
Conversion modes:

num.expr Input Date Output Date
      0 yymmdd mm/dd/yy
      1 yyyymmdd mm/dd/yy
      4 yymmdd mm/dd/yyyy
      5 yyyymmdd mm/dd/yyyy

If num.expr is not specified, a conversion mode of 0 is assumed.
If str.var is not specified, then str.expr must be a string variable into which the converted date is
stored.
If num.var is not specified, then an illegal date will cause an error 38 to occur.
If OPTION DATE FORMAT NATIVE is used, the output date will use day-month-year ordering
and the native date separator if specified by the current locale.
This procedure is compatible with UniBasic CALL 28.

Examples



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 254 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Call FormatDate(S$)

See also
CALL VERIFYDATE

CALL GATHER

Synopsis
Pack data into a string.

Syntax
CALL GATHER (str.var, expr ...)

Parameters
str.var is a string variable into which the values from expr will be placed.
expr is one of one or more variables or expressions whose values are placed in str.var.

Remarks
The values of the expr expressions are sequentially copied into str.var. The expression expr may be
of numeric, string, or date type. Numeric values are always stored in BITS formats. This procedure
is compatible with UniBasic CALL 72.

Examples
Call Gather(E$,A,B,C$,D)

See also
CALL SCATTER

CALL GETGLOBALS

Synopsis
Retrieve session global values.

Syntax
CALL GETGLOBALS({str.expr,}num.expr {,var.list})

Parameters
str.expr supplies the name of the global set. If str.expr is not specified, the default set (named "") is
used.
num.expr specifies the starting global item number.
var.list is a list of one or more variables of any type except for array or structure. The type of each
variable in the list must match that of the global item copied into to the variable.

Remarks
GETGLOBALS copies global values from the selected global set starting with global item
num.expr and continuing sequentially through the list of global values. An error 38 will occur if one
or more of the values do not exist or do not match the variable type.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 255 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
Call GetGlobals(3,S$,X,User$)

See also
CALL SETGLOBALS

CALL GETREGISTRY

Synopsis
Retrieve Windows registry values.

Syntax
CALL GETREGISTRY(str.expr, var))

Parameters
str.expr is the name of the registry key and value to retrieve.
var is a numeric, string, or binary variable.

Remarks
GETREGISTRY copies a Windows registry value from the registry key and value name specified
in str.expr. An error 38 will occur if the value does not exist or if it does not match the variable
type. This CALL always returns an error 38 if used on a Unix system. The value of str.expr must
begin with one of the following root key names:
HKEY_CLASSES_ROOT\ (or HKCR\)
HKEY_CURRENT_CONFIG\ (or HKCC\)
HKEY_CURRENT_USER\ (or HKCU\)
HKEY_LOCAL_MACHINE\ (or HKLM\)
HKEY_USERS\ (or HKUS\)
HKEY_PERFORMANCE_DATA\ (or HKPD\)
HKEY_DYN_DATA\ (or HKDD\)

Examples
Call GetRegistry(“HKEY_CURRENT_USER\\Software\\MyCompany\\Value”,S$)

See also
CALL SETREGISTRY

CALL GETSTRUCT

Synopsis
Retrieve structure variable member value by member number.   (Release 7.3)

Syntax
CALL GETSTRUCT(str.var[], {num.var1,} struct.var1.,, {struct.var2.[],} num.var2, num.var3)

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 256 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

str.var[] is an string array, of values will be returned.
num.var1 is an optional numeric variable, starting index position for str.var[].
struct.var1. is a structure variable, that is going to be queried.
struct.var2.[] is a optional numeric structure variable, than contains member reference information.
num.var2 is a numeric variable, that in the member number (1 - n) to be queried.
num.var3 is a numeric variable, is the number of members to be queried.

Remarks
str.var[] A string array in which values will be returned. All values are converted to string

format. The string elements must be large enough to contain each returned value or
an overflow error will occur.

num.var1 Optional index in str.var[] at which to start.
struct.var1. Structure variable to be queried. The variable can be either a normal structure

variable, a structure variable parameter variable, or an "AS *" structure variable
parameter. The structure cannot contain array members. The structure cannot contain
structures as members unless the struct.var2.[] parameter is specified (see below).

struct.var2.
[]

Optional array of structures containing member reference information returned by
Call StructInfo() for struct.var1..

num.var2 Member number (1 - n) to be queried. If num.var2 is supplied, num.var2 is used as an
index into struct.var2.[] to get a member reference code which is then used to
identify the actual member to be accessed.

num.var3 Number of members to query. If num.var3 exceeds the number of members available,
all of the remaining members will be set and num.var3 will be set to the to the
number returned.

Examples
Call GetStruct(Value$[], ValueIdx, StructVar., MbrMap.[], MbrNo, NumMbrs)

See also
FUNCTION GETSTRUCT$, CALL SETSTRUCT and CALL STRUCTINFO

FUNCTION GETSTRUCT$

Synopsis
Return structure variable member value specified by the member number.   (Release 7.3)

Syntax
GETSTRUCT$(struct.var1. {,struct.var2.[],} num.expr)

Parameters
struct.var1. is an structure variable, to be queried.
struct.var2.[] is a optional numeric structure variable, than contains member reference information.
num.expr is the member number (1 - n) of the member to be returned.

Remarks
struct.var1. struct.var1. can be either a normal structure variable, a structure variable



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 257 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

parameter variable, or an "AS *" structure variable parameter. The structure
cannot contain array members. The structure cannot contain structures as
members unless the struct.var2.[]. parameter is specified (see below).

struct.var2.[] Optional array of structures containing member reference information returned
by Call StructInfo() for struct.var1..

num.expr Member number (1 - n) to be queried. If struct.var2. is supplied, num.expr is used
as an index into struct.var2. to get a member reference code which is then used to
identify the actual member to be accessed.

Examples
x$ = GetStruct$(StructVar., MbrMap.[], MbrNo)

See also
CALL GETSTRUCT, CALL SETSTRUCT and CALL STRUCTINFO

FUNCTION GMTDATEUSING$

Synopsis
Convert date value to GMT date/time string using a mask.   (Release 9.1)

Syntax
GMTDATEUSING$ (date.expr, str.expr)

Parameters
date.expr is a date expression which specifies the date/time value to convert to a GMT character
string.
str.expr is a string expression that controls the formatting of the GMT date value.

Remarks
The GMTDATEUSING function parses the format mask str.expr replacing the GMT date codes
with the values, derived from date.expr, shown in the table below. Any characters in the format
mask that are not part of a date code are left unchanged. The final string is returned as the function
value.

Code Replacement value
D Numeric day of week (0 - 6, 0 is Sunday)
d Numeric day of week (0 - 6, 0 is Sunday)
DAY Day name in upper case (SUNDAY, MONDAY, ...)
day Day name in mixed case (Sunday, Monday, ...)
Day Day name in mixed case (Sunday, Monday, ...)
DY Abbreviated day name in upper case (SUN, MON, ...)
dy Abbreviated day name in mixed case (Sun, Mon, ...)
Dy Abbreviated day name in mixed case (Sun, Mon, ...)
DD Numeric day of month zero filled ("01" - "31")
Dd Numeric day of month space filled (" 1" - "31")
dD Numeric day of month space filled ("01" - "31")
dd Numeric day of month ("1" - "31")



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 258 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

DDD Numeric day of year zero filled ("001" - "366")
Ddd Numeric day of year space filled (" 1" - "366")
ddd Numeric day of year ("1" - "366")
HH Numeric hour of day zero filled ("00" - "23")
Hh Numeric hour of day space filled (" 0" - "23")
hH Numeric hour of day space filled (" 0" - "23")
hh Numeric hour of day ("0" - "23")
MM Numeric month of year zero filled ("01" - "12")
Mm Numeric month of year space filled (" 1" - "12")
mm Numeric month of year ("1" - "12")
MONTH Month name in upper case (JANUARY, FEBRUARY, ...)
Month Month name in mixed case (January, February, ...)
month Month name in mixed case (January, February, ...)
MON Abbreviated month name in upper case (JAN, FEB, ...)
Mon Abbreviated month name in mixed case (Jan, Feb, ...)
mon Abbreviated month name in mixed case (Jan, Feb, ...)
NN Numeric minute of hour zero filled ("00" - "59")
Nn Numeric minute of hour space filled (" 0" - "59")
nN Numeric minute of hour space filled (" 0" - "59")
nn Numeric minute of hour ("0" - "59")
PM "AM" for time before noon, "PM" for time afterward
pm "am" for time before noon, "pm" for time afterward
P "A" for time before noon, "P" for time afterward
p "a" for time before noon, "p" for time afterward
Q Numeric quarter of year ("1" - "4", 1 is Oct - Dec)
q Numeric quarter of year ("1" - "4", 1 is Oct - Dec)
SS Numeric second of minute zero filled ("00" - "59")
Ss Numeric second of minute space filled (" 0" - "59")
sS Numeric second of minute space filled (" 0" - "59")
ss Numeric second of minute ("0" - "59")
TH Ordinal number in upper case ("1ST", "2ND", ...)
th Ordinal number in lower case ("1st", "2nd", ...)
WW Numeric week of year zero filled ("01" - "53")
Ww Numeric week of year space filled (" 1" - "53")
wW Numeric week of year space filled (" 1" - "53")
ww Numeric week of year ("1" - "53")
YYYY Four digit year
YY Two digit year

Examples
Print GMTDateUsing$(Tim#(0),"MM/DD/YY HH:NN:SS")

See also
CALL DATEUSING$



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 259 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL GRIDROW

Synopsis
Parses and stores the column values returned from a 'WCGRID' or 'WCSORTGRID' GUI element.  
(Release 10.2)

Syntax
CALL GRIDROW ({Mode ,{ErrorColumn,}} Row$, Variable ,Variable ...)

Parameters
Mode is an optional numeric expression which must be zero
ErrorColumn is an optional numeric variable which receives the last column number processed.
Row$ is a string of column values delimited by 'HT' characters in the format returned by a query to
'WCGRID'.
Variable is a string, numeric, date, structure, or array variable which will receive values sequentially
from the columns in Row$.

Remarks

Examples
Print PChr$(2,RowNumber);'WCQUERYROW';

Input ""Query$

Call GridRow(Query$,Column1Value,Column2Value$,Column3Value)

Print Column1Value,Column2Value$,Column3Value

See also
CALL IMSCHECKNUMBER, CALL CHECKDIGIT

CALL IMSCHECKDIGITS

Synopsis
Validate numeric field.   (Release 9.1)

Syntax
CALL IMSCHECKDIGITS (str.expr, num.var)

Parameters
str.expr is an expression which specifies the string to validate.
num.var is a numeric variable that receives the validation status.

Remarks
IMSCHECKDIGITS determines if str.expr contains any non-digit characters and returns the status
in num.var. If str.expr is all digits ("0" - "9") or an empty string (""), then num.var is set to zero. If a
non-digit character is found, then num.var is set to 1.

Examples
Call IMSCheckDigits(Cost$,Status)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 260 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

See also
CALL IMSCHECKNUMBER, CALL CHECKDIGIT

CALL IMSCHECKNUMBER

Synopsis
Is to support IMS programs, to validate a string is numeric.   (Release 9.1)

Syntax
CALL IMSCHECKNUMBER (str.expr, num.expr)

Parameters
str.expr is a string variable which specifies the string to validate.
num.expr is a numeric variable which returns the status of the validation.

Remarks
IMSCHECKNUMBER checks if str.expr contains an invalid number string and returns the status
in num.expr. If str.expr is a valid number or an empty string ("") will return a status of zero. Any
other string value returns a status of 1.

Examples
Call IMSCheckNumber(Cost$,Status)

See also
CALL CHECKNUMBER, CALL CHECKDIGIT

CALL IMSCHKCH

Synopsis
Find the first channel a file is open on.   (Release 9.1)

Syntax1
CALL IMSCHKCH (num.var1, str.var, num.var2)

Syntax2
CALL IMSCHKCH (num.expr, num.var1, str.var, num.var2)

Parameters
num.expr is an optional numeric expression which is an ignored parameter.
num.var1 is a numeric variable which receives the channel number open to the file str.var or, if
str.var is equal to "", specifies the channel number to query.
str.var is a string variable specifying the filename to search for or, if equal to "", receives the
filename open on the channel specified by num.var1.
num.var2 is a numeric variable which receives the channel status. Zero for not open, 1 for read
only, and 2 for read/write.

Remarks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 261 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

If a filename is given in str.var, IMSCHKCH returns which channel, if any, is open to that file and
also returns the read/write status of the channel. If the specified filename is "", IMSCHKCH
returns the read/write status of the specified channel and the filename open on that channel. The
returned status in num.var2 has the values 0 (not open), 1 (open for reading only), and 2 (open for
reading and writing).

Examples
Call IMSChkCh(Channel, Filename$, Status)

Call IMSChkCh(Mode, Channel, Filename$, Status)

See also

CALL IMSMEMCOPY

Synopsis
Copy bytes from source to destination variable.

Syntax
CALL IMSMEMCOPY (destination.var, source.var, num.expr)

Parameters
destination.var is the destination variable of any dL4 data type.
source.var is the source variable of any dL4 data type.
num.expr is the number of bytes to copy.

Remarks
The IMSMEMCOPY CALL can be used to copy data between any two variables, but it is best
used to quickly copy portions of one array to another array. If used to copy data between arrays, the
arrays must be identical in layout, data types, and data precisions. When copying between two
string variables, num.expr will be treated as the number of Unicode characters to copy rather than
the number of bytes. This CALL may overwrite memory if num.expr is incorrect.

Examples
Call IMSMemCopy(D$,S$,20)

See also

CALL IMSPACK

Synopsis
Pack or unpack radix 50 data.

Syntax0
CALL IMSPACK(0, str.expr, str.var)

Syntax1
CALL IMSPACK(1, str.var, str.expr)

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 262 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

str.expr is the source string expression.
str.var is the destination string variable.

Remarks
The IMSPACK CALL packs character data from str.expr into str.var (syntax 0) or unpacks data
from str.expr to str.var(syntax 1). The packed data is in a radix 50 format. The IMSPACK CALL is
compatible with CALL $PACK in IMS BASIC.

Examples
Call IMSPack(0, S$, D$)

See also
CALL PKRDX5018, CALL PKRDX5048

CALL INITBUF

Synopsis
Initializes a virtual record used by CALL READBUF and CALL WRITEBUF   (Release 9.1)

Syntax
CALL INITBUF (num.expr)

Parameters
num.expr is a numeric expression specifying the record size in bytes.

Remarks
Allocate in memory a virtual record with a length of num.expr bytes and initialize the record with
binary zero bytes.

Examples
Call InitBuf(Size)

See also
CALL READBUF, CALL WRITEBUF

CALL INITERRMSG

Synopsis
Initialize the error message file for ERRMSG$.

Syntax
CALL INITERRMSG (num.expr, str.expr)

Parameters
num.expr must be a numeric expression, but is otherwise ignored.
str.expr is an expression which specifies the path of the error message text file.

Remarks
The error message file must be a text file in which each line begins with an message number,



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 263 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

followed by a colon, and ending with the message text. This procedure is compatible with UniBasic
CALL 40.

Examples
Call InitErrMsg(0, Filename$)

See also
ERRMSG$

CALL INPBUF

Synopsis
Place data into type-ahead buffer.

Syntax
CALL INPBUF ({num.expr ,} str.expr)

Parameters
num.expr is an optional numeric expression used for the channel number.   (Release 9.1)
str.expr is copied (appended) to the contents of the current type-ahead buffer.

Remarks
INPBUF may be used to pass data from a child process back to the parent when using SWAP
statements or [Hot-Key] swapping.
If the window driver receives a 'Begin' mnemonic character, the cursor will be moved to the first
character of the current input line ("Home" action) and then a special input mode will be entered
for the next input character. If the next input character is an edit action (such as "Forward"), the
user is allowed to edit the current input line. If the next character is a data character, the current
input line is deleted and the data character becomes the first input character. If the next character is
an "enter" action, the current input line is returned to the program. A dL4 program uses the "Begin"
action by calling the INPBUF procedure with a string consisting of a default input value followed
by the 'Begin' mnemonic character. The next input by the program will then treat the default input
as described above.

Examples
Call Inpbuf(A$) !Copy data to type-ahead

Call Inpbuf(A$ + "\215\")

Call Inpbuf(chan, A$)

See also
WINDOW, SWAP

CALL INPEDIT

Synopsis
Enable or disable IMS input edit features.   (Release 9.1)

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 264 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL INPEDIT (num.expr)
Parameters

num.expr is an numeric expession.
Remarks

The num.expr parameter is a numeric expression containing a sum of the following option values.
1 If set, enables extended input edit features such as insert toggling and causes control

characters to be ignored if entered as data.
2 If set, enables lowercase to uppercase conversion.
4 If set, is not supported and causes an error 38.

Examples
Call InpEdit(Mode)

See also

CALL IRISOS95

Synopsis
Satisfy references to IRIS CALL 95.

Syntax
CALL IRISOS95 (expr ...)

Parameters
expr is one of zero or more expressions of any type.

Remarks
This procedure is compatible with UniBasic CALL 95. As in UniBasic, this procedure has no
actual function and is provided simply to satisfy any references to CALL 95.

Examples
Call IRISOS95()

See also

FUNCTION ISADL4KEYWORD

Synopsis
Checks if a string is a dL4 reserved word.   (Release 7.1)

Syntax
FUNCTION ISADL4KEYWORD (str.expr)

Parameters
str.expr is a string variable or expression.

Remarks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 265 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

FUNCTION ISADL4KEYWORD checks if str.expr is a dL4 reserved word. If str.expr is a
reserved word then the function returns a 1, if str.expr is not a reserved word the function returns a
zero.

Examples
x = IsADL4Keyword(A$)

x = IsADL4Keyword("TESTWORD")

See also

FUNCTION ISSQLNULL

Synopsis
Determine if a value is an SQL driver NULL value.

Syntax
ISSQLNULL (expr)

Parameters
expr is an expression of any type.

Remarks
ISSQLNULL returns 1 if expr is an SQL driver NULL value and 0 if it is not a NULL value. An
error will be generated if an illegal number of parameters, parameter type, or parameter value is
used.

Examples
If IsSQLNull(Rec.Value) Print "Value is NULL"

See also
SQLNULL, SQLNULL$, SQLNULL#

CALL JULIANTODATE

Synopsis
Convert julian date string to formatted date.

Syntax
CALL JULIANTODATE ({num.expr,} str.expr {,str.var {,num.var}})

Parameters
num.expr is an optional expression selecting the input and output date formats.
str.expr is an expression which specifies the string to convert.
str.var is an optional variable which receives the converted date string.
num.var is a optional variable that receives the status of the conversion (0 for success, 1 for illegal
date).

