

Product
Training

5.3

Dynamic Concepts, Inc.
 www.dynamic.com

18-B Journey
Aliso Viejo, CA 92656

(949) 215-1200
(800) 822-2742

TRADEMARK NOTICE

Informat ion in th is document is subject to change without not ice and does not represent a commitment
on the part of Dynamic Concepts, Inc. (DCI). Every a t tempt was made to present th is document in a
complete and accurate form. DCI sha ll not be responsible for any damages (including, but not limit ed
to consequent ia l) caused by the use of or reliance upon the product(s) descr ibed herein .

The software descr ibed in th is document is furn ished under a license agreement or nondisclosure
agreement. The purchaser may use and/or copy the software only in accordance with the terms of the
agreement. No part of th is manual may be reproduced in any way, shape or form, for any purpose,
without the express writ ten consent of DCI.

© Copyr ight 2004 Dynamic Concepts, Inc. (DCI). All rights r eserved.

dL4 is a t r ademark of Dynamic Concepts, Inc.

UniBasic is a t rademark of Dynamic Concepts, Inc.

Dynamic Windows is a t r ademark of Dynamic Concepts Inc.

BITS is a tr ademark of Dynamic Concept s, Inc.

IRIS is a t r ademark of Poin t 4 Data Corporat ion.

IMS Basic is a t rademark of Informat ion Management Systems, Inc.

c-tr ee is a tr ademark of FairCom.

IQ is a t r ademark of IQ Software Corporat ion.

UNIX is a regist ered t rademark of UNIX Systems Laborator ies.

SYBASE is a r egist ered t rademark of Sybase, Inc.

CodeBase is a t rademark of Sequit er Software Inc.

Microsoft , MS, MS-DOS, Microsoft Access, and FoxPro a re r egist ered t rademarks, and
ODBC, Windows and Windows NT are tr ademarks of Microsoft Corporat ion in the
USA and other count r ies.

MySQL is a t r ademark of MySQL AB

dL4 Training – Class Outline

1. Introduction to dL4 (Benefits)
2. Overview of Documentation Set
3. Features of Language
 New Data Types
 Date
 Binary (read images, etc.)
 Structures
 Arrays of strings and structures
 Expanded numeric precisions
 3A. Structured Programming
 Blocked Structures
 New Statements
 Error Handling
 3B. Virtual BASIC Machine

3C. Procedures
 Callable subprograms
 Libraries
 3D. New & Enhanced Statements
 OPTION statement
 CHAIN READ IF
 3E. Global Variables

3F. Functions
 3G. New Calls
 3H. Old Calls
 3I. How to
 Background jobs, phantom ports, etc.
 SPAWN, PORT, CALL TRXCO
 Modify Terminal Definition file
4. Debugging
 Run, Scope & Basic modes
 Using Debugger
 Resizing
 Use of ProgramDump

5. Data file drivers
 Foxpro Full-ISAM
 Microsoft SQL
 MySQL
 Bridge Driver

6. Other drivers
 Socket driver
 Email driver
 Serial Device driver

7. Windows, GUI & dL4Term
 GUI Libraries

8. Convert
 ub2dl4 utility
 ims2dl4 utility
 Conversion profile file

Revision date: 08/23/05 3 Dynamic Concepts Engineering

 OPTION statements
 INCLUDE

9. Install & Configure
 Environment variables
 dL4Term
 Terminal Definition Files
 Printers
 Pfilter
 Shared cache

10. Tools Directory

 11. New enhancements

12. Protecting your investment with OSN’s

13. Development with source control
 Streamlining development

14. dynamicXport integration to browser
 File upload and download

15. dynamicPaper
 Forms overlay
 Convert to PDF format
 Archiving

Revision date: 08/23/05 4 Dynamic Concepts Engineering

dL4
Product Training

SECTION 1

Benefits

Revision date: 08/23/05 5 Dynamic Concepts Engineering

Portable Platform – Unix & Windows

Industry standard structured programming

More modular components & drivers

GUI support

Supports mouse and keyboard input editing

Event driven programming

Database support – Foxpro, Microsoft SQL, MySQL, others

Databases without code changes using bridge drivers

Socket drivers, TCP/IP sockets, send/receive e-mail

Write callable routines in BASIC

Run converted Unibasic or IMS code as is or re-engineer to
take advantage of capabilities

Text-based development, edit in vi, notepad, etc.

Unicode character set and other character sets

Includes dL4Term, eliminating need for emulators

Tools to port Unibasic & IMS code to dL4

Integration with HTML, XML, Wireless with DynamicXport

Future Dynamic development focused on dL4

Revision date: 08/23/05 6 Dynamic Concepts Engineering

dL4
Product Training

SECTION 2

Documentation

Revision date: 08/23/05 7 Dynamic Concepts Engineering

Documentation can be downloaded in PDF format from our web site, www.dl4.com
Below is a list of the currently available documentation.

Language Reference Manual - Statements, Functions, Calls

 Command Reference Manual – Compile, Debugger

 Files & Devices Manual

 GUI Training 5.3 and Windows Class

 Installation and Configuration for Windows

 Installation and Configuration for Unix

 Supporting Documentation

 dL4Term Reference Guide

 dL4 User CALL & Driver Implementation Guide

 dL4 Release notes – latest information & enhancement history

 dL4 Training 5.3 – this training document

Revision date: 08/23/05 8 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3

Features of Language

Revision date: 08/23/05 9 Dynamic Concepts Engineering

Common Syntax Differences:

Listed here are common syntax differences when converting from Unibasic to dL4.
These differences are handled by the conversion process.
New programs and modifications must use the new syntax.