Remarks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 266 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Conversion modes:
num.expr Input Date Output Date Comment
      0 yyddd mm/dd/yy year and day of year; e.g. 98365
      1 ddddd mm/dd/yy days since January 1, 1968
      2 yyyyddd mm/dd/yy 4 digit year and day of year; e.g.

1998365
      4 yyddd mm/dd/yyyy 2 digit year and day of year; e.g. 98365
      5 ddddd mm/dd/yyyy days since January 1, 1968
      6 yyyyddd mm/dd/yyyy 4 digit year and day of year; e.g.

1998365
If num.expr is not specified, a conversion mode of 0 is assumed.
If str.var is not specified, then str.expr must be a string variable into which the converted date is
stored.
If OPTION DATE FORMAT NATIVE is used, the output date will use day-month-year ordering
and the native date separator if specified by the current locale.
If num.var is not specified, then an illegal date will cause an error 38 to occur.
This procedure is compatible with UniBasic CALL 27.

Examples
Call JulianToDate(S$)

See also
CALL DATETOJULIAN

CALL LOCK

Synopsis
Change exclusive/shared open mode on an open file.

Syntax
CALL LOCK (num.expr1, num.expr2, num.var)

Parameters
num.expr1 is an expression which specifies the channel number of an open file.
num.expr2 is an expression which selects the new open mode: 0 for shared open, non-zero for
exclusive open.
num.var is a variable which receives the operation status.

Remarks
The status value returned in num.var is defined as follows:

0 Operation successful
1 Illegal Channel Number
2 Channel not open



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 267 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

6 File is already Locked
7 File is not locked

This procedure is compatible with UniBasic CALL $LOCK.
Examples

Call Lock(5, 1, status)

See also
EOPEN

CALL LOGIC

Synopsis
Perform logical operations.

Syntax
CALL LOGIC (num.expr, var1, var2, var3)

Parameters
num.expr is an expression which, after evaluation, is truncated to an integer and used to specify the
operation for LOGIC: 1 = AND; 2 = OR; 3 = XOR; 4 = NOT.
var1 and var2 select two identical types of variables (numeric, string, or binary) to perform an
operation upon.
var3, the result, must be the same type as the supplied var1 and var2, and will hold the resulting
data from the operation.

Remarks
If the supplied variables are numeric, they are truncated to unsigned 16 bit integers to perform the
operation. String and binary variables are processed a byte at a time until the DIMensioned length
of the shortest argument passed is reached.
An AND operation results in a 1 bit when the corresponding bit of both variables is 1.
An OR operation results in a 1 bit when either of the corresponding bits is 1, or when both are 1.
An XOR (exclusive OR) results in a 1 bit when only one of the corresponding bits of both variables
is 1.
A NOT operation only requires var1. var2 must be specified for syntactical reasons (use the same
variable), but is not used. NOT results in a 1 bit if the bit of variable1 is zero, and results in 0 if the
bit is 1.
Entire strings (including binary zero characters) can be operated upon using LOGIC. To copy a
string in its entirety, AND the string to itself. To fully zero fill (binary zero character) a string, XOR
it with itself.
X Y X AND Y X OR Y X XOR Y NOT Y
0 0     0     0     0     1
0 1     0     1     1     0
1 0     0     1     1
1 1     1     1     0



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 268 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
Call Logic(1,A$,B$,C$) ! AND 2 strings
Call Logic(1,A[0],32768,J) ! Is value negative
Call Logic(1,A$,A$,B$) ! Copy string A$ to B$

See also

FUNCTION MD5?

Synopsis
Calculate MD5 checksum of string or binary value.

Syntax
MD5? (expr, {, bin.expr} )

Parameters
expr is a string or binary expression which specifies the value on which to calculate the MD5
checksum.
bin.expr is an optional expression which is the result of a previous ADDMD5? calculation.

Remarks
MD5? calculates and returns as a 16 byte binary value the MD5 checksum of expr which must be
either a string or a binary value. The optional binary argument bin.expr can be used to pass the
intermediate MD5 result value from a call to ADDMD5? to calculate a combined checksum of
several variables. The checksum is calculated against the dimensioned size of strings so that null
characters can be included in the checksum. Subscripts can be used to limit the number of
characters included in the checksum. So that string values will produce the same checksum values
on all platforms, each UNICODE character of a string is forced into a most-significant-byte-first
ordering for checksum calculation. An error will be generated if an illegal number of parameters,
parameter type, or parameter value is used.

Examples
Dim CheckSum?[16], Temp?[128]

CheckSum? = MD5?(C$) !Calculate checksum of C$ alone

Temp? = AddMD5?(C$)

CheckSum? = MD5?(X$[1,Len(X$)],Temp?) !Calculate checksum of C$+X$

See also
ADDMD5?, CRC32

FUNCTION MEMBERNUM

Synopsis
Returns the member number of a member within a structure.   (Revision 7.3)

Syntax



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 269 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

MEMBERNUM (struct.var1., struct.var2.)
Parameters

struct.var1. is a structure variable containing struct.var2..
struct.var2. is the member of the structure struct.var1..

Remarks
MEMBERNUM returns the member number (1 - N) of struct.var2. in 'struct.var1. as used by the
CALL GETSTRUCT() and CALL SETSTRUCT() procedures. If struct.var2. is not a member of
struct.var1., -1 is returned.

Examples
x = MemberNum(Parent., Member.)

See also
CALL GETSTRUCT, CALL SETSTRUCT

CALL MEMCMP

Synopsis
Compare strings.

Syntax
CALL MEMCMP (str.expr1, str.expr2, num.var)

Parameters
str.expr1 is an expression which specifies a string to compare.
str.expr2 is an expression which specifies a string to compare.
num.var is a variable that receives the result of the string comparison.

Remarks
CALL MEMCMP performs a character by character comparison of str.expr1 and str.expr2
including all characters in the DIMensioned length of the strings. The result is returned in num.var
as follows:

Relation Result
str.expr1 < str.expr2    -1
str.expr1 = str.expr2     0
str.expr1 > str.expr2     1

This procedure is compatible with UniBasic CALL $MEMCMP.
Examples

Call MemCopy(A$,B$,Result)

See also

CALL MEMCOPY



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 270 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Copy 16 bit words between variables

Syntax
CALL MEMCOPY (expr, var, num.expr)

Parameters
expr is an expression of any type.
var is a variable of any type.
num.expr is a numeric expression specifying the number of 16 bit

words to copy.

Remarks
CALL MEMCOPY moves num.expr 16 bit (2 byte) words from the value expr to the variable var.
Because the original IRIS CALL used 8-bit strings in which ASCII characters had their most
significant bit inverted and dL4 uses 16-bit Unicode characters, the rules for compatible copying are
complex. If both expr and var are not strings, the copy is performed as a memory image without
any conversion. If expr is a string and var is not a string, then only the lower 8 bits of each Unicode
character from expr are copied, the most significant bit of each 8 bit value is inverted, and two
Unicode characters from expr are processed for each 16 bit word. If expr is not a string and var is a
string, then an 8 bit byte from expr is expanded to a Unicode character in var, the most significant
bit in each byte is inverted, and two Unicode characters in var are modified for each 16 bit word
copied. If both expr and var are strings, then num.expr times two characters are copied from expr to
var without any conversion. This procedure is compatible with UniBasic CALL 5.

Examples
Call MemCopy(Binary$,Number,6)

See also

CALL MISC47

Synopsis
Perform miscellaneous operations.

Syntax
CALL MISC47 (num.expr, num.var)

Parameters
num.expr is an expression which specifies the operation to perform.
num.var is a variable that receives the operation result, if any.

Remarks
CALL MISC47 performs the following operations as specified by num.expr:

Num.expr Operation
      0 Pop top of GOSUB stack and return the line number in num.var
      3 Return current terminal type (SPC(13)) in num.var



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 271 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

      4 Disable terminal echo
      5 Enable terminal echo

An error 38 will occur if num.expr is an unsupported operation number. This procedure is
compatible with UniBasic CALL 47.

Examples
Call Misc47(4,Status) ! disable echo

See also

CALL MISCSTR

Synopsis
Miscellaneous string functions.

Syntax
CALL MISCSTR({num.expr,} str.var {,{num.expr} ,str.var }...)

Parameters
num.expr is an optional expression selecting the function to be performed.
str.var is a string on which to perform the current function.

Remarks
Conversion modes:

num.expr Function
      0 Convert the string to lower case.
      1 Replace all characters with nulls.
      2 Zero bit 7 of each character (AND each character with 0FF7F16)

      3 Toggle bit 7 of each non-null character (XOR each character with 0008016)

If num.expr is not specified, a conversion mode of 0 is assumed. If num.expr is specified, it sets the
function to be performed on all following strings until the next num.expr.
This procedure is compatible with UniBasic CALL 60.

Examples
Call MiscStr(S$)

Call MiscStr(1,S$)

Call MiscStr(S$,3,D$)

See also
LCASE$, CALL LOGIC, CALL BITMANIP

CALL MISCSTR105



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 272 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Miscellaneous string functions.   (Release 7.1)

Syntax
CALL MISCSTR105(num.expr1, str.var1, num.expr2, str.var2)

Parameters
num.expr1 is a numeric expression, selecting the function to be performed.
str.var1 is a string variable, on which to perform the current function.
num.expr2 is a numeric expression, containing the length of str.var1 to perform the process
selected.
str.var2 is a string variable which receives the status.

Remarks
Following is a list of the Modes (num.expr1).

modes Function
     1 Pad str.var1 on the left with blanks up to the length (num.expr2).
     2 Pad str.var1 on the right with blanks up to the length (num.expr2).
     3 Pad str.var1 on the left with zeroes up to the length (num.expr2).
     4 Pad str.var1 on the right with zeroes up to the length (num.expr2).
     5 Check that the length of str.var1 is equal to num.expr2
     6 Check that str.var1 contains a valid "MMDDYY" format date.

 
If the operation is successful, str.var2 is set to "". If str.var1 is too small for num.expr2 for modes 1
through 4, does not match the num.expr2 for mode 5 or does not contain a valid date for mode 6,
then the str.var2 is set to "B".
This procedure is compatible with UniBasic CALL 105.

Examples
Call MiscStr105(Mode,String$,length,Status$)

See also

CALL NAMESTACK

Synopsis
Manipulates a stack of string values.

Syntax
CALL NAMESTACK (str.var)

Parameters
str.var is a string variable.

Remarks



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 273 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Call NAMESTACK pushes the str.var onto a stack unless the str.var is a "P" or "C". If str.var is a
"P", then the top string on the stack is popped and returned in str.var. In str.var is "C", the stack is
cleared. The common use of CALL NAMESTACK is to implement a stack of program names so
that applications can CHAIN to a program and then return to the original program.
This procedure is compatible with UniBasic CALL 113.

Examples
Call NameStack(Name$)

See also

CALL NCRC32

Synopsis
Calculate 32 bit cyclic redundancy code of a string or binary value.

Syntax
CALL NCRC32 (num.var, expr, {, num.expr} )

Parameters
num.var is a numeric variable that receives the calculate CRC value.
expr is a string or binary expression which specifies the value on which to calculate the 32 bit CRC.
num.expr is an optional expression which is the result of a previous CRC calculation.

Remarks
NCRC32 calculates and returns as a number the 32-bit CRC checksum of expr which must be
either a string or a binary value. The optional numeric argument num.expr can be used to pass the
CRC value from a previous call to calculate a combined CRC of several variables. The CRC value
is calculated against the DIMed size of strings so that null characters can be included in the CRC
value. Subscripts can be used to limit the number of characters included in the CRC. So that string
values will produce the same CRC values on all platforms, each UNICODE character of a string is
forced into a most-significant-byte-first ordering for CRC calculation. An error will be generated if
an illegal number of parameters, parameter type, or parameter value is used.

Examples
Call CRC32(CheckSum,C$) !Calculate CRC of C$ alone

Call CRC32(CheckSum,X$[1,Len(X$)],CheckSum) !Calculate CRC of C$+X$

See also
ADDMD5?, CRC32, MD5?

CALL NEXTAVPORT

Synopsis
Find available port number.

Syntax
CALL NEXTAVPORT (num.var)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 274 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
Num.var is a numeric variable that receives the lowest available port number.

Remarks
An error 38 will occur if there are no available port numbers. This procedure is compatible with
UniBasic CALL 118.

Examples
Call NextAvPort(PortNum)

See also
CALL AVPORT

CALL PKDEC20

Synopsis
Pack numeric data.

Syntax
CALL PKDEC20 (str.expr, str.var)

Parameters
str.expr is an expression which specifies the string to pack.
str.var is a string variable that receives the packed data.

Remarks
CALL PKDEC20 packs each pair of characters in str.expr, which is a string of decimal digits, into
a character in str.var. Each digit is stored as a 4 bit nibble with the value of the digit plus one (thus 0
is stored as the nibble 1). If the length of str.expr is odd, a zero nibble will fill the final character. An
error 38 is generated if str.expr contains any characters other than digits (0 – 9). This procedure is
compatible with UniBasic CALL 20.

Examples
Call PkDec20(Number$,PackedNumber$)

See also
CALL UNPKDEC21, CALL PKDEC45

CALL PKDEC45

Synopsis
Pack or unpack numeric data.

Syntax
CALL PKDEC45({num.expr, } str.expr, str.var {, num.var})

Parameters
num.expr is an optional expression that specifies whether to pack (0 or omitted) or unpack (non-



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 275 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

zero).
str.expr is the source expression string.
str.var is the destination string variable.
num.var is an optional numeric variable that receives the operation status (0 if successful, 1 if
failed).

Remarks
If num.expr is omitted or zero, CALL PKDEC45 sequentially packs each pair of characters from
str.expr into a character in str.var. Each character is stored as a 4 bit nibble with the character
translated as shown in the table below. If the length of str.expr is odd, a zero nibble will fill the final
character. If str.expr contains an unsupported character, then an error status will be report in
num.var or, if num.var was omitted, an error 38 will occur.
If num.expr is non-zero, CALL PKDEC45 sequentially unpacks each character from str.expr into
two characters in str.var. Each character in str.expr is treated as a pair of nibbles which are
translated into characters as shown in the table below.
This procedure is compatible with UniBasic CALL 45.

Character Nibble Character Nibble

Space 0001 3 1001

, 0010 4 1010

- 0011 5 1011

. 0100 6 1100

/ 0101 7 1101

0 0110 8 1110

1 0111 9 1111

2 1000

Examples
Call PkDec45(data$, packeddata$)

See also
CALL UNPKDEC46, CALL PKDEC20

CALL PKRDX5018

Synopsis
Pack characters into radix 50.

Syntax
CALL PKRDX5018 (str.expr, str.var)

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 276 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

str.expr is an expression which specifies the string to pack.
str.var is a string variable that receives the packed string.

Remarks
CALL PKRDX5018 packs character triplets from str.expr into radix 50 character pairs in str.var.
Each character from str.expr is translated to radix 50 values as shown in the table below and then a
character triplet value is calculated as (Char1 * 40 + Char2) * 40 + Char3. The upper 8 bits of this
triplet value is then stored as a character in str.var followed by a character containing the lower 8
bits. The resulting string is approximately one third smaller than the original string. An error 38 is
generated if str.expr contains untranslatable characters. This procedure is compatible with UniBasic
CALL 18.

Character Radix 50 Character Radix 50 Character Radix 50 Character Radix 50

0 01 A 11 K 21 U 31

1 02 B 12 L 22 V 32

2 03 C 13 M 23 W 33

3 04 D 14 N 24 X 34

4 05 E 15 O 25 Y 35

5 06 F 16 P 26 Z 36

6 07 G 17 Q 27 , 37

7 08 H 18 R 28 - 38

8 09 I 19 S 29 . 39

9 10 J 20 T 30 Space 00

Examples
Call PkRdx5018(src$,packed$)

See also
CALL UNPKRDX5019, CALL PKRDX5048

CALL PKRDX5048

Synopsis
Pack characters into radix 50.

Syntax
CALL PKRDX5048 (str.expr, str.var)

Parameters
str.expr is an expression which specifies the string to pack.
str.var is a string variable that receives the packed string.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 277 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Remarks
CALL PKRDX5048 packs character triplets from str.expr into radix 50 character pairs in str.var.
Each character from str.expr is translated to radix 50 values as shown in the table below and then a
character triplet value is calculated as (Char1 * 40 + Char2) * 40 + Char3. The upper 8 bits of this
triplet value is then stored as a character in str.var followed by a character containing the lower 8
bits. The resulting string is approximately one third smaller than the original string. An error 38 is
generated if str.expr contains untranslatable characters. This procedure is compatible with UniBasic
CALL 48.

Character Radix 50 Character Radix 50 Character Radix 50 Character Radix 50

, 01 7 11 H 21 R 31

- 02 8 12 I 22 S 32

. 03 9 13 J 23 T 33

0 04 A 14 K 24 U 34

1 05 B 15 L 25 V 35

2 06 C 16 M 26 W 36

3 07 D 17 N 27 X 37

4 08 E 18 O 28 Y 38

5 09 F 19 P 29 Z 39

6 10 G 20 Q 30 Space 00

Examples
Call PkRdx5048(src$,packed$)

See also
CALL UNPKRDX5049, CALL PKRDX5018

CALL PKUNPKDEC

Synopsis
Pack or unpack numeric data.

Syntax
CALL PKUNPKDEC (src.str, dest.str)

Parameters
src.str is the source expression string.
dest.str is the destination string variable.

Remarks
If src.str is dimensioned larger than dest.str, CALL PKUNPKDEC sequentially packs each pair of



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 278 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

characters from src.str into a character in dest.str. Each character is stored as a 4 bit nibble with the
character translated as shown in the table below. If the length of src.str is odd, a zero nibble will fill
the final character. If src.str contains an unsupported character, then an error 38 will occur.
If src.str is dimensioned smaller than or equal to dest.str, CALL PKUNPKDEC sequentially
unpacks each character from src.str into two characters in dest.str. Each character in src.str is
treated as a pair of nibbles which are translated into characters as shown in the table below.
This procedure is compatible with UniBasic CALL 15.

Character Nibble Character Nibble

+ 0001 3 1001

, 0010 4 1010

- 0011 5 1011

. 0100 6 1100

Space 0101 7 1101

0 0110 8 1110

1 0111 9 1111

2 1000

Examples
Call PkUnPkDec(data$, packeddata$)

Call PkUnPkDec(packeddata$, data$)

See also
CALL PKDEC20, CALL PKDEC45

CALL PROGRAMCACHE

Synopsis
Manipulate and/or read status of the current shared program cache.

Syntax1
CALL PROGRAMCACHE (0, num.var1, num.var2, str.var1, num.var3 )

Syntax2
CALL PROGRAMCACHE (1, num.var1, str.expr )

Syntax3
CALL PROGRAMCACHE (2, num.var1 )

Syntax4
CALL PROGRAMCACHE (3, num.var1, str.var2 )

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 279 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

num.var1 is a numeric variable to contain the return code.
num.var2 is a numeric variable that determines which cache entry (starting at 0) is read.
str.var1 is a string variable that will receive a program file path.
str.expr is a string expression that will supply a program file path.
num.var3 is a numeric variable set to the number of users of the program.
str.var2 is a string variable that will receive the cache error message.

Remarks
The intrinsic procedure ProgramCache() is used to read the current shared program cache status
and to manipulate the cache. An error will be generated if improper arguments or argument values
are passed to ProgramCache(). Any error that occurs while processing the operation will be
reported by setting the error code argument to a non-zero dL4 error code.
The first parameter to the ProgramCache function specifies the mode of operation as:
mode Operation
    0 Read next entry in cache.
    1 Load program into cache as a permanent entry.
    2 Delete cache when the current process exits.
    3 Get cache error status message, if any
The return code in num.var1 will be set to 0 if the operation is successful or to a standard dL4 error
code if not. For example, if the cache is not available, the statement Call ProgramCache(0,e,p,f$,c)
will set the variable "e" to 42 (file not found).
num.var2 should be set to zero to read the first entry. Each mode 0 call will update the value of
num.var2 so that the next call will read the next cache entry. The precision of num.var2 must be
such that it can contain any value between 0 and 232-1 without any loss of precision (a 3% variable
is adequate). The caller should only pass num.var2 values of zero or those returned by the previous
mode 0 call to ProgramCache().
num.var3 is a usage count and if set to -1 indicates that the program has been added to the cache as
a permanent entry.

Examples
Example 1: Adding a program to the cache as a permanent entry

Declare Intrinsic Sub ProgramCache

Dim 1%, ErrorCode

Call ProgramCache(1, ErrorCode, "MenuLibrary.lib")

Users in static cache mode can only use cached programs and libraries that have been added as
permanent entries. These permanent entries must be created by a user in dynamic cache mode using
mode 1 of ProgramCache(). Once made, permanent entries cannot be individually deleted because
there is no way to determine whether or not a static mode user is currently executing the program or
library. See the program cache description in the dL4 Installation and Configuration Guide for more
information on dynamic and static cache modes.
Example 2: List entries in cache

Declare Intrinsic Sub ProgramCache

Dim 1%, ErrorCode, 3%, CachePos, File$[200], Usage



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 280 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CachePos = 0

Do

Call ProgramCache(0, ErrorCode, CachePos, File$, Usage)

If ErrorCode Exit Do

If Usage < 0

Print "Permanent ";

Else

Print Using "######### ";Usage;
End If

Print File$

Loop

If ErrorCode = 73 Print "The program cache is not enabled"

Example 3: Deleting the program cache
Declare Intrinsic Sub ProgramCache

Dim 1%, ErrorCode

Call ProgramCache(2, ErrorCode)

This example will delete the program cache when the current user exits dL4. The program cache
should be deleted if it is desired to increase the size of the cache or if the cache has become
corrupted. The cache can be deleted only by the owner of the cache or by the root user. Since the
cache cannot be deleted until the user exits, no error is returned if the caller lacks delete permission.
All other users should exit dL4 before the cache is deleted.
Example 4: Printing the cache error message

Declare Intrinsic Sub ProgramCache

Dim 1%, ErrorCode, ErrorMsg$[200]

Call ProgramCache(3, ErrorCode, ErrorMsg$)

If ErrorMsg$ Print “Cache initialization error: “;ErrorMsg$

Configuration errors can prevent the program cache from being successfully initialized. If this
happens, dL4 will run, but with reduced performance. This example determines whether such an
error has occurred and prints a message describing the error.

See also

CALL PROGRAMDUMP

Synopsis
Print stack, variables, open channels and other miscellaneous information.

Syntax
CALL PROGRAMDUMP ({str.expr1 {,str.expr2}})

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 281 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

str.expr1 is the path of the text file in which to write the dump information.
str.expr2 is a string containing dump options.

Remarks
The intrinsic procedure PROGRAMDUMP is called by an application to dump the current
program status, variable values, and channel information to a text file. If str.expr1 is specified, then
it is used as the filename of text file and the optional str.expr2 is treated as an option list. If str.expr2
contains the option "append", the dump will be appended to the end of the dump text file. If
str.expr1 is not specified, the current value of the DL4PORTDUMP runtime parameter determines
the filename (see CALL FORCEPORTDUMP for a description of the DL4PORTDUMP
parameter). In the example below, any unexpected error will cause PROGRAMDUMP to be called
and the dump information written to the text file "dumpfile" in the directory "dumpdir":

Declare Intrinsic Sub ProgramDump

If Err 0 Goto UnexpectedError

Dim InFile$[40], 3%, X

InFile$ = "TestFile"

Build #1,+InFile$+"!"

X = 17

X = 4 / 0 ! Divide-by-zero error which will trigger a dump

Close #1

Chain ""

UnexpectedError: Call ProgramDump("dumpdir/dumpfile!")

Print "Unexpected error";Spc(8);"at line";Spc(10)

Chain ""

Note that, in this example, the directory "dumpdir" must exist in the current working directory or
the call to PROGRAMDUMP will fail.
Formatting options can be specified in either str.expr2 or in the options ("(xxx)") portion of the
filename. The "COLUMNS=n" option specifies the output width (default 78 columns). The
"NULLS=TRUE" option is used to enable printing null characters in strings as "\0\". The
"BYNAME=TRUE" option sorts variables only by name instead of by type and name.
The PROGRAMDUMP intrinsic CALL will print repeated array values on a single line using an
array slice notation. For example, if the array V had 10 elements and all of the elements were zero
except for V[4]=7 and V[8]=9, then PROGRAMDUMP would produce the following output:

* V[0;3],%13 = 0

V[4],%13 = 7

* V[5;7],%13 = 0

V[8],%13 = 9

V[9],%13 = 0

Note that all lines with repeated data are prefixed with an asterisk.
Examples

Call ProgramDump(d$)

Call ProgramDump("dumpdir/dumpfile")



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 282 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Call ProgramDump ("dumpdir/dumpfile", "append")

See also
CALL FORCEPORTDUMP

CALL PUTREGISTRY

Synopsis
Set Windows registry values.

Syntax
CALL PUTREGISTRY(str.expr, expr))

Parameters
str.expr is the name of the registry key and value to set.
expr is a numeric, string, or binary expression.

Remarks
PUTREGISTRY sets the Windows registry value selected by the registry key and value name
specified in str.expr. If the registry value already exists, an error 38 will occur if the value does not
match the variable type. This CALL always returns an error 38 if used on a Unix system. The value
of str.expr must begin with one of the following root key names:
HKEY_CLASSES_ROOT\ (or HKCR\)
HKEY_CURRENT_CONFIG\ (or HKCC\)
HKEY_CURRENT_USER\ (or HKCU\)
HKEY_LOCAL_MACHINE\ (or HKLM\)
HKEY_USERS\ (or HKUS\)
HKEY_PERFORMANCE_DATA\ (or HKPD\)
HKEY_DYN_DATA\ (or HKDD\)

Examples
Call PutRegistry("HKEY_CURRENT_USER\\Software\\MyCompany\\Value",S$)

See also
CALL GETREGISTRY

CALL RDFHD

Synopsis
Read file directory.

Syntax
CALL RDFHD (dir.expr, fileno.var, name.var, acnt.var, type.var, size.var, stat.var, cost.var,



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 283 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

income.var, create.var, lastaccess.var, fileid.var)
Parameters

dir.expr is a string or numeric expression which specifies the directory path or the logical unit
number.
fileno.var is a numeric variable which selects which file entry to examine in the directory.
name.var is a string variable which receives the file name.
acnt.var is a numeric variable that receives the file owner user id (-1 if there is no numeric id).
type.var is a numeric variable that receives the file type code (see below).
size.var is a numeric variable that receives the file size in 512 byte blocks.
stat.var is a numeric variable that receives the file status code (see below).
cost.var is a numeric variable that receives the file access cost (always zero).
income.var is a numeric variable that receives the file income (always zero).
create.var is a numeric variable that receives the file creation date in hours since the SPC(20) base
year.
lastaccess.var is a numeric variable that receives the file last access date in hours since the SPC(20)
base year.
fileid.var is a numeric variable that receives an operating system

dependent file identification number

Remarks
CALL RDFHD is used to read file directories and returns information about a selected file in the
directory specified by dir.expr. The file is selected by fileno.var which is the entry number in the file
directory. Each call to RDFHD increments fileno.var to the next entry or to -1 if there are no more
entries. The value of fileno.var should be initialized to zero before the first call to RDFHD for a
given directory. This procedure is compatible with UniBasic CALL 97 and CALL $RDFHD.

Type.var Meaning
0 Not a unrecognized file type
2 dL4 program file
24 Text file
25 Formatted file
26 Indexed-Contiguous file

Stat.var Meaning
0 Other
2 Indexed-Contiguous file
4096 Formatted file

Examples
Call RdFhd( dir$, fileno, f$, acnt, type, fsz,stat, c, i, create , access, fid)

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 284 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL FILEINFO

CALL READBUF

Synopsis
Reads the virtual record written by CALL WRITEBUF.   (Release 9.1)

Syntax
CALL READBUF (num.expr {,var} ...)

Parameters
num.expr is an numeric expression that supplies the byte offset at which to read the virtual record.
var is a string or numeric variable that receives the data from the virtual record.

Remarks
If the byte offset is odd, it will be rounded up to an even byte boundary when reading into a
numeric variable.

Examples
Call ReadBuf(Offset, Variable)

See also
CALL INITBUF, CALL WRITEBUF

CALL READREF

Synopsis
Change channel access mode.

Syntax
CALL READREF (num.expr1, num.expr2)

Parameters
num.expr1 selects the new access mode
num.expr2 is the number of the channel to modify.

Remarks
If num.expr1 is zero, the channel access mode is changed to read/write with record locking enabled.
If num.expr1 is non-zero, the access mode is changed to read-only with record locking disabled.
If a channel was originally opened for read-only access, it may not be possible to change the access
mode to read/write.
The effect of READREF on record locking is driver and operating system dependent. New
programs should use the ROPEN statement and avoid dependence on disabling record locking.
This procedure is compatible with UniBasic CALL $READREF.

Examples
Call ReadRef(1,10)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 285 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

See also
OPEN, ROPEN

CALL REDIR

Synopsis
Redirect INPUT statements to read from a channel or file.   (Release 9.1)

Syntax1
CALL REDIR (num.expr)

Syntax2
CALL REDIR(str.expr)

Parameters
num.expr is a numeric expression specifying a channel open to a text file.
str.expr is a string expression specifying the path of a text file.

Remarks
CALL REDIR causes INPUT and other statements that read from the standard input channel to
read from a text file until the end of the text file or an error occurs. The text file is specified either as
a channel already open to a text file (Syntax1) or as the path of a text file (Syntax2).

Examples
Call ReDir(Channel)

Call ReDir(Path$)

See also

CALL RENAME

Synopsis
Rename a file.

Syntax
CALL RENAME(num.expr1, str.expr1, str.expr2, num.expr2, num.var)

Parameters
num.expr1 specifies the logical unit number to prefix the old and new filenames.
str.expr1 is the old filename.
str.expr2 is the new filename.
num.expr2 is a channel number (ignored).
num.var is a variable which will be set to 0 if operation succeeds or to 1 if it fails.

Remarks
If num.expr1 is negative, it is ignored.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 286 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

This procedure is compatible with UniBasic CALL $RENAME.
Examples

Call Rename(1,"A","B",0,S) ! Rename 1/A to 1/B

See also
MODIFY

FUNCTION REPLACE

Synopsis
Change occurrences of a target string to a replacement string.

Syntax
REPLACE$ (str.expr1, str.expr2, str.exp3 {, num.expr})

Parameters
str.expr1 is the original string value to be modified.
str.expr2 is the string value to find and replace in str.expr1.
str.expr3 is the replacement string value.
num.expr is an optional number of occurrences of str.expr2 to be replaced.

Remarks
The REPLACE$ function returns the modified value of str.expr1 without changing the value in
str.expr1. If num.expr is not specified, then all occurrences of str.expr2 in str.expr1 will be replaced
by str.expr3. If num.expr is zero, then str.expr1 will be returned without any modifications.

Examples
A$ = Replace$(C$, "old", "new") ! replace all "old" with "new"

See also
REPLACECI$, POS

FUNCTION REPLACECI

Synopsis
Change occurrences of a target string to a replacement string ignoring case.

Syntax
REPLACECI$ (str.expr1, str.expr2, str.exp3 {, num.expr})

Parameters
str.expr1 is the original string value to be modified.
str.expr2 is the string value to find and replace in str.expr1.
str.expr3 is the replacement string value.
num.expr is an optional number of occurrences of str.expr2 to be replaced.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 287 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Remarks
The REPLACECI$ function returns the modified value of str.expr1 without changing the value in
str.expr1. When searching str.expr1, the case of characters in str.expr1 and str.expr2 is ignored. If
num.expr is not specified, then all occurrences of str.expr2 in str.expr1 will be replaced by str.expr3.
If num.expr is zero, then str.expr1 will be returned without any modifications.

Examples
! Change all occurrences of "No", "no", "NO", or "nO" with "yes"

A$ = ReplaceCI$(C$, “No”, “yes”)

See also
REPLACE$, POS

CALL RMVSPACES

Synopsis
Copy string and remove spaces.

Syntax
CALL RMVSPACES(str.expr, str.var, num.expr)

Parameters
str.expr is the source string.
str.var is the destination string.
num.expr is the copy mode (0 or 1)

Remarks
If num.expr is not equal to one, str.expr1 is copied to str.var with all leading and trailing spaces
removed.
If num.expr is equal to one, then str.expr is copied to str.var with all spaces removed except those in
quoted strings. If an exclamation mark ("!") appears outside of a quoted string, then the exclamation
mark and all characters after it will be removed and a linefeed character will be appended.
This procedure is compatible with UniBasic CALL $RSPCS.

Examples
Call RmvSpaces(A$,B$,0)

See also
CALL RMVSPACESI, LTRIM$, RTRIM$, TRIM$

CALL RMVSPACESI

Synopsis
Copy string and remove spaces.

Syntax
CALL RMVSPACESI(str.expr, str.var, num.expr)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 288 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
str.expr is the source string.
str.var is the destination string.
num.expr is the copy mode (0 or 1)

Remarks
If num.expr is zero, str.expr1 is copied to str.var with all leading and trailing spaces removed.
If num.expr is equal to one, then str.expr is copied to str.var with all spaces removed except those in
quoted strings. If an exclamation mark ("!") appears outside of a quoted string, then the exclamation
mark and all characters after it will be removed. A linefeed character will be appended to the end of
str.var.
If num.expr is not equal to zero or one, then an error 38 will occur.

Examples
Call RmvSpacesI(A$,B$,0)

See also
CALL RMVSPACES, LTRIM$, RTRIM$, TRIM$

CALL SCATTER

Synopsis
Unpack data from a string.

Syntax
CALL SCATTER (str.expr, var ...)

Parameters
str.expr is a string expression containing values from a previous CALL GATHER.
var is one of one or more variables that will receive values from str.expr.

Remarks
The value of str.expr must be the result of a previous CALL GATHER or in a compatible format.
The packed values from str.expr are sequentially unpacked and copied to the variables var. The
variables var must be of the numeric, string, or date type and match the data type packed in str.expr.
Numeric values are always stored in BITS formats.
This procedure is compatible with UniBasic CALL 73.

Examples
Call SCATTER(E$,A,B,C$,D)

See also
CALL GATHER

CALL SETECHO

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 289 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Enable or disable terminal echo.
Syntax

CALL SETECHO (expr)
Parameters

expr is a string or numeric expression.
Remarks

CALL SETECHO disables echo if expr is a string and enables echo if expr is numeric. This
procedure is compatible with UniBasic CALL 7.

Examples
Call SetEcho(C$)

See also
CALL ECHO

CALL SETGLOBALS

Synopsis
Set session global values.

Syntax0
CALL SETGLOBALS({ str.expr,} num.expr, var.list)

Syntax1
CALL SETGLOBALS({ str.expr,} num.expr)

Syntax2
CALL SETGLOBALS( str.expr)

Parameters
str.expr supplies the name of the global set. If str.expr is not specified, the default set (named "") is
used.
num.expr specifies the starting global item number.
var.list is a list of one or more variables of any type except for array or structure.

Remarks
When using syntax 0, SETGLOBALS copies values to session global variables in the selected
global set starting with global item num.expr and continuing sequentially through the list of values.
The values can be retrieved by using CALL GETGLOBALS. Unless they are explicitly deleted
(see below), the values persist throughout a dL4 session until dL4 exits. The values types do not
need to match any existing type for the specified global item number. Global item numbers do not
need to be sequential; setting item num.expr does not require setting values for item num.expr – 1 or
for item num.expr + 1. Global item numbers must be in the range 0 through 999. Global set names
cannot be longer than 32 characters. An error 38 will occur if there is insufficient memory available
to store the value.
To delete a value, use syntax 1. To delete an entire global set, use syntax 2. Deleting a non-existent
value or global set is not an error.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 290 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
Call SetGlobals(3,S$,X)

See also
CALL GETGLOBALS

CALL SETRESOURCE

Synopsis
Set the current resource file for use by GUI mnemonics.

Syntax
CALL SETRESOURCE(str.expr)

Parameters
str.expr is the path for the resource file.

Remarks
If the str.expr is not an absolute path, the current program directory, the LIB directories, the current
directory, and the data file directories will be searched in that order.

Examples
CALL SETRESOURCE("myapp.res")

See also

CALL SETSTRUCT

Synopsis
Change structure variable member specified by member number.   (Release 7.3)

Syntax
CALL SETSTRUCT(str.var[], {num.expr1,} struct.var1., {struct.var2.[],} num.expr2, num.var)

Parameters
str.var[] is an string array of values to be set.
num.expr1 is an optional numeric expression for the starting index position in str.var[].
struct.var1. is the structure variable that is going to be changed.
struct.var2 is a optional structure variable that contains member reference information.
num.expr2 is a numeric expression, is the member number (1 - n) to be set.
num.var is a numeric variable, is the number of members to be set.

Remarks
str.var[] A string array of the values to set. A single string value can be used instead of an



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 291 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

array to set all of the specified structure members to the same value.
num.expr1 Optional index in str.var[] at which to start.
struct.var1. Structure variable to be changed. The variable can be either a normal structure

variable, a structure variable parameter variable, or an "AS *" structure variable
parameter. The structure cannot contain array members. The structure cannot contain
structures as members unless the struct.num.[] parameter is specified (see below).

struct.var2.
[]

Optional array of structures containing member reference information returned by
Call StructInfo() for struct.var..

num.expr2 Member number (1 - n) to be set. If struct.var2 is supplied, num.expr2 is used as an
index into struct.var2.[] to get a member reference code which is then used to
identify the actual member to be changed.

num.var Number of members to set. If num.var exceeds the number of members available, all
of the remaining members will be set and num.var will be set to the to the number
stored.

Examples
Call SetStruct(Value$[], ValueIdx, StructVar., MbrMap.[],MbrNo, NumMbrs)

See also
CALL GETSTRUCT, FUNCTION GETSTRUCT$, CALL STRUCTINFO

FUNCTION SHA1?

Synopsis
Calculate SHA1 checksum of string or binary value.   (Release 9.3)

Syntax
SHA1? (expr, {, bin.expr} )

Parameters
expr is a string or binary expression which specifies the value on which to calculate the SHA1
checksum.
bin.expr is an optional expression which is the result of a previous ADDSHA1? calculation.

Remarks
SHA1? calculates and returns as a 20 byte binary value the SHA1 checksum of expr which must be
either a string or a binary value. The optional binary argument bin.expr can be used to pass the
intermediate SHA1 result value from a call to ADDSHA1? to calculate a combined checksum of
several variables. The checksum is calculated against the dimensioned size of strings so that null
characters can be included in the checksum. Subscripts can be used to limit the number of
characters included in the checksum. So that string values will produce the same checksum values
on all platforms, each UNICODE character of a string is forced into a most-significant-byte-first
ordering for checksum calculation. An error will be generated if an illegal number of parameters,
parameter type, or parameter value is used.

Examples
Dim CheckSum?[20], Temp?[128]

CheckSum? = SHA1?(C$) ! Calculate checksum of C$ alone



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 292 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Temp? = AddSHA1?(C$)

CheckSum? = SHA1?(X$[1,Len(X$)],Temp?) ! Calculate checksum of C$+X$

See also
ADDSHA1?, SHA256, ADDSHA256?, ADDMD5?, CRC32

FUNCTION SHA256?

Synopsis
Calculate SHA256 checksum of string or binary value.   (Release 9.3)

Syntax
SHA256? (expr, {, bin.expr} )

Parameters
expr is a string or binary expression which specifies the value on which to calculate the SHA256
checksum.
bin.expr is an optional expression which is the result of a previous ADDSHA256? calculation.

Remarks
SHA256? calculates and returns as a 32 byte binary value the SHA256 checksum of expr which
must be either a string or a binary value. The optional binary argument bin.expr can be used to pass
the intermediate SHA256 result value from a call to ADDSHA256? to calculate a combined
checksum of several variables. The checksum is calculated against the dimensioned size of strings
so that null characters can be included in the checksum. Subscripts can be used to limit the number
of characters included in the checksum. So that string values will produce the same checksum
values on all platforms, each UNICODE character of a string is forced into a most-significant-byte-
first ordering for checksum calculation. An error will be generated if an illegal number of
parameters, parameter type, or parameter value is used.

Examples
Dim CheckSum?[32], Temp?[128]

CheckSum? = SHA256?(C$) ! Calculate checksum of C$ alone

Temp? = AddSHA256?(C$)

CheckSum? = SHA256?(X$[1,Len(X$)],Temp?) ! Calculate checksum of C$+X$

See also
ADDSHA156?, SHA1?, ADDSHA1?, ADDMD5?, CRC32

CALL SORTINSTRING

Synopsis
Sort keys in a string or elements in an array.

Syntax0
CALL SORTINSTRING (num.var, num.expr1, num.expr2, str.var1, str.var2)

Syntax1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 293 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL SORTINSTRING (num.var, num.expr1, num.expr2, str.array.var, str.var2)
Syntax2

CALL SORTINSTRING (num.var, num.expr1, num.expr2, struct.array.var, struct.var)
Parameters

num.var is a numeric variable to receive a return status from the sort operation.
num.expr1 is a numeric variable or expression which, after evaluation , is truncated to an integer to
specify the number of strings to be sorted.
num.expr2 is a numeric variable or expression which, after evaluation , is truncated to an integer to
specify the length of each string. For string or structure arrays, this is the number of significant
characters in each string array element or the first structure member.
str.var1 is a string variable containing the keys to be sorted. It may contain any number of fixed-
length binary fields to be sorted. Sorting is based upon the supplied length (num.expr2) of each
item, up to number (num.expr1) of items.
str.var2 is any temporary work string DIMensioned to a minimum of length +8.
str.array.var is a string array variable containing the keys to be sorted. If num.expr2 is less than the
dimensioned size of the array elements, then only the first num.expr2 characters will be significant
when sorting.
struct.array.var is an array of structures. The first member of the structure must be a string and
sorting will be performed using the first num.expr2 characters of that structure member.
struct.var is a structure variable identical to the members of struct.array.var.

Remarks
The meaning of the return status value from the sort operation:
status Description
   0 Successful sort operation.
   1 Parameter Error.
   2 number or length was passed as zero.
   3 sort string is too small; less than number * length
   4 work string is too small; less than length + 8.
The resulting sorted string is returned in str.var1.

Examples
Call SortInString(E, 100, 10, A$, W$)

See also

CALL SPACESTR

Synopsis
Initializes variables.   (Release 7.3.2)

Syntax
CALL SPACESTR (var {,...})

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 294 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

var is any type of variable, strings will be filled with spaces and all others with be zeroed.
Remarks

var can be any type of variable. String variables, string arrays and the string members of structures
will be filled with spaces. All other variable types will be zeroed as in the CLEAR statement.

Examples
Call SpaceStr(Str$)

See also
CALL CLEAR

CALL SPLITSTR

Synopsis
Splits a string into substrings according to a specified separator character.   (Release 9.1)

Syntax
CALL SPLITSTR ({num.expr,} {num.var,} str.expr1, str.expr2, str.var1 {,str.var2} ...})

Parameters
num.expr, an optional numeric expression, is the parsing mode.
Mode Description
    0 or unspecified mode, which skips to the next str.varN (where N is the next field) parameter if

the current parameter is too small for the current field.
    1 Truncates and ignores and extra characters.
    2 Reports overflow as a status (num.var) of 1 or an error 38 if the status parameter isn't used.
num.var is an optional numeric variable that receives the status of the CALL. num.var is set to zero
if no errors occur, otherwise num.var is set to 1.
str.expr1 is a string expression, specifying a single character terminator.
str.expr2, a string expression, is the source string to split.
str.var1, str.var2 and etc. are string variables, into which str.expr2 is to be split. If the number of
field variables exceeds the number of fields, the variable following the final field with be set to "".

Remarks
SPLITSTR separates str.expr2 to str.var1, str.var2 and etc. using str.expr1 as the separator.
SPLITSTR is compatible with the IMS CALL $PARSE or CALL 22.

Examples
Call SplitStr(Mode, Status, Sep$, Src$, Field1$, Field2$)

See also
IMS CALL $PARSE, IMS CALL 22

FUNCTION SQLD$

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 295 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Format values for SQL drivers treating date/time values as date only.
Syntax 1

SQLD$(expr ...)
Syntax 2

SQLD$(str.var[], struct.var[])
Parameters

expr is an expression of any type.
str.var[] is an array of strings as produced by CALL GETSTRUCT().
struct.var[] is an array of structures as produced by CALL STRUCTINFO().

Remarks
SQLD$() is identical to the SQLV$() function except that it tells the SQL driver to format all
date/time values as date only values. This is necessary to perform searches on date (not date/time)
columns.

Examples

See also
SQLDT$, SQLV$

FUNCTION SQLDT$

Synopsis
Format values for SQL drivers treating 1% date/time values as date only.

Syntax 1
SQLDT$(expr ...)

Syntax 2
SQLDT$(str.var[], struct.var[])

Parameters
expr is an expression of any type.
str.var[] is an array of strings as produced by CALL GETSTRUCT().
struct.var[] is an array of structures as produced by CALL STRUCTINFO().

Remarks
SQLDT$ identical to the SQLV$() function except that it tells SQL drivers to format all 1%
precision date/time variable values as date only values. Date values with 2% or 3% precision are
formatted as date and time values.

Examples

See also
SQLV$



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 296 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

FUNCTION SQLEQD$

Synopsis
Format an equivalence value for SQL drivers treating a date/time value as date only.

Syntax
SQLEQD$(expr)

Parameters
expr is an expression of any type..

Remarks
If the expression value is not an SQL NULL value, format the value so that SQL drivers will
generate "=" followed by the value. Format a date/time value as date only. If the value is NULL,
format the value to generate "IS NULL". This function simplifies building WHERE clauses.

Examples

See also
SQLD$

FUNCTION SQLEQDT$

Synopsis
Format an equivalence value for SQL drivers treating a 1% date/time value as date only.

Syntax
SQLEQDT$(expr)

Parameters
expr is an expression of any type.

Remarks
If the expression value is not an SQL NULL value, format the value so that SQL drivers will
generate "=" followed by the value. Format a 1% date/time value as date only. If the value is
NULL, format the value to generate "IS NULL". This function simplifies building WHERE
clauses.

Examples

See also
SQLDT$

FUNCTION SQLEQV$

Synopsis
Format an equivalence value for SQL drivers.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 297 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
SQLEQV$(expr)

Parameters
expr is an expression of any type.

Remarks
If the expression value is not an SQL NULL value, format the value so that SQL drivers will
generate "=" followed by the value. If the value is NULL, format the value to generate "IS NULL".
This function simplifies building WHERE clauses.

Examples

See also
SQLV$

FUNCTION SQLN$

Synopsis
Format a structure variable as a column name list for SQL drivers.

Syntax 1
SQLN$(struct.var.)

Syntax 2
SQLN$(str.var[], struct.var[])

Parameters
struct.var. is a struct variable.
str.var[] is an array of strings as produced by CALL GETSTRUCT().
struct.var[] is an array of structures as produced by CALL STRUCTINFO().

Remarks
SQLN$ takes the structure variable argument and returns a string containing the member item
names. An SQL driver will format the string as a list of comma separated names. If the structure
variable contains members which are structures, the names will be derived from only the lowest
level member (see SQLSN$).

Examples
Search #1;"Insert Into test ("+SQLN$(R.)+") Values ("+SQLV$(R.)+")"

See also
SQLV$, SQLNV$, SQLSN$

FUNCTION SQLNULL

Synopsis
Return numeric SQL NULL value for SQL driver I/O.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 298 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Syntax
SQLNULL ()

Parameters
None.

Remarks
SQLNULL returns a numeric value that is recognized by SQL drivers as an SQL NULL. The
function currently returns the value –1E62, but, for future compatibility, this function should always
be used instead of the literal value. An error will be generated if an illegal number of parameters,
parameter type, or parameter value is used.

Examples
Rec.Value = SQLNull()

See also
ISSQLNULL, SQLNULL#, SQLNULL$

FUNCTION SQLNULL#

Synopsis
Return date SQL NULL value for SQL driver I/O.

Syntax
SQLNULL# ()

Parameters
None.

Remarks
SQLNULL# returns a date value that is recognized by SQL drivers as an SQL NULL. The function
currently returns the value "January 1, 0001", but, for future compatibility, this function should
always be used instead of the literal value. An error will be generated if an illegal number of
parameters, parameter type, or parameter value is used.

Examples
Rec.Value# = SQLNull#()

See also
ISSQLNULL, SQLNULL, SQLNULL$

FUNCTION SQLNULL$

Synopsis
Return string SQL NULL value for SQL driver I/O.

Syntax
SQLNULL$ ()



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 299 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
None.

Remarks
SQLNULL$ returns a string value that is recognized by SQL drivers as an SQL NULL. The
function currently returns the value "\xffff\", but, for future compatibility, this function should
always be used instead of the literal value. An error will be generated if an illegal number of
parameters, parameter type, or parameter value is used.

Examples
Rec.Name$ = SQLNull$()

See also
ISSQLNULL, SQLNULL, SQLNULL#

FUNCTION SQLNV$

Synopsis
Format a structure variable as a column name and value list for SQL drivers.

Syntax 1
SQLNV$(struct.var.)

Syntax 2
SQLNV$(struct.var[], struct.var[])

Parameters
struct.var. is a struct variable.
str.var[] is an array of strings as produced by CALL GETSTRUCT().
struct.var[] is an array of structures as produced by CALL STRUCTINFO().

Remarks
SQLNV$ takes the structure variable argument and returns a string containing the member item
names and values. An SQL driver will format the string as a list of comma separated "name=value"
pairs. SQLNV$ is commonly used when generating the SET clause of an SQL statement. "AS *"
structure variables can be used directly or by using Syntax2.

Examples
Search #1;"Update test Set "+SQLNV$(R.)+" where count=19"

See also
SQLV$, SQLN$

FUNCTION SQLSN$

Synopsis
Format a structure variable as a column name list for SQL drivers.

Syntax 1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 300 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

SQLSN$(struct.var.)
Syntax 2

SQLSN$(str.var[], struct.var[])
Parameters

struct.var. is a struct variable.
str.var[] is an array of strings as produced by CALL GETSTRUCT().
struct.var[] is an array of structures as produced by CALL STRUCTINFO().

Remarks
SQLSN$ takes the structure variable argument and returns a string containing the member item
names. An SQL driver will format the string as a list of comma separated names. If the structure
variable contains members which are structures, the names will be derived by concatenating the
member names with the name, if any, of the parent structure. "AS *" structure variables can be used
directly or by using Syntax2.
In the example below, the SQLSN$() function would generate the field names "ULColumn",
"ULRow", "LRColumn", and "LRRow". The SQLN$() function would generate the names
"Column", "Row", "Column", and "Row" causing duplicate field name errors in some situations.

Examples
Def Struct POSITION

  Member 1%,X : Item "Column"

  Member 1%,Y : Item "Row"

End Def

Def Struct RECTANGLE

  Member UpperLeft. As POSITION : Item "UL"

  Member LowerRight. As POSITION : Item "LR"

End Def

Dim R. As RECTANGLE

See also
SQLN$, SQLNV$, SQLSND$

FUNCTION SQLSND$

Synopsis
Format a structure variable as a column name and value list for SQL drivers treating date/time
values as date only.

Syntax 1
SQLSND$(struct.var.)

Syntax 2
SQLSND$(str.var[], struct.var[])

Parameters



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 301 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

struct.var. is a struct variable.
str.var[] is an array of strings as produced by CALL GETSTRUCT().
struct.var[] is an array of structures as produced by CALL STRUCTINFO().

Remarks
SQLSND$ takes the structure variable argument and returns a string containing the member item
names and values. Any date/time values will be treated as date only values. If the structure variable
contains members which are structures, the names will be derived by concatenating the member
names with the name, if any, of the parent structure (see the SQLSN$ function). An SQL driver will
format the result string as a list of comma separated "name=value" pairs. SQLSND$ is commonly
used when generating the SET clause of an SQL statement. "AS *" structure variables can be used
directly or by using Syntax2.

Examples
Def Struct POSITION

  Member 1%,X : Item "Column"

  Member 1%,Y : Item "Row"

End Def

Def Struct RECTANGLE

  Member UpperLeft. As POSITION : Item "UL"

  Member LowerRight. As POSITION : Item "LR"

End Def

Dim R. As RECTANGLE

See also
SQLNV$, SQLD$, SQLSN$

FUNCTION SQLSNV$

Synopsis
Format a structure variable as a column name and value list for SQL drivers treating date/time
values as date only.

Syntax 1
SQLSNV$(struct.var.)

Syntax 2
SQLSNV$(str.var[], struct.var[])

Parameters
struct.var. is a struct variable.
str.var[] is an array of strings as produced by CALL GETSTRUCT().
struct.var[] is an array of structures as produced by CALL STRUCTINFO().



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 302 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Remarks
SQLSNV$ takes the structure variable argument and returns a string containing the member item
names and values. If the structure variable contains members which are structures, the names will
be derived by concatenating the member names with the name, if any, of the parent structure (see
the SQLSN$ function). An SQL driver will format the result string as a list of comma separated
"name=value" pairs. SQLSND$ is commonly used when generating the SET clause of an SQL
statement. "AS *" structure variables can be used directly or by using Syntax2.

Examples
Def Struct POSITION

  Member 1%,X : Item "Column"

  Member 1%,Y : Item "Row"

End Def

Def Struct RECTANGLE

  Member UpperLeft. As POSITION : Item "UL"

  Member LowerRight. As POSITION : Item "LR"

End Def

Dim R. As RECTANGLE

See also
SQLNV$, SQLSN$, SQLV$

FUNCTION SQLV$

Synopsis
Format values for SQL drivers treating date/time values as date only.

Syntax 1
SQLV$(expr ...)

Syntax 2
SQLV$(str.var[], struct.var[])

Parameters
expr is an expression of any type other than an array.
str.var[] is an array of strings as produced by CALL GETSTRUCT().
struct.var[] is an array of structures as produced by CALL STRUCTINFO().

Remarks
SQLV$ encodes the value of each argument for processing by SQL drivers. SQL drivers detect such
encoded values in the SEARCH statement string and format the values as required by the specific
SQL server. This formatting guarantees proper quoting of character string values and places
commas between each value. If the argument is a structure variable, each member of the structure is
encoded. "AS *" structure variables can be used directly or by using Syntax2.

Examples



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 303 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Search #1;"Insert Into test (count,label) Values ("+SQLV$(C,L$)+")"

Search #1;"Insert Into test ("+SQLN$(R.)+") Values ("+SQLV$(R.)+")"

See also
SQLN$, SQLNV$

CALL STRING

Synopsis
Perform miscellaneous string functions.

Syntax1
CALL STRING (num.expr1, str.var )

Syntax2
CALL STRING (num.expr1, str.expr, num.var )

Syntax3
CALL STRING (num.expr1, num.expr2, str.var )

Parameters
num.expr1 specifies the function to be performed.
str.var is a variable on which to perform a function or into which to return the result.
num.expr2 is a value to be converted into characters.
num.var is a variable into which a converted character value is stored.

Remarks
num.expr1 Syntax Function
        1      0 Convert characters in str.var to upper-case.
        2      0 Convert all characters in str.var to lower-case.
        3      1 Store value of the first character of str.exprItalic text into num.var.
        4      2 Store value of num.expr2 as a character into the first character of

str.var.
        5      0 Copy the command line into str.var.
        6      1 Store value of the first two characters of str.expr into num.var. The

value is formed by multiplying the value of the first character by 256
and adding the value of the second character.

        7      2 Store value of num.expr2 divided by 256 into the first character of
str.var and store the value of num.var modulo 256 into the second
character of str.var.

This procedure is compatible with UniBasic CALL $STRING.
Examples

Call String(1,A$)

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 304 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

ASC, INT, LCASE$, UCASE$, CALL, CALL UBSTRING, CONV

CALL STRINGSEARCH

Synopsis
Perform string search.

Syntax
CALL STRINGSEARCH ({num.expr1,} str.expr1 {,num.expr2} ,str.expr2, num.var {,num.expr3
{,num.expr4 {,num.expr5}})

Parameters
num.expr1 controls whether the search ends at the first null in str.expr1. If num.expr, truncated to an
integer is non-zero, then the search is performed on all characters in the dimensioned length of
str.expr1. Default value 0.
str.expr1 is the string which is searched for str.expr2.
num.expr2 is a starting index in str.expr1 at which to begin the search. If num.expr2 is negative, the
search is performed backwards from the end of str.expr1. Default value: 1.
str.expr2 is the string to search for in str.expr1.
num.var is a variable into which the relative index of the matching substring is stored. num.var is
set to -1 if no match is found.
num.expr3 is the number of the match to search for. If num.expr3 is positive, str.expr1 is searched
for the Nth occurrence of str.expr2. If num.expr3 is negative, str.expr1 is searched for the Nth non-
occurrence of str.expr2. Default value: 1.
num.expr4 is the source step value. If specified, str.expr1 is tested only at positions that are
multiples of num.expr4.
num.expr5 is the target step value. If specified, str.expr2 is treated as multiple strings of num.expr5
characters each and each step in str.expr1 is searched for each substring.

Remarks
This procedure is compatible with UniBasic CALL 56.

Examples
Call StringSearch(S$,"dog",P)

See also
POS

CALL STRSRCH1

Synopsis
Search string.

Syntax
CALL STRSRCH1 (num.expr, str.expr1, str.expr2, num.var)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 305 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
num.expr is a numeric expression controlling the search mode. Only mode 2 is supported.
str.expr1 is the string to search for.
str.expr2 is the string to search.
num.var is a numeric variable which contains the start position for the search and receives the
matching position.

Remarks
If a substring that matches str.expr1 is found in str.expr2, then num.var is set to the starting index of
that substring. If a match is not found, num.var is set to zero. The search starts at index num.var
minus one in str.expr2 (zero based indexing) This procedure is compatible with UniBasic CALL 1.

Examples
Call StrSrch1(2,T$,S$,P)

See also
POS

CALL STRSRCH11

Synopsis
Search string.   (Release 7.1)

Syntax
CALL STRSRCH11 (num.var, str.expr1, {num.expr,} str.expr2)

Parameters
num.var is a numeric variable that is set to the position of str.expr2 in str.expr1. If str.expr2 is not
found, then num.var is set to zero.
str.expr1 is the string to be searched.
num.expr is an optional numeric expression which contains the position at which the search will
start.
str.expr2 is a string expression to be searched for in str.expr1.

Remarks
If str.expr2 is found in str.var1, then num.var is set to the starting position of the match. If a match
is not found, num.var is set to zero. This procedure is compatible with UniBasic CALL 11.

Examples
Call StrSrch11(Position,Source$,Start,Target$)

See also
POS

CALL STRSRCH44

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 306 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Search string.
Syntax

CALL STRSRCH44(num.expr1 {, str.expr1, str.expr2, num.var {, num.expr2}})
Parameters

num.expr1 is the CALL mode (see below).
str.expr1 is the optional string to search for or to swap.
str.expr2 is the optional string to search.
num.var is an optional numeric variable that supplies the search start position and receives the
result.
num.expr2 is an optional expression that controls the search step value.

Remarks
Num.expr1 Operation Performed
        0 Compare str.expr1 to str.expr2.
        1 Search str.expr2 for the first occurrence of str.expr1.
        2 Search str.expr2 for the first non-occurrence of str.expr1.
        3 Swap target. Reverses position of all characters in str.expr1.
        4 Disable terminal echo.
        5 Enable terminal echo.
If num.expr1 is zero, the comparison status is returned in num.var as follows:

-2   = str.expr2 is logically less than str.expr1
-1   = str.expr2 is shorter than str.expr1
 0   = str.expr1 and str.expr2 are exactly equal
 1   = str.expr1 is shorter than str.expr2
 2   = str.expr1 is logically less than str.expr2

If num.expr1 is 1 or 2, then num.var supplies the starting position for the search and receives the
matching position. If there is no matching position, then num.var is set to zero. If num.expr2 is
supplied, it is used as a step value in str.expr2 between each search.
If num.expr1 is 3, then str.expr1 must be a string variable.
This procedure is compatible with UniBasic CALL 44.

Examples
Call StrSrch44(4) ! Disable echo

Call StrSrch44(1,T$,S$,P)

See also
POS

CALL STRSRCH81

Synopsis



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 307 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

String Search.
Syntax

CALL STRSRCH81(num.expr, str.expr1, str.expr2, num.var)
Parameters

num.expr is an expression that controls the search type.
str.expr1 is the string to search for.
str.expr2 is the string to be searched.
num.var supplies the starting search position and receives the search result.

Remarks
If num.expr is zero, a search is performed to match the first character of str.expr1. If num.expr is
one, a search is performed to match the entire str.expr1 string. The start position for a search if
supplied by num.var using zero based indexing. If a match is found, the match position is returned
in num.var. If a match is not found, num.var is set to zero.
This procedure is compatible with UniBasic CALL 81.

Examples
Call StrSrch81(1,T$,S$,P)

See also
POS

CALL STRUCTINFO

Synopsis
Get information about the members of a structure variable.   (Release 7.3)

Syntax
CALL STRUCTINFO(struct.var1.[], struct.var2, num.expr, num.var)

Parameters
struct.var1.[] is an array of structures that receives the layout of struct.var2.
struct.var2. is a structure variable.
num.expr is a numeric expression that specifies the member number of the first member to be
examined.
num.var is a numeric variable that initially contains the number of members to examine plus 1 and
receives the number of members examined.

Remarks
struct.var1.
[] is an array of structures with the following members:

ItemName$ Member item name or "" if none.
RefCode? Member reference code for Call SetStruct(). RefCode? must have a

DIMension of 8 or more bytes.
ItemNum Member item number or -1 if none



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 308 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

ISAMOptions Member ISAM Options.
Type$ Type character ("" for numeric members, "$" for string, "#" for dates

and "?" for binary strings).
Format Precision of number/date members or size of strings.
The struct.var1. structure must match the types and order of the members above, but
the names can vary.

struct.var2. Structure variable to be queried. The variable cannot contain array members. If any
members are themselves structures, then "struct.var." entries will not be made for
those members but entries for each sub-member will be created (this is similar to how
such structure variables are expanded for I/O statements such as READ RECORD).

num.expr Member number to be queried (member numbers start at 1).
num.var Number of members to query plus one. If num.var exceeds the number of members

available, all of the remaining members will be described and num.var will be set to
the number returned.

The member information is returned in elements 1 thru N of struct.var1.[].
Information about the structure as a whole is returned in struct.var1.[0] and struct.var1.[0].format
will contain the number of members.

Examples
Call StructInfo(Info.[], StructVar., MbrNo, NumMbrs)

See also
CALL GETSTRUCT, FUNCTION GETSTRUCT$, CALL SETSTRUCT

CALL SWAPF

Synopsis
Control hot-key swapping.

Syntax
CALL SWAPF (num.expr {, str.expr})

Parameters
num.expr is the mode, which selects the function performed whenever the [Hot-Key] is pressed
during INPUT.
The optional str.expr is the program file path defining a program to SWAP to whenever the [Hot-
Key] is pressed and the mode is non-zero. This can be any BASIC program pathname.

Remarks
num.expr is any mode which, after evaluation, is truncated to an integer to select the function
performed whenever the [Hot-Key] is pressed during INPUT. Depending on the operating
system, pressing a [Hot-Key] may have no effect until an INPUT statement is reached.
mode Description
    0 Disable the [Hot-Key] operation.
    1 SWAP on [Hot-Key] with channels OPEN with normal common variables as contained

in COM statements. The parent program will not see any changes made to the COM



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 309 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

variables in the SWAP program.
    2 SWAP on [Hot-Key] with normal common variables as contained in COM statements.

The parent program will not see any changes made to the COM variables in the SWAP
program.

    3 SWAP on [Hot-Key] with channels OPEN and no common variables.
    4 SWAP on [Hot-Key] which passes COM only. Will pass global COM variables and

return any changed values to the parent program.   (Release 9.1)
    5 SWAP on [Hot-Key] which passes COM and open channels. Will pass global COM

variables and return any changed values to the parent program.   (Release 9.1)
An error is generated if a [Hot-Key] is pressed and the specified program name does not exist.

Examples
Call Swapf(0) ! Disable Hot-key for this program

Call Swapf(2,"AR.CUST") ! To Cust maint, no files

See also
WINDOW

CALL SYSRC

Synopsis
Return status of the last SYSTEM statement command.

Syntax
CALL SYSRC (num.var)

Parameters
num.var is a variable that receives the operating system dependent status of the last SYSTEM
statement command.

Remarks
The command status value can also be obtained directly in the SYSTEM statement by using the
optional status variable ('SYSTEM "command",status').

Examples
Call SysRC(status)

See also
SYSTEM

CALL TIME

Synopsis
Get date and time.

Syntax
CALL TIME(str.var)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 310 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
str.var is a variable into which the current date and time is returned.

Remarks
An error will occur if str.var is dimensioned to less than 22 characters.
The format of the returned string is "Mon dd, year HH:MM:SS".
This procedure is compatible with UniBasic CALL $TIME and CALL 99.

Examples
Call Time(T$)

See also
TIM#

CALL TRANSLATE

Synopsis
Translate characters to or from a byte string

Syntax0
CALL TRANSLATE(num.var1, str.var, num.var2, bin.expr, str.expr1)

Syntax1
CALL TRANSLATE(num.var1, bin.var, num.var2, str.expr2, str.expr1)

Parameters
num.var1 is a variable which receives the number of characters or bytes stored.
str.var is a variable that receives characters translated from bin.expr.
num.var2 is a variable which receives the number of source bytes or characters translated.
bin.expr is a binary expression that supplies bytes to be translated.
str.expr1 is a string expression that specifies the character set name (such as EBCDIC or UTF-8).
bin.var is a variable that receives bytes translated from str.expr2.
str.expr2 is a string expression that supplies characters to be translated.

Remarks
CALL TRANSLATE is used to convert between a string of bytes and a string of Unicode
characters. The number of bytes or characters to be translated is controlled by the size or double
subscripting of the source expression (bin.expr or str.expr2). Null characters in the source
expression will be translated as data. Translation will stop at the end of the source expression or at
the first byte or character that cannot be translated.

Examples
Call Translate(DestCnt,Dest$,NumXltd,Src?[1,40],"EBCDIC")

See also

FUNCTION TRIM$



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 311 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Delete leading and trailing spaces from a string value.

Syntax
TRIM$(str.expr)

Parameters
str.expr is the string expression to be trimmed.

Remarks
TRIM$ returns str.expr with all leading and trailing spaces removed.

Examples
X$ = Trim$(X$)

See also
LTRIM$, RTRIM$, CALL TRIMMEDLEN

CALL TRIMMEDLEN

Synopsis
Returns the length of a string with all trailing spaces or a specified character ignored.   (Release 7.1)

Syntax
CALL TRIMMEDLEN(num.var, str.expr1 {,num.expr} {,str.expr2})

Parameters
num.var receives the trimmed length of str.expr1.
str.expr1 is a string expression to be trimmed.
num.expr is an optional numeric expression containing the untrimmed length of str.expr1. If
num.expr is greater than the actual length of str.expr1, then num.expr will be ignored.
str.expr2 is an optional string expression specifying the character to be trimmed instead of a space.

Remarks
Call TrimmedLen() returns the length of str.expr1 with all trailing spaces or a specified character
(str.expr2) ignored. The trimmed length of str.expr1 is returned in num.var. If num.expr is specified
and it is less than the actual length of str.expr1, then num.expr is used as the untrimmed length of
str.expr1. If str.expr2 is specified and in not "", then the first character of str.expr2 is used as the
trimming character instead of a space.

Examples
Call TrimmedLen(Position, String$ ,StartLen ,Target$)

See also
CALL TRIM$, LTRIM$, RTRIM$

CALL TRXCO



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 312 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Synopsis
Control phantom port.

Syntax
CALL TRXCO (num.expr, str.expr, {, num.lit {, num.expr}})

Parameters
num.expr is the port, which is used to select the port number for this operation.
str.expr is the command, which selects a command to be sent to the specified port. The supplied
command is copied into the specified ports' type-ahead buffer to be processed the next time port is
awaiting input. The command may be any system command or prompt response for a running
program. Multiple commands, separated by \15\ may be included in the command string.
The optional num.lit is the status, an exception value returned to the caller providing completion
status of the desired operation.
The optional num.expr is the port execution priority, which, after evaluation is truncated to an
integer. The valid range is from a low of 1 to a high of 7. The exact effect, if any, of port priority is
operating system dependent.

Remarks
For UNIX users, in order to use CALL TRXCO or the PORT statement, the executable file
"scope" must be within one of the directories in your PATH. Otherwise, the environment variable
SCOPE must be set to the path of the "scope" executable, e.g.:

SCOPE=/usr/bin/scope

export SCOPE

The status returned to the caller providing completion status of the desired operation:
Status Description
    0 Successful operation; command transmitted.
    1 port is not a numeric expression.
    2 Specified port is out of range 0 to 1023.
    3 Specified port is not running Basic.
    4 Specified port is the user's own port.
    5 command is not a valid str.expr.
    6 unix fork() operation failed, or port is not ready for input.
    7 Specified port has input already in progress.
TRXCO begins by attempting to attach the port. If the port is already running Basic, the command
is copied into the ports' type-ahead buffer. A carriage return is appended to the string supplied.
If the port is not currently running a Basic process, a background process is created as the supplied
port number. It assumes the callers identity, environment and current working directory. It then
becomes a unique process linked to the supplied port number. This port is then available for CALL
TRXCO commands, PORT, SEND, RECV, and SIGNAL statements from any other Basic user as
well as the program performing the initial CALL TRXCO.
When sending commands to a port which is connected to a terminal and keyboard, you must ensure
that port is within Basic before sending commands. Otherwise, a phantom port is created for the
supplied port number. If a user later attempts entry into Basic on a terminal designated as the same
port, entry will be rejected.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 313 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Always pause at least 2 seconds between subsequent TRXCO calls to the same or different ports.
This permits the receiving port time to respond.

Examples
A$="Run hello" ! dL4 saved program hello

Call Trxco(10,A$,E,2) ! Low priority

If E Stop ! Error trying to start

See also
PORT

FUNCTION UBASC

Synopsis
Emulate the UniBasic ASC function.

Syntax
UBASC(str.expr)

Parameters
str.expr is an expression that specifies a single character to be converted to its UniBasic integer
value.

Remarks
This procedure is compatible with the UniBasic ASC(n) function and always returns values
between 0 and 255. ASCII characters are converted to integers between 128 and 255. UniBasic
compatible mnemonics are converted to integers between 0 and 127. All other character values are
truncated to 8-bits before conversion.

Examples
X = UBASC(S$)

See also
ASC, DECLARE

FUNCTION UBCHR$

Synopsis
Emulate the UniBasic CHR function.

Syntax
UBCHR$(num.expr)

Parameters
num.expr is an expression that specifies the character value.

Remarks
This procedure is compatible with the UniBasic CHR(n) function. Values between 128 and 255 are



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 314 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

converted to ASCII values. Values between 0 and 127 are converted to UniBasic compatible
mnemonics. All other values are converted to "\177777\".

Examples
X$ = UBChr$(193)

See also
CHR$, DECLARE

CALL UBCKSUM

Synopsis
Calculate unibasic checksum on a file.   (Release 7.1)

Syntax
CALL UBCKSUM ({num.expr1, } str.expr , num.expr2, num.expr3, var, num.var)

Parameters
num.expr1 is an optional expression selecting the type of checksum.
str.expr is the file path.
num.expr2 is the 16-bit word starting offset of the file area to checksum.
num.expr3 is the 16-bit word ending offset of the file area to checksum. Use -1 to checksum the
entire file.
var is a numeric or binary variable that receives the calculated checksum.
num.var is an optional variable that receives the operation status.

Remarks
The checksum algorithm is selected by num.expr1 as follows:

omitted UniBasic compatible 16-bit checksum (var must be numeric)
0 UniBasic compatible 16-bit checksum (var must be numeric)
1 32-bit CRC checksum (var must be numeric)
2 16 byte MD5 checksum (var must be binary)
3 UniBasic compatible 16-bit checksum (var must be numeric)

If num.var is specified, then the following operation status is returned in the variable:
0 Successful
1 str.expr is not a string
3 num.expr1 (start offset) is negative
5 num.expr2 (end offset) is negative
6 num.expr1 (start) is greater than num.expr2 (end)
7 File not found

If num.var is not specified and the final status would have been non-zero, an error 38 will occur.
This procedure is compatible with UniBasic CALL $CKSUM. This procedure differs from CALL
CKSUM in that mode 0 always produces a fully UniBasic compatible result.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 315 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Examples
Call UBCKSUM(Filename$,Start,End,Checksum,Status)

See also
CALL CKSUM, CRC32, MD5?

FUNCTION UBMEM

Synopsis
Emulate the UniBasic MEM function.

Syntax
UBMEM(num.expr)

Parameters
num.expr is an expression that specifies the memory location.

Remarks
This procedure is compatible with the UniBasic MEM(n) function and always returns zero.

Examples
X = UBMem(6)

See also
DECLARE

FUNCTION UBRND

Synopsis
Fully uniBasic compatible pseudo-random number function   (Release 9.3.2)

Syntax
UBRND({num.expr})

Parameters
num.expr is an optional numeric expression.

Remarks
The UBRND() function returns a pseudo-random number between 0 and num.expr or between 0
and 1 if num.expr isn't used. The returned value will always be less than maximum (num.expr or 1).
UBRND() should be used when a program needs the same pseudo-random sequence as used by the
uniBasic RND() function rather than the improved sequence used by the dL4 RND() function.

Examples
X = UBRND(scale)

See also
CALL UBRNDSEED, RANDOM, RND



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 316 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL UBRNDSEED

Synopsis
Seed random generator for UBRND function.   (Release 9.3.2)

Syntax
CALL UBRNDSEED (num.expr)

Parameters
num.expr is an expression containing the random number seed.

Remarks
The value of num.expr is truncated to a positive integer and used to seed the UBRND pseudo-
random number generator. A seed value of zero selects a random sequence based upon the current
system time.
Typically, a non-zero seed value is used during program debugging, causing the UBRND function
to yield the same sequence of numbers with each successive run.

Examples
Call UBRndSeed(seed)

See also
RANDOM, RND, UBRND

CALL UBSTRING

Synopsis
Perform miscellaneous string functions.

Syntax0
CALL UBSTRING (num.expr1, str.var )

Syntax1
CALL UBSTRING(num.expr1, str.expr, num.var )

Syntax2
CALL UBSTRING(num.expr1, num.expr2, str.var )

Parameters
num.expr1 specifies the function to be performed.
str.var is a variable on which to perform a function or into which to return the result.
num.expr2 is a value to be converted into characters.
num.var is a variable into which a converted character value is stored.

Remarks
For modes 3, 4, 6, and 7, ASCII characters are treated as having integer values between 128 and
255. UniBasic compatible mnemonic characters are treated as having integer values between 1 and
127. For modes 3 and 6, Unicode characters outside of the ASCII or UniBasic mnemonic subsets



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 317 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

will be truncated to 8-bit values. For modes 4 and 7, integer values outside of the ASCII and
UniBasic mnemonic subsets will be translated to "\177777\".

num.expr1 Syntax Function
      1     0 Convert characters in str.var to upper-case.
      2     0 Convert all characters in str.var to lower-case.
      3     1 Store value of the first character of str.expr into num.var.
      4     2 Store value of num.expr2 as a character into the first character of

str.var.
      5     0 Copy the command line into str.var.
      6     1 Store value of the first two characters of str.expr into num.var. The

value is formed by multiplying the value of the first character by 256
and adding the value of the second character.

      7     2 Store value of num.expr2 divided by 256 into the first character of
str.var and store the value of num.var modulo 256 into the second
character of str.var.

This procedure is compatible with UniBasic CALL $STRING.
Examples

Call UBString(1,A$)

See also
ASC, INT, LCASE$, UCASE$, CALL, CALL STRING, CONV

CALL UNPKDEC21

Synopsis
Unpack numeric data.

Syntax
CALL UNPKDEC21 (str.expr, str.var)

Parameters
str.expr is an expression which specifies the string to unpack.
str.var is a string variable that receives the unpacked data.

Remarks
CALL UNPKDEC21 unpacks each character in str.expr as a pair of 4 bit nibbles into two
characters in str.var. Each 4 bit nibble is translated to the equivalent Unicode digit minus one(thus
the nibble 0001 is stored as the Unicode character "0").
This procedure is compatible with UniBasic CALL 21.

Examples
Call PkDec21(PackedNumber$,Number$)

See also
CALL PKDEC20, CALL UNPKDEC46



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 318 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL UNPKDEC46

Synopsis
Unpack numeric data.

Syntax
CALL UNPKDEC46 (str.expr, str.var)

Parameters
str.expr is the source expression string.
str.var is the destination string variable.

Remarks
CALL UNPKDEC45 sequentially unpacks each character from str.expr into two characters in
str.var. Each character in str.expr is treated as a pair of nibbles which are translated into characters
as shown in the table below.
This procedure is compatible with UniBasic CALL 46.

Character Nibble Character Nibble

Space 0001 3 1001

, 0010 4 1010

- 0011 5 1011

. 0100 6 1100

/ 0101 7 1101

0 0110 8 1110

1 0111 9 1111

2 1000

Examples
Call PkDec46(packeddata$, data$)

See also
CALL PKDEC45, CALL UNPKDEC21

CALL UNPKRDX5019

Synopsis
Unpack characters from radix 50.

Syntax
CALL UNPKRDX5019 (str.expr, str.var {,num.expr})



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 319 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Parameters
str.expr is an expression which specifies the string to unpack.
str.var is a string variable that receives the unpacked string.
num.expr is an expression that controls space filling of the str.var.

Remarks
CALL PKRDX5019 unpacks character triplets from str.expr into str.var. Each character pair from
str.expr forms a 16 bit value by taking the upper 8 bits from the first character and the lower 8 bits
from the second character. The 16 bit value contains three radix 50 characters as the sum (Char1 *
40 + Char2) * 40 + Char3. The values of CharN are translated to Unicode as shown in the table
below. If num.expr is zero or omitted, str.var will be space filled. If num.expr is one, trailing spaces
will be removed.
This procedure is compatible with UniBasic CALL 19.

Character Radix 50 Character Radix 50 Character Radix 50 Character Radix 50

0 01 A 11 K 21 U 31

1 02 B 12 L 22 V 32

2 03 C 13 M 23 W 33

3 04 D 14 N 24 X 34

4 05 E 15 O 25 Y 35

5 06 F 16 P 26 Z 36

6 07 G 17 Q 27 , 37

7 08 H 18 R 28 - 38

8 09 I 19 S 29 . 39

9 10 J 20 T 30 Space 00

Examples
Call PkRdx5019(packed$,unpacked$)

See also
CALL PKRDX5018, CALL UNPKRDX5049

CALL UNPKRDX5049

Synopsis
Unpack characters from radix 50.

Syntax 1
CALL UNPKRDX5049(0, num.var1, str.expr, str.varN {,str.varN} ...)

Syntax 2



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 320 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL UNPKRDX5049 (1, num.expr, num.var2)
Parameters

num.var1 is a numeric variable that receives the CALL status.
str.expr is a string expression that provides the record image.
str.varN is a string variable that receives one of the comma delimited fields.
num.expr is a numeric expression that contains a channel number.
num.var2 is a numeric variable that receives the record length in 16-bit words.

Remarks
CALL UNPKRDX5049 has two distinct modes. Mode 0 unpacks comma separated character fields
from the record image str.expr into one or more string variables str.varN. The status returned in
num.var1 is zero if the CALL is successful and one if the number of fields is greater than the
number of str.varN variables (overflow). Mode 1 of the CALL returns the record length in 16-bit
words of the file open on the channel number num.expr.
This procedure is compatible with UniBasic CALL 115.

Character Radix 50 Character Radix 50 Character Radix 50 Character Radix 50

, 01 7 11 H 21 R 31

- 02 8 12 I 22 S 32

. 03 9 13 J 23 T 33

0 04 A 14 K 24 U 34

1 05 B 15 L 25 V 35

2 06 C 16 M 26 W 36

3 07 D 17 N 27 X 37

4 08 E 18 O 28 Y 38

5 09 F 19 P 29 Z 39

6 10 G 20 Q 30 Space 00

Examples
Call UNPKRDX5049(0,Status,Record$,Field0$,Field1$,Field2$,Field3$)

See also
CALL PKRDX5048, CALL UNPKRDX5019

CALL UNPKRECORD

Synopsis
Unpack comma delimited string data to individual strings or return the record length of a file.

Syntax1



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 321 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL UNPKRECORD (0, num.expr, str.var1, str.var2 {,strvar3})   (Release 7.1)
Syntax2

CALL UNPKRECORD (1,num.var1, num.var2)
Parameters

num.expr is a numeric expression, which contains the result status.
str.var1 is an string variable, which contains the comma delimited record to be separated into
individual strings.
str.var2, str.var3 and etc. are string variables, that contain individual strings from the comma
delimited str.var1.
num.var1 is a numeric variable, which contains the channel number of a file.
num.var2 is a numeric variable, which has the record length of the file.

Remarks
CALL UPPKRECORD has two distinctive modes. In mode 0, is unpacks comma separated
character fields from a record (str.var1) into one or more string variables (str.var2, 'str.var3). In
mode 1, it returns the record length (num.var2) in 16-bit words of the file opened on the specified
channel (num.var1).
This procedure is compatible with UniBasic CALL 115.

Examples
Call UnpkRecord(0,Status,Record$,Field0$ {,Field1$})

Call UnpkRecord(1,Channel, RecSizeinWords)

See also

CALL VERIFYDATE

Synopsis
Verify date and convert to standard format.

Syntax
CALL VERIFYDATE (str.expr {,str.var {,num.var {,num.expr}}})

Parameters
str.expr is an expression which specifies the string to verify and convert.
str.var is an optional variable which receives the converted date string.
num.var is an optional variable that receives the status of the conversion (0 for success, 1 for illegal
date).
num.expr is an optional expression that specifies the output format.

Remarks
The input format of str.expr must be one of the following where MONTH is a month name or three
letter abbreviation:

MONTH DD, YYYY



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 322 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

DD MONTH YYYY
MM/DD/YY
MM/DD/YYYY

If num.expr is not specified or, when truncated to an integer, is zero, then the output format is
"YYMMDD". If the value is non-zero, then the format is "YYYYMMDD".
If str.var is not specified, then str.expr must be a string variable into which the converted date is
stored.
If num.var is not specified, then an illegal date will cause an error 38 to occur.
Any non-numeric character will be accepted as the date separator ("/").
If OPTION DATE FORMAT NATIVE is used, the input date will use day-month-year ordering if
specified by the current locale.
This procedure is compatible with UniBasic CALL 24.

Examples
Call VerifyDate(D$)

See also
CALL DATETOJULIAN

CALL VOLLINK

Synopsis
Create polyfile.

Syntax
CALL VOLLINK (num.expr1, num.expr2, num.expr3, num.var, array.var)

Parameters
num.expr1 specifies the channel number open to the file or polyfile.
num.expr2 is ignored.
num.expr3 is the polyfile volume number.
num.var receives the operation status.
array.var is a numeric array which receives volume information (see below).

Remarks
If the volume number num.expr3 is zero and the channel number num.expr1 is non-negative, then
the indexed-contiguous file open on the channel will be marked as a polyfile. If the channel
num.expr1 is less than zero, the first element of the array array.var will be zeroed. If num.expr1 is
not an open channel number, the status num.var will be set to 1. If the volume number num.expr3 is
not zero when marking a polyfile, the status num.var will be set to 16. This procedure is compatible
with UniBasic CALL 91 and CALL $VOLLINK.

Examples
Call VOLLINK(5,0,0,S,P[])

See also



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 323 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

CALL WHOLOCK

Synopsis
Determine which port or process has locked a record.

Syntax
CALL WHOLOCK (num.expr1, num.expr2, num.var1 {,num.var2})

Parameters
numr.expr1 is a numeric expression which specifies a channel open to a file.
num.expr2 is a numeric expression which specifies a record number in the file open on channel
num.expr1.
num.var1 is a variable that receives the port number that currently has the specified record locked or
-1 if the record is not locked by a dL4 process.
num.var2 is an optional variable that receives the operating system defined process id number of the
process that has the specified record locked or -1 if the record is not locked by another process.

Remarks
CALL WHOLOCK is supported only for Formatted, Contiguous, and Indexed-Contiguous files.
CALL WHOLOCK is not supported on Windows due to operating system limitations and will
always return -1 as in num.var1 and num.var2.
This procedure is compatible with UniBasic CALL $WHOLOCK.

Examples
Call WhoLock(ChanNo,RecNbr,PortNo)

See also
PORT

CALL WRITEBUF

Synopsis
Writes a virtual record for use with CALL READBUF.   (Release 9.1)

Syntax
CALL WRITEBUF (num.expr {,var ...})

Parameters
num.expr is an numeric expression that supplies the byte offset at which to read the virtual record.
var is a string or numeric variable that supplies the data to be written to the virtual record.

Remarks
If the byte offset is odd, it will be rounded up to an even byte boundary when writing to a numeric
variable.

Examples
Call WriteBuf(Offset, Variable)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 324 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

See also
CALL INITBUF, CALL READBUF

CHAPTER 9 - FILE SPECIFICATION
FILE.SPEC DEFINITION

A file.spec is an expression used in a dL4 BASIC program to either open or build a file. The expression consists of a list
of items. The standard list of items consists of a Filename Item, an Option Item, a Protection Item, a Number of
Records Item, and finally a Record Length Item. These items can be specified either as a single string expression or as a
list of items. The single string expression and the list of items are referred to as a file.spec.str and a file.spec.items,
respectively in this manual.

The file.spec.str is internally parsed into the standard list of items. Thus, a non-standard list of items cannot be specified
in a file.spec.str. Unlike a file.spec.str, a file.spec.items can use both the standard and a non-standard list of items. Thus,
a file.spec.items must be used when opening a driver that requires a non-standard list of items.

This chapter includes a detailed discussion with examples for both a file.spec.str and a file.spec.items. In addition, it
provides a detailed description of each individual items and concludes with a small running program.

file.spec.str

A file.spec expressed as a single string expression is referred to as a file.spec.str. A generic and a specific example of a
file.spec.str respectively would be:
"(option item) <protection item> $cost item [number of records item : record length item] filename item!"
"(charset=ebcdic) <62> $99.99 [100:10] myfile!"
The following rules apply to a file.spec.str:
• Except for the filename item which is required and must be the last item, the remaining individual items are

discretionary and can be expressed in any order, but they must be grouped together as a single string
expression.

• The exclamation point (!) in the filename item is used only with the BUILD statement to replace an existing
file.

• The option item, the protection item, and the cost item must be surrounded by parentheses (()), angle brackets
(<>), and must begin with a leading dollar sign ($), respectively.

• The dollar sign ($) is the only allowable currency designator in the cost item.
• The number of records and the length of each record are specified as a single item, enclosed by square brackets

([]), and are separated by a colon (":").
An example of a file.spec.str using the BUILD statement is as follows:

BUILD #9, "(charset=ebcdic) <62> $99.99 [100:10] myfile!"

The BUILD statement above builds a new Contiguous file, called myfile, by replacing myfile if it already exists. An
explanation of each individual item in this example follows:
• Option Item - selects an EBCDIC character set instead of the default character set.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 325 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

• Protection Item - set to 62, prohibiting reading and writing by other groups, and prohibiting writing by the same
group.

• Cost Item - 99.99 is selected.
• Number of Records Item - create 100 initial records.
• Record Length Item - create a file with a record length of 10 words each.
• Filename Item - the name of the file is myfile, which is created in the user's current directory. The exclamation

point replaces myfile if it already exists.

file.spec.items

A file.spec, which begins in a "{" and ends in a "} and is expressed as a list of items, is referred to as a file.spec.items. A
generic and a specific example of a file.spec.items respectively would be:

{"filename item!", "option item", "protection item", cost item, number of records item, record length item}

{"myfile!", "charset=ebcdic", "62", 99.99, 100,10}

Although the typical usage is file.spec.str, the actual interpretation of each item in the list of items is driver-class
dependent. A file.spec.items must be used if the driver-class interprets the list of items differently.

Unlike a file.spec.str, each individual item in a file.spec.items must be defined separately. Each item has a data type
associated with it, and the appropriate data type must be used for each particular item. In addition, the As "driver-class"
must be used with the BUILD statement.

The data types of each individual items in a file.spec.items are as follows:

ITEM DATA TYPE COMMENTS
Filename Item String A required item with an optional exclamation point (!) to

replace and build an existing file. "" is allowed, but will
generate an error since "" is not a valid filename.

Option Item String "" is allowed, meaning no option specified. Surrounding
parentheses () are not allowed.

Protection Item String "" is allowed, meaning no protection specified. Surrounding
angle brackets (<>) are not allowed.

Cost Item Numeric Must specify a legal value. A zero is allowed.
Number of Records Item Numeric Specified as a single numeric item.
Record Size Item Numeric Specified as a single numeric item.

The following rules apply to a file.spec.items:
• A standard list of items must be in the following order: Filename Item, Option Item, Protection Item, Cost Item,

Number of Records Item, Record Length Item.
• Surrounding parentheses (()) are not allowed in a Option Item.
• Surrounding angle brackets (<>) are not allowed in a Protection Item.
• The interpretation of each item is driver-class-specific. Therefore, the way each item is interpreted depends upon

which specific driver-class is in use.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 326 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

• The list of items must always appear in order.
• Any discretionary item after the last specified item may be omitted while attempting to open a file. Thus, a file

may be opened without write access as follows:
OPEN #9,{""myfile"", "", "w"}

• The driver-class/name must be specified with an AS clause if the list is used in a BUILD statement.
An example of a file.spec.items using the BUILD statement is as follows:

BUILD #9,{"myfile!", "charset=ebcdic", "62", 99.99, 100,10} As "Contiguous"

In addition to grouping the list of items within braces, "{}", the list of items can also be specified in a structure
variable. Thus, the previous example can also be written as:

BUILD #0, struct.var As "Contiguous"

The BUILD statements above build a Contiguous file, called myfile, and replace myfile, if it already exists. An
explanation of each individual item for the above example follows:
• Filename Item - the name of the file is myfile, which is created in the user's current directory. The exclamation

point (!) replaces the file that may already exist.
• Option Item - selects an EBCDIC character set instead of the default character set.
• Protection Item - set to 62, prohibiting reading and writing by other groups, and prohibiting writing by the same

group.
• Cost Item - 99.99 is selected.
• Number of Records Item - create 100 initial records.
• Record Length Item - create a file with a record length of 10 words each.
• Each item in the list of items must be specified, even if it is not used, while building a file.

THE STANDARD LIST OF ITEMS
The standard list of items in a file specification, or file.spec, is described in the following paragraphs.

Filename Item

A filename is a string literal or expression containing a filename which is optionally preceded by a relative or absolute
directory pathname. A filename must always be specified in a file.spec. A filename that contains embedded spaces must
be enclosed in quotation marks.

The final optional exclamation point (!) allows creation of a new file, even if a file already exists. This creation is
performed by first deleting the old file, if it already exists, then creating the new file. The exclamation point is used only
with the BUILD statement.

If the final optional exclamation point (!) is omitted, an error will occur while attempting to build an existing file.

Option Item

An Option Item changes driver-class dependent behavior of the driver-class. The general syntax for an Option Item is:
option-name=value {, option-name=value}...

For example, to create a file with the EBCDIC character set, the option item in the BUILD statement is set to
charset=ebcdic. In the absence of the Option Item, the driver-class would have built the file with its own default
character set.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 327 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

The syntax optionally allows for additional comma separated options.

Protection Item

A Protection Item allows for the manipulation of file permissions. It can be specified to change the default read
and write protection during the building or opening of a file. The methods for specifying protection during
BUILD and OPEN are described in the following paragraphs.

File protection is ultimately Operating System dependent, therefore the Protection Item specified is translated to
be compatible with the Operating System format.

Specifying Protection During BUILD

There are three (3) methods to specify a protection string while building a file. These methods are described in
the following paragraphs.

Protection by Attribute Letters

The first method is to specify attribute letters. The meaning of each letter is listed below:

A Allow reading by any member of the group.

B Allow writing by any member of the group.

D Prohibit deletion of the file. (operating system specific.)

P Allow reading and writing by all.

R Prohibit reading by anyone except the file owner.

W Prohibit writing by anyone except the file owner.

The attributes are created by combining the above letters, where each letter is used only once. In other words,
"RR" is an illegal protection value.

For example, "AW" allows reading by any member of a group, and prohibits writing by anyone except the file
owner.

Protection by Two-Digit Number

The second method to specify protection is to use a two-digit number. The meaning of each digit is described
below:

40 Prohibit reading by other groups.
20 Prohibit writing by other groups.
10 Prohibit copying by other groups. (operating system specific.)
04 Prohibit reading by the same group.
02 Prohibit writing by the same group.
01 Prohibit copying by the same group. (operating system specific.)

The two-digit attributes are calculated by summing the desired digits, where each digit is added only once in a
valid operation. In other words, 48 (40 + 4 + 4) is an illegal protection value, because 4 is added twice. Thus, 77



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 328 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

is the highest available legal value.

For example, if the desired attributes are "Prohibit reading by other groups" and "Prohibit writing by the same
group", then these attributes can be summed as 40 plus 02 to equal a sum of 42.

Protection by Three-Digit Number

The third method to specify protection is to use a three-digit number. The meaning of each digit is described
below:

400 Owner can read the file.
200 Owner can write to the file.
100 Owner can execute the file.
40 Group can read the file.
20 Group can write to the file.
10 Group can execute the file.
04 Others can read the file.
02 Others can write to the file.
01 Others can execute the file.

The meaning of the execute permission is operating system specific.

The three-digit attributes are calculated by summing the desired digits, where each digit is added only once in a
valid operation. In other words, 448 (400 + 40 + 4 + 4) is an illegal protection value, because 4 is added twice.
Thus, 777 is the highest available legal value.

Examples are shown below:

PROTECTION MEANING
777 owner, group, and public can read, write, and execute file
744 owner can read, write, and execute; group and public can read file
644 owner can read and write; group and public can read file
711 owner can read, write, and execute; group and public can execute file

Specifying Protection During OPEN

When a file is opened, protection is specified by selecting a combination of the letters listed below.

R Open a file without read permission
W Open a file without write permission
E Open a file in exclusive mode (driver-class dependent)
L Open a file and disable record locking (driver-class dependent)

Up to four unique letters can be selected.

For example, "RW" protection value prohibits reading from and writing to the file. A "RWW" protection value is
an illegal combination, because the letter W is selected twice.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 329 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Cost Item

A Cost Item is a floating point monetary unit whose meaning is driver-class dependent.

Number of Records Item

A Number of Records Item provides a method to specify the number of records.

Record Length Item

A Record Length Item provides a method to specify the record size.

Example of file.spec

The program below demonstrates the use of a file.spec.str to build and open a Contiguous file.
10 DIM S$[20], B?[20]

20 BUILD #9, "(charset=ebcdic) <62> $99.99 [100:10] myfile!"

30 WRITE #9,0; "My File"

40 CLOSE #9

50 OPEN #9, "<W> myfile" \ REM Open without Write permission

60 READ #9, 0; S$

70 READ #9,0;B?

80 PRINT S$, HEX$ (B?) \ REM Verify that data was written/read correctly

90 CLOSE

APPENDIX A - GLOSSARY

This glossary defines terms in the context of dL4. For the concepts behind many of these terms, refer to
Introduction to dL4:
absolute pathname the full pathname, starting at the root.
BASIC object code SEE object code.
block one or more statements treated as though they were a single statement.
channel a communication method between an application and a dL4 driver for requesting

specific file operations.
character a letter, number, or other special data representation.
character code a numeric value that represents a particular character in a set, such as the ASCII

character set.
character data type a representation of a letter, number, or other special data representation.
character set a mapping of characters to their identifying numeric values.
context SEE runtime context.
driver a dL4 driver acts as a translator converting a generic file operation request from an

application program into a specific command that carries out the requested
operation.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 330 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

executable a program that is ready for execution.
file a collection of records.
index a mechanism of locating data.
infinite loop the never-ending repetition of a block of dL4 statements.
interface SEE port.
ISAM files ISAM (Indexed Sequential Access Method) is a storage and retrieval system that

allows efficient access to data records using key values.
key values identifying values used in a file to describe and locate a desired record.
keyword a reserved word used as part of dL4 syntax.
loop the repeated circular execution of one or more statements.
member each individual data type in a structure data type. See structure data type.
nested loop a loop within a loop.
object code a translation, not readable to the user, of a program source code that can be

directly executed by the computer.
operand a piece of data upon which an operation is performed.
phantom port a port that does not have access to its display device. Typically it runs in

background.
portable capable of being ported to different systems.
position parameter A position parameter is used by some BASIC/Debugger commands to specify a

line in a dL4 program. Refer to dL4 Command Reference Guide, Appendix C for
description of position parameter.

program a set of executable instructions.
relative pathname a partial pathname relative to your current working directory.
record a set of related fields.
reserved word in dL4, a word that has a fixed function and cannot be used for any other purpose.

Same as keyword.
root the root directory, which is the main directory that contains everything on the disk.
run time related to the events that occur while a program is being executed.
runtime context a machine state when a dL4 program is executed.
SCCS Source Code Control System (SCCS) is a Unix utility that allows source code

level revision control for a project.
source code a user-readable text file containing dL4 BASIC language statements.
step into trace inside a function.
step through execute a function but do not trace inside a function. Trace resumes outside the

function.
string a sequence of alphanumeric characters. dL4 converts all strings to Unicode

characters.
structure data type a data type that organizes different data types so that they can be referenced as a

single unit. Typically, used to define a record in a data file.
subscript a number inside brackets that differentiates one element of an array from another.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 331 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

Unicode a 16-bit character set capable of encoding all known characters and used as a
worldwide character-encoding standard.

APPENDIX B - DL4 RESERVED WORDS
The following list shows dL4 reserved words, also called keywords. You cannot use any of these words as a
variable, label, or procedure name. Each of the reserved words has a fixed function and cannot be used for any
other purpose.

ABS ACCESS ADD ALL ALTERNATE
AND ANGLE ARITHMETIC AS ASC
ASCENDING ATN AUTO BSTR$ BVAL
BASE BINARY BOX BUFFER BUILD
BY BYTES CALL CASE CHDIR
CHAIN CHANNEL CHF CHF# CHF$
CHR CHR$ CHR? CLEAR CLOSE
COLLATE COM COMMA CON CONV
COS DAT# DATA DATE DECIMAL
DECIMALS DECLARE DEF DEFINE DEGREES
DELETE DESCENDING DET DIM DIRECTORIES
DISPLAY DO DUPLICATE DUPLICATES EDIT
ELSE END ENTER EOFCLR EOFSET
EOPEN ERASE ERM$ ERR ERRCLR
ERROR ERRSET ERRSTM ESCCLR ESCDIS
ESCSET ESCSTM EXCEPT EXIT EXP
EXTERNAL FAILURE FILE FOR FORMAT
FRA FREE FUNCTION GET GMT#
GMT$ GOSUB GOTO HEX$ HEX?
IDN IF IGNORED INDEX INPUT
INT INTCLR INTRINSIC INTSET INV
IS ITEM IXR JUMP KEY
KILL LBOUND LCASE$ LTRIM$ LEN
LET LIB LIKE LINE LINES
LOG LOOP MAN MAP MAT
MEMBER MOD MODIFY MONTH MONTH$
MONTHDAY MOVE MSC MSC$ NATIVE
NESTING NEXT NOT NUMERIC OFF
ON OPEN OPTION OR PCHR$
PAUSE PERIOD PORT POS PRINT
RTRIM$ RADIANS RANDOM RAW RDLOCK
READ RECORD RECV REM REP$
RESTOR RETRY RETURN RETURNED REWIND
RND ROPEN ROUND SEARCH SELECT



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 332 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

SEND SET SETFP SGN SIGNAL
SIN SIZE SPACING SPAWN SPC
SQR STANDARD STATEMENTS STEP STOP
STR$ STRING STRINGS STRUCT SUB
SUBSCRIPTS SUSPEND SWAP SYSTEM TAB
TAN THEN TIM TIM# TIMEOUT
TIMEZONE TO TRACE TRN TRUNCATE
TRY UBOUND UCASE$ UNIQUE UNIT
UNLOCK UNTIL UPPERCASE USING VAL
WEEKDAY WEEKDAY$ WEND WHILE WINDOW
WOPEN WORDS WRITE WRLOCK YEAR
YEARDAY ZER

APPENDIX C - BASIC ERROR CODES
The BASIC error messages, preceded by their numbers, are listed below. All errors have in common the fact that
they are recognized from a statement.

0 No such error
1 Syntax error.
2 Illegal string operation.
3 Storage overflow.
4 Format error.
5 Character is illegal or not supported by driver.
6 No such line.
7 Line too long.
8 Too many variable names.
9 Unrecognizable word.
10 GO is illegal before an initial run.
11 Incorrect parentheses closure.
12 Program is list/copy protected.
13 Number out of range.
14 Out of data.
15 Arithmetic or date overflow.
16 GOSUBS nested too deep.
17 RETURN without GOSUB.
18 FOR-NEXT loops nested too deep.
19 FOR without matching NEXT.
20 NEXT without matching FOR.
21 Expression too complex.
22 Illegal numeric or date precision.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 333 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

23 No such error.
24 Too many dimensions.
25 Variable not dimensioned.
26 Directory not found.
27 Too many procedure parameters.
28 Parameter out of range.
29 Illegal function usage.
30 Procedure not declared or defined.
31 Procedures nested too deep.
32 Matrices have different dimensions.
33 Argument is not a matrix.
34 Dimensions are not compatible.
35 Matrix is not 'square'.
36 Intrinsic procedure not found.
37 No such error.
38 Error detected by CALLed subroutine.
39 Formatted output exceeded buffer size.
40 Channel in use.
41 Illegal filename.
42 File not found.
43 Syntax error in file specification.
44 Incompatible file type (can't open or replace).
45 File is read-protected.
46 File is write-protected.
47 Disk or directory is full.
48 Accounts disk block allotment is insufficient
49 Channel not open.
50 File is copy-protected.
51 Illegal record number.
52 Record not written.
53 Illegal item number.
54 Item types don't match.
55 Statement is illegal from keyboard.
56 No current program.
57 Variable already dimensioned.
58 Error in format string.
59 Variable is in-use.
60 Too many numbers entered for INPUT.
61 Illegal data type.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 334 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

62 Signal buffer is full or no such port.
63 Illegal number/types of args for specified dri....
64 Illegal line number.
65 Filename in use for different type file.
66 Filename in use, being built or replaced.
67 Filename in use and no exclamation point ('!').
68 Filename in use by a different account.
69 File is a processor or driver.
70 Data read error.
71 No such driver.
72 Device not accessible.
73 Device not on line.
74 Device requires manual intervention.
75 Line exceeds buffer size.
76 File or device is open elsewhere.
77 Directory access denied.
78 File is being built, replaced, or deleted.
79 Illegal driver operation.
80 Disk does not have enough contiguous blocks.
81 Device profile not set up properly.
82 Too many channels in use.
83 Component file deleted or inaccessible.
84 Internal error in driver.
85 Array dimension(s) too large.
86 Illegal subscript value.
87 Illegal subroutine name (length or illegal characters).
88 Illegal usage of multi-statement line.
89 Program not authorized to use privileged function.
90 Driver resource exhausted.
91 Variable in CHAIN READ not passed by CHAIN WRITE.
92 Variable from CHAIN WRITE not in this program.
93 Variable in CHAIN READ already contains data.
94 Variable in CHAIN WRITE contains no data.
95 Input timed out.
96 Aborted by ALTESCAPE or MESSAGE event.
97 Unexpected error status returned by system call.
98 Illegal value entered for input.
99 ESCAPE trapped by error branch.
100 Operation interrupted by abortive channel event.
101 No such error.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 335 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

102 No such error.
103 No such error.
104 No such error.
105 No such error.
106 No such error.
107 No such error.
108 No such error.
109 No such error.
110 No such error.
111 No such error.
112 No such error.
113 No such error.
114 No such error.
115 No such error.
116 No such error.
117 No such error.
118 No such error.
119 No such error.
120 No such error.
121 No such error.
122 No such error.
123 Record is locked.
124 Record is not locked.
125 No such error.
126 No such error.
127 No such error.
128 No such error.
129 No such error.
130 No such error.
131 No such error.
132 No such error.
133 No Dynamic Window open.
134 Dynamic Windows not enabled.
135 Variable is not a structure.
136 Structure definition not found.
137 Structure variable has no declared type.
138 Structure variable already declared.
139 No such structure member.
140 Procedure not found.
141 Procedure is not a function.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 336 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

142 Procedure is not a subprogram.
143 Procedure parameter multiply declared.
144 Statement is illegal in a procedure.
145 Illegal procedure nesting.
146 Inconsistent procedure declaration or definitio....
147 Illegal variable name declared as procedure.
148 Illegal procedure name declared as variable.
149 Type of return value does not match function ty....
150 Procedure calls are illegal from keyboard.
151 Message too large.
152 Port is already in-use.
153 Illegal port number.
154 No ports available.
155 No messages waiting.
156 Port is not in-use.
157 Duplicate line label.
158 Duplicate line number.
159 Illegal line reference.
160 Not an indexed file.
161 Invalid or non-existent index specified.
162 Key size larger than destination string.
163 BASIC program has not been successfully compiled.
164 Unable to load program - invalid file version.
165 Unable to load program - file can be corrupted.
166 COM statement out of order.
167 COM or CHAIN READ variable type mismatch.
168 TRY blocks nested too deep.
169 TRY without ELSE.
170 TRY without END TRY.
171 RETRY without TRY.
172 END TRY without TRY.
173 Statement is illegal in TRY.
174 DEF STRUCT without END DEF.
175 MEMBER without DEF STRUCT.
176 Statement is illegal in DEF STRUCT.
177 Duplicate member definition.
178 No members defined.
179 END DEF without DEF STRUCT.
180 DO without LOOP.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 337 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

181 UNTIL/WHILE at both ends of DO/LOOP.
182 EXIT DO without DO.
183 LOOP without DO.
184 Duplicate OPTION setting.
185 Illegal OPTION setting.
186 SELECT CASE without END SELECT.
187 CASE without SELECT CASE.
188 Lines between SELECT CASE and first CASE.
189 Missing CASE.
190 END SELECT without SELECT CASE.
191 SUB without END SUB.
192 EXIT SUB not inside a subprogram.
193 END SUB without SUB.
194 FUNCTION without END FUNCTION.
195 EXIT FUNCTION not inside a function.
196 END FUNCTION without FUNCTION.
197 WHILE without WEND.
198 WEND without WHILE.
199 Statement is illegal in IF.
200 No such error.
201 IFs without END IF.
202 ELSE without IF or TRY.
203 END IF without IF.
204 Can't insert line; program must be renumbered.
205 Line numbers are illegal or overlap lines.
206 Subprogram file not found.
207 No such error.
208 Number/types of arguments do not match param list.
209 ENTER is illegal if not in a subprogram.
210 No such error.
211 Program filename must be specified (no current ....
212 Subprogram file is read protected.
213 Subprogram file is not a BASIC program.
214 No such error.
215 No such error.
216 Param variable in ENTER statement has already b....
217 The ENTER statement can only be executed once i....
218 Cannot execute command, all channels are in use.
219 Program was not interrupted by a SUSPEND statem....
220 Program change would invalidate running program.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 338 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

221 Statement, function, or feature not implemented.
222 No such character set.
223 Duplicate character set name.
224 Directory not empty.
225 Directory has too many links.
226 Error executing device macro.
227 Illegal or missing field name.
228 Illegal DECIMALS setting.
229 DECIMALS option must be specified for this file....
230 No field of that name exists.
231 Duplicate of existing field name.
232 Field already mapped.
233 Field is too long for this file type.
234 Duplicate of existing index name.
235 Key option not supported by this file type.
236 Duplicate key in unique index.
237 File must be empty to define record or index.
238 Error in source file.
239 Error in source line.
240 Unable to link program.
241 Duplicate procedure name.
242 Unsatisfied reference to procedure.
243 Error in link file.
244 Intrinsic procedure not declared as intrinsic.
245 Duplicate of intrinsic procedure name.
246 Intrinsic procedure table contains duplicate symbols.
247 Long CHAIN attempted.
248 Procedure not active.
249 No such variable.
250 Resource in use.
251 Program in use.
252 Breakpoint not in current program.
253 No such breakpoint.
254 Open mode not supported by this driver.
255 Licensing failure.
256 File position limit exceeded.
257 System file position limit exceeded.
258 Illegal record length.
259 Illegal sequence of operations.
260 Error in index.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 339 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

261 Error on channel.
262 Invalid access name or password.
263 Unexpected value returned by system call.
264 Record data is out of date (modified by other user).
265 Not licensed to load or create this program.
266 Procedure declared as both intrinsic and nonintrinsic.
267 Operation would corrupt file
268 Default option changed after options used
269 Duplicate structure definition
270 Include file not found
271 Include files nested too deep
272 Procedure not defined in conversion profile
273 Not licensed to use this feature
274 SQL syntax error
275 Additional system error information
276 Field definition overlaps an existing field
277 Index field definition does not match record field definition
278 Index definition does not match actual index
279 SQL implementation or configuration limit exceeded
280 SQL procedure error
281 SQL constraint not satisfied
282 Deadlock detected   (Release 7.1)
283 File is encrypted   (Release 7.1)
284 Unrecognized encryption key   (Release 7.1)
285 Unsupported encryption method   (Release 7.1)
286 Inaccessible or corrupt key file   (Release 7.1)
287 Error in breakpoint expression   (Release 7.1)
288 Unable to load system library  (Release 7.1)
289 Error initializing global COM variables   (Release 7.1)
290 Too many structure members   (Release 7.1)
291 File is corrupted   (Release 7.1)
292 SWAP failed due to incompatible revisions   (Release 7.1)
293 Error copying SWAP program parameters   (Release 7.1)
294 Program must be saved as run-only   (Release 7.1)
295 Program must be saved as protected   (Release 7.1)
296 A dL4 specific error occurred in a SWAPped program   (Release 7.1)
32768 Impossible state detected, interpreter abort.

APPENDIX D - DL4 STATEMENTS (QUICK



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 340 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

REFERENCE)
ADD Define structure of file, or expand file.
ADD INDEX Add an index to a file.
ADD RECORD Add new record to file.
BOX Draw rectangular figure on display device.
BUILD Create and open a file.
CALL BASIC Program Call a BASIC program.
CALL Procedure Call a procedure.
CASE Control complex conditional and branching operations.
CHAIN Transfer control to another program.
CHAIN READ Read variables from a previous program.
CHAIN READ IF Read variables from a previous program.
CHAIN WRITE Write variables to the next program.
CHAIN WRITE IF Write variables to the next program.
CHANNEL Perform a driver-specific command.
CHDIR Change default directory to the path specification.
CLEAR Clear an open channel or initialize variables.
CLOSE Close {all} open channel{s}.
COM Specify common variables.
CONV Convert binary data to decimal, or convert decimal data to binary.
DATA Define internal program data.
DECLARE Declare a procedure which precedes the actual definition.
DEF FN Define user function.
DEFINE RECORD Define a record in a file.
DEF STRUCT Define a structure.
DELETE INDEX Delete an index in a file.
DELETE RECORD Delete current record from a file.
DIM Allocate space for variables.
DO Establish program loops.
DO UNTIL Perform a loop as long as the expression is false.
DO WHILE Perform a loop as long as the expression is true.
DUPLICATE Duplicate a file.
EDIT Format numeric and string expressions.
ELSE Control conditional branching.
END Terminate a running program.
END DEF Define the end of a structure definition.
END FUNCTION End a FUNCTION definition.
END IF End conditional branch.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 341 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

END SELECT End complex conditional branch.
END SUB End a procedure or function.
END TRY End redirection of error branching.
ENTER Accept arguments into a procedure.
EOFCLR Clear end-of-file branching.
EOFSET Enable end-of-file error setting.
EOPEN Exclusively OPEN a data file.
ERASE Perform driver-class dependent function(s).
ERRCLR Clear error branching.
ERROR Create a dL4 BASIC error to the current running program.
ERRSET Enable branch to statement on error.
ERRSTM Specify statements to execute on an error.
ESCCLR Clear any ESCape branching in effect.
ESCSET Enable branch to statement on ESCape.
ESCDIS Disable Escape key.
ESCSTM Specify statements to execute on Escape.
EXIT DO Exit a DO loop.
EXIT FOR Exit a FOR/NEXT loop.
EXIT FUNCTION Exit a named function.
EXIT SUB Exit a named subroutine.
EXTERNAL FUNCTION Define an independent function.
EXTERNAL LIB Declare named library file.
EXTERNAL SUB Define an independent subroutine.
FOR Repeat a group of statements.
FREE Deallocate (undimension) variables.
FUNCTION Define a multi-procedure which returns a value.
GET Obtain class-driver dependent parameters from a channel opened to a file.
GOSUB Unconditional branch to internal group of statements, saving return point.
GOTO Unconditional branch to statement.
IF Control conditional branching.
IR ERR 0 Specify a line of statements to execute on the occurrence of an error.
IF ERR 1 Specify an error branch.
INPUT Retrieve keyboard or channel input.
INTCLR Clear program interrupt branch.
INTSET Define a branch for program interrupts.
JUMP Transfer control immediately to another location.
KILL Delete a data or program file.
LET Assign values to variables.
LIB Specify a directory name for callable subprograms.
LINE (A function of drivers)



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 342 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

LOOP Mark the end of a group of statements enclosed in a DO loop.
MAP Define the logical index or directory number used within the application.
MAP RECORD Define an alternate item number mapping at run-time.
MAT= Copy an entire matrix.
MAT+ Add elements from two matrices.
MAT* Multiply elements of two matrices.
MAT CON Establish a constant matrix.
MAT IDN Establish an identity matrix.
MAT INPUT Assign keyboard/file input to a matrix.
MAT INV Invert a matrix.
MAT PRINT Print contents of an array or matrix.
MAT RDLOCK Read an array, matrix, or string with locking.
MAT READ Read an array, matrix, or string from DATA or a channel.
MAT TRN Transpose a matrix.
MAT WRITE Write array, matrix, or string to a channel.
MAT WRLOCK Write an array, matrix, or string with locking.
MAT ZER Zero an entire matrix.
MEMBER Define a member associated with a specific structure.
MODIFY Change filename or attributes/permissions.
MOVE Move a window.
NEXT Continuation of FOR loop statement.
ON Conditional branch on value of expression.
OPEN Open {a file for Read and Write access}{a Driver ...}
OPTION Specify a runtime option for the current program unit.
OPTION DEFAULT Specify a runtime option for all program units in the current program.
PAUSE Suspend program execution.
PORT Attach and control other ports.
PRINT Output ASCII to screen, file, or device.
RANDOM Seed random generator for RND function.
RDLOCK Read and unconditionally lock a record.
READ Read variables from DATA structures.
READ RECORD Read an entire structure and update indexes.
RECV Receive communication message.
REM Make a non-executed program comment.
RESTOR Reset DATA pointer for READ statement.
RETRY Repeat last TRY statement.
RETURN Return from previous GOSUB subroutine call.
REWIND Reset a file to the first data byte.
ROPEN Open a file for Read-only access.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 343 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

SEARCH (String) Search string for sub-string.
SEARCH (Traditional) Maintain index of an Indexed file.
SEARCH (Modern) Locate a key.
SELECT Select the size of a window, in columns and rows.
SELECT CASE Organize blocks of statements.
SEND Transmit a message to another port.
SET Read and write class-driver dependent parameters on a channel.
SETFP Set file position for sequential access.
SIGNAL Transmit/receive ported messages and pause.
SIZE Select the size of a window in columns and rows.
SPAWN Launch a background BASIC program.
STOP Abnormally terminate a program.
SUB Define subroutine procedure.
SUSPEND Abnormally terminate a program.
SWAP Pause and execute another BASIC program.
SYSTEM Execute system functions and commands.
TRACE Enable statement trace debugging.
TRY Perform single-line or blocked, nested error handling.
UNLOCK Unlock any records on a channel.
END With WHILE, block a set of repeated statements.
WHILE With WEND, block a set of repeated statements.
WINDOW Maintain Dynamic Windows.
WOPEN Open a file/device for Write-only.
WRITE Write array, matrix, or string from a channel.
WRITE RECORD Write entire structure and update indexes.
WRLOCK Write and unconditionally lock a record.

APPENDIX E - DL4 STATEMENT GROUPS
INTRODUCTION

This appendix describes the dL4 statement set by dividing the statements into groups. Each of these groups,
such as File and Device Handling or Windows, should be familiar to you from your previous programming
experience.

GROUPS
The dL4 statements have been divided into meaningful groups according to function. A subset of all the
statements listed below includes statements that communicate with a channel; these statements are boldfaced.

GROUP NAME dL4 STATEMENTS IN GROUP



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 344 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

1. File and Device Handling ADD, ADD INDEX, ADD RECORD, BUILD, CHANNEL, CHDIR,
CLEAR, CLOSE, DEFINE RECORD, DELETE INDEX, DELETE
RECORD, DUPLICATE, EOPEN, GET, INPUT, KILL, MAP, MAP
RECORD, MODIFY, OPEN, RDLOCK, READ, READ RECORD,
ROPEN, REWIND, SEARCH, SET, SETFP, UNLOCK, WOPEN,
WRITE, WRITE RECORD, WRLOCK

2. User Subroutines and
Functions

DECLARE, DEF, END FUNCTION, END SUB, ENTER, EXIT
FUNCTION, EXIT SUB, EXTERNAL FUNCTION, EXTERNAL LIB,
EXTERNAL SUB, FUNCTION, GOSUB, INTRINSIC FUNCTION,
INTRINSIC SUB, LIB, SUB

3. Error and Interrupt Handling END TRY, EOFCLR, EOFSET, ERRCLR, ERROR, ERRSET, ERRSTM,
ESCCLR, ESCDIS, ESCSET, ESCSTM, IF ERR 0, IF ERR 1, INTCLR,
INTSET, TRY, RETRY

4. Arrays and Matrices MAT, MAT INPUT, MAT PRINT, MAT RDLOCK, MAT READ, MAT
WRITE, MAT WRLOCK

5. Data Structures COM, DEF STRUCT, DIM, END DEF, ERASE, MEMBER, FREE, LET
6. Program Flow CALL, CHAIN, CHAIN READ, CHAIN READ IF, CHAIN WRITE,

CHAIN WRITE IF, END, GOTO, JUMP, PAUSE, RETURN, SPAWN,
STOP, SUSPEND, SWAP

7. Blocks and Loops CASE, CASE ELSE, DO, DO UNTIL, DO WHILE, ELSE, END IF, END
SELECT, EXIT DO, EXIT FOR, FOR, IF, LOOP, LOOP UNTIL, LOOP
WHILE, NEXT, ON, THEN, SELECT CASE, WEND, WHILE

8. Communications PORT, RECV, SEND, SIGNAL
9. Windows MOVE, SIZE, WINDOW CLEAR, WINDOW CLOSE, WINDOW

MODIFY, WINDOW OFF, WINDOW ON, WINDOW OPEN
10. Formatting Output PRINT, EDIT
11. Miscellaneous Statements BOX, CONV, DATA, LINE, OPTION, RANDOM, REM, RESTORE,

SYSTEM, TRACE

In grouping these statements by function, no presumption of evenness is implied, as each group contains both
statements with broad and also others with very specific functionality. No presumption is made about
importance, either, because the relative importance or influence of a statement is dependent on the individual
developer's perception. The statements are grouped only according to the kinds of effects they have on
development.

FILE AND DEVICE HANDLING

ADD Define structure of file, or expand file.
ADD INDEX Add an index to a file.
ADD RECORD Add new record to file.
BUILD Create and open a file.
CHANNEL Perform a driver-specific command.
CHDIR Change default directory to the path specification.
CLEAR Clear an open channel or initialize variables.
CLOSE Close {all} open channel{s}.
DEFINE RECORD Define a record in a file.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 345 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

DELETE INDEX Delete an index in a file.
DELETE RECORD Delete current record from a file.
DUPLICATE Duplicate a file.
EOPEN Exclusively OPEN a data file.
GET Obtain class-driver dependent parameters from a channel opened to a file.
INPUT Retrieve keyboard or channel input.
KILL Delete a data or program file.
MAP Define the logical index or directory number used within the application
MAP RECORD Define an alternate item number mapping at run-time.
MODIFY Change a filename or attributes/permission.
OPEN Open {a file for Read and Write access}{a Driver...}
RDLOCK Read and unconditionally lock a record.
READ Read variables from DATA structures.
READ RECORD Read entire structure and update indexes.
ROPEN Open a file for Read-only access.
REWIND Reset a file to the first data byte.
SEARCH (String) Search string for sub-string.
SEARCH (Trad.) Maintain index of Indexed file.
SEARCH (Mod.) Locate a key.
SET Read/write class-driver dependent parameters on channel.
SETFP Set file position for sequential access.
UNLOCK Unlock any records on a channel.
WOPEN Open a file/device for Write-only.
WRITE Write array, matrix, or string from a channel.
WRITE RECORD Write entire structure and update indexes.
WRLOCK Write and unconditionally lock a record.

USER SUBROUTINES AND FUNCTIONS

DECLARE Declare a procedure which precedes the actual definition.
DEF FN Define user function.
END FUNCTION End a FUNCTION definition.
END SUB End a procedure or function.
ENTER Accept arguments into a procedure.
EXIT FUNCTION Exit a named function.
EXIT SUB Exit a named subroutine.
EXTERNAL FUNCTION Define an independent function.
EXTERNAL LIB Declare named library file.
EXTERNAL SUB Define an independent subroutine.
FUNCTION Define a multi-procedure which returns a value.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 346 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

GOSUB Unconditional branch to internal group of statements, saving return point.
LIB Specify a directory name for callable subprograms.
SUB Define subroutine procedure.

ERROR AND INTERRUPT HANDLING

END TRY End redirection of error branching.
EOFCLR Clear end-of-file branching.
EOFSET Enable end-of-file error setting.
ERRCLR Clear error branching.
ERROR Create a dL4 BASIC error to the current running program.
ERRSET Enable branch to statement on error.
ERRSTM Specify statements to execute on an error.
ESCCLR Clear any Escape branching in effect.
ESCDIS Disable Escape key.
ESCSET Enable branch to statement on Escape.
ESCSTM Specify statements to execute on Escape.
IF ERR 0 Specify a line of statements to execute on the occurrence of an error.
IF ERR 1 Specify an error branch.
INTCLR Clear program interrupt branch.
INTSET Define a branch for program interrupts.
TRY Perform single-line or blocked, nested error handling.
RETRY Repeat last TRY statement.

ARRAYS AND MATRICES

MAT= Copy an entire matrix.
MAT+ Add elements from two matrices.
MAT* Multiply elements of two matrices.
MAT CON Establish a constant matrix.
MAT IDN Establish an identity matrix.
MAT INPUT Assign keyboard/file input to a matrix.
MAT INV Invert a matrix.
MAT PRINT Print contents of an array or matrix.
MAT RDLOCK Read an array, matrix, or string with locking.
MAT READ Read an array, matrix, or string from DATA or a channel
MAT TRN Transpose a matrix.
MAT WRITE Write array, matrix, or string to a channel.
MAT WRLOCK Write an array, matrix, or string with locking.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 347 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

DATA STRUCTURES

COM Specify common variables.
DEF STRUCT Define a structure.
DIM Allocate space for variables.
END DEF Define the end of a structure definition.
ERASE Perform driver-class dependent function(s).
MEMBER Define a member associated with a specific structure.
FREE Deallocate (undimension) variables.
LET Assign values to variables.

PROGRAM FLOW STATEMENTS

CALL BASIC Pgm Call a BASIC program.
CALL Procedure Call a procedure.
CHAIN Transfer control to another program.
CHAIN READ Read variables from a previous program.
CHAIN READ IF Read variables from a previous program.
CHAIN WRITE Write variables to the next program.
CHAIN WRITE IF Write variables to the next program.
END Terminate a running program.
GOTO Unconditional branch to statement.
JUMP Transfer control immediately to another location.
PAUSE Suspend program execution.
RETURN Return from previous GOSUB subroutine call.
SPAWN Launch a background BASIC program.
STOP Abnormally terminate a program.
SUSPEND Abnormally terminate a program.
SWAP Pause and execute another BASIC program.

BLOCKS AND LOOPS

CASE Control complex conditional and branching operations.
DO Establish program loops.
DO UNTIL Perform a loop as long as the expression is false.
DO WHILE Perform a loop as long as the expression is true.
ELSE Control conditional branching.
END IF End conditional branch.
END SELECT End complex conditional branch.
EXIT DO Exit a DO loop.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 348 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

EXIT FOR Exit a FOR/NEXT loop.
FOR Repeat a group of statements.
IF Control conditional branching.
LOOP Mark the end of a group of statements enclosed in a DO loop.
NEXT Continuation of FOR loop statement.
ON Conditional branch on value of expression.
WEND With WHILE, block a set of repeated statements.
WHILE With WEND, block a set of repeated statements.

COMMUNICATIONS

PORT Attach and control other ports.
RECV Receive communication message.
SEND Transmit a message to another port.
SIGNAL Transmit/receive ported messages and pause.

WINDOWS

MOVE Move a window.
SIZE Select the size of a window in columns and rows.
WINDOW CLEAR

Maintain Dynamic Windows.

WINDOW CLOSE
WINDOW MODIFY
WINDOW OFF
WINDOW ON
WINDOW OPEN

FORMATTING OUTPUT

EDIT Format numeric and string expressions.
PRINT Output ASCII to screen, file, or device.

MISCELLANEOUS STATEMENTS

BOX Draw rectangular figure on display device.
CONV Convert binary data to decimal, or convert decimal to binary
DATA Define internal program data.
LINE (A function of drivers.)
OPTION Specify a runtime option for current program unit.

Specify a runtime option for all program units in the current program.



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 349 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

OPTION DEFAULT

RANDOM Seed random generator for RND function.
REM Make a non-executed program comment.
RESTOR Reset DATA pointer for READ statement.
SYSTEM Execute system functions and commands.
TRACE Enable statement trace debugging.

APPENDIX F - UNICODE CHARACTER SET
INTRODUCTION

Unicode is a 16-bit, fixed-width, uniform text and character encoding scheme. It includes most of world's
written scripts, publishing characters, mathematical and technical symbols, geometric shapes, basic dingbats and
punctuation marks. In addition to modern languages such as Arabic, Bengali and Thai, it also includes such
classical languages as Greek, Hebrew, Pali and Sanskrit.

The Unicode set can represent more than 65,000 characters and includes many of the traditional character sets.
The first 128 characters, i.e. 0x00 - 0x7F, are identical to the ASCII character set. The first 256 characters, i.e.
0x00 - 0xFF, represent the ISO 8859-1, or Latin1 character set. Unicode values 0x2500 - 0x257F and 0x2580 -
0x27BF, represent forms and charts, and special graphics characters, respectively.

Unicode ISO 8859-1
0x20AC 0xA4 Euro sign
0x0160 0xA6 Latin capital letter S with caron
0x017D 0xB4 Latin capital letter Z with caron
0x017E 0xB8 Latin small letter Z with caron
0x0152 0xBC Latin capital ligature OE
0x0153 0xBD Latin small ligature OE
0x0178 0xBE Latin capital letter Y with diaeresis

The following characters were removed relative to ISO 8859-1

Unicode ISO 8859-1
0x00A4 0xA4 Currency sign
0x00A6 0xA6 Broken vertical bar
0x00A8 0xA8 Spacing diaeresis
0x00B4 0xB4 Spacing acute
0x00B8 0xB8 Spacing cedilla
0x00BC 0xBC Fraction one quarter
0x00BD 0xBD Fraction one half



6/19/17, 12)50 PMDL4 Language Reference Guide - Dynamic Concepts Wiki

Page 350 of 350https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&printable=yes

0x00BE 0xBE Fraction three quarters

The new character set can be used with portable indexed contiguous files, portable formatted files, and text files.
Examples:

Open #1,"(charset=ISO 8859-15)textfile"
Build #6,"(charset=ISO 8859-15)[1:40]contigfile"

One of the advantages of the Unicode character set over other character sets is that it allows data representation
from anywhere in the world in a uniform, plaintext format. In other words, Unicode simplifies software
internationalization.

The following illustrates the Unicode encoding layout.

0x0000       0x0100       0x0200 0x0600       0xFFFF

•   •   •   •   •

ASCII       LATIN 1 ARABIC

Unicode is used internally for all text processing in dL4. Externally, the various drivers at the I/O level perform
any necessary translation to the appropriate character set for a given file or device. Obviously, not all hardware
devices are capable of displaying or printing the full complement of Unicode characters. The techniques used to
handle the Unicode character set are driver-class dependent.

A full definition of the Unicode character set can be found in The Unicode Standard, Worldwide Character
Encoding, Volumes I and II, published by Addison -Wesley.

Retrieved from "https://engineering.dynamic.com/mediawiki/index.php?
title=DL4_Language_Reference_Guide&oldid=7330"

This page was last modified on 19 June 2017, at 12:34.

https://engineering.dynamic.com/mediawiki/index.php?title=DL4_Language_Reference_Guide&oldid=7330