Variable dimensions & subscripts are performed with brackets [] rather than
parenthesis ().

Call statement syntax is CALL NAME(var1, var2) rather than CALL $NAME,var1,var2
 Example CALL TIME(T$) rather than CALL $TIME,T$

Since mnemonics can be more than 2 characters they are space separated.
 Example ‘CS BU’ rather than ‘CSBU’
Also, each code may be optionally preceded by a list of one or more numeric constants,
separated by commas, to be interpreted as parameters (often a repetition count). The
PCHR$ function provides a means to construct parameters using expressions rather
than constants.

Character strings in a DATA statement must be in quotes.

INDEX statements are converted to SEARCH

CREATE statements are converted to BUILD

RESTORE statements are converted to RESTOR (resets DATA statement pointer)

dL4 keyword collisions are corrected by appending an underscore “_”

Functions that return a string value are named with an ending $ sign. Thus ERM is
converted to ERRMSG$, STR is converted to STR$, etc. (Note: MSF is converted to
MSC$)

CHN function is converted to identical CHF function

The mod operator % (returns the remainder of a division of the two operands) is
converted to the MOD function. For example, A = B % C is converted to A = B MOD C

A DEF FN statement must precede any use of a function. (This is automatically resolved
in conversion.)

The Option statement specifies runtime option settings for a program. A sample Option
statement would be Option Arithmetic Iris Decimal

Option Dialect statements should be used to convert or inherit specific language
behaviors.

Differences not automatically resolved by conversion:
Cannot have multiple DEF FN’s of the same name in the same program
RND, random number generator creates different results.
TAB on screen displays will properly tab to that position, even if the cursor is currently
past that position.

Revision date: 08/23/05 10 Dynamic Concepts Engineering

LET TO statement with optional : numeric variable is limited to single character lookup
and cannot be combined with LET statement concatenation.

Data Types:

In dL4 there are four basic data types and two aggregate data types. Each type has its
own rules of operation. The four basic types are Numeric, Character String, Date and
Binary. The two aggregate, or derived, types are Array and Structure. The six data
types are described briefly below.

 Numeric data is made up of integers and floating-point numbers which can be
manipulated by arithmetic operators.

 Character string data is comprised of Unicode characters. Although string data can
contain numeric characters, there can be no direct arithmetic manipulation of
string data without first converting the characters to numeric data.

 Dates are internal representations of specific points in real-time. Special functions
are provided to manipulate and perform arithmetic-like operations on dates. Dates
cannot be thought of as string or numeric data, but can be converted to or from
character strings for input and display operations.

 Binary data is raw information which is not to be interpreted by dL4 as string,
numeric, date, or any other type. It is often useful for the developer to manipulate
data within a program while being guaranteed that the language does not translate.

 Structures aggregate data are programmer-defined sequence of individual named
data items of the same or different data types, grouped together to form a single
data item. Such a collection is most often used to describe a “record” of
information, as in a data file.

 Arrays are ordered collections of the same data type where each individual item is
referenced by subscripting. Multi-dimensional arrays are represented as arrays of
arrays. The developer can also define arrays of structures, or structures containing
arrays. The DIM statement reallocates arrays to the exact size specified, preserving
only those array elements that remain within the new size of the array. An array
can be enlarged to any size with new elements initialized to zero.

Revision date: 08/23/05 11 Dynamic Concepts Engineering

Table of Numeric Precisions

% Parameters Bytes Decimal
Digits

Range of values supported

1 16-bit signed integer 2 4+ ±32768
2 32-bit signed integer 4 9+ ±2,147,483,648
3 3-word BITS Base 10000 floating1 6 9-122 ±.999999999999 E±63
4 4-word BITS Base 10000 floating1 8 16 ±.9999999999999999 E±63
5 2-word BITS Base 10000 floating 1 4 6 ±.999999 E±63
6 6-word BITS Base 10000 floating 1 12 17-202 ±.99999999999999999E±63
7 16-bit signed BCD integer 2 4 ±7999
8 2-word IRIS BCD floating 4 6 ±.999999 E±63
9 3-word IRIS BCD floating 6 10 ±.9999999999 E± 63
10 4-word IRIS BCD floating 8 14 ±.99999999999999 E±63
11 5-word IRIS BCD floating 10 18 ±.999999999999999999 E±63
12 32-bit signed BCD integer 4 8 ±79999999
13 2-word IEEE BCD floating 4 6 ±.999999 E±63
14 3-word IEEE BCD floating 6 10 ±.9999999999 E± 63
15 4-word IEEE BCD floating 8 14 ±.99999999999999 E±63
16 5-word IEEE BCD floating 10 18 ±.999999999999999999 E±63
17 2-word IEEE floating scaled X 100 4 73 ≈ ±99999.99
18 3-word IEEE floating scaled X 100 6 113 ≈ ±999999999.99 E±35
19 4-word IEEE floating scaled X 100 8 143 ≈ ±999999999999.99 E±35

Programs declare precisions in either the form %p or p%. The
former is used to specify an exact precision from the above table;
the latter maps to a precision within a general type of
representation.

The mapping of p% to a real precision is based upon the Option
Arithmetic declaration within each program.

Training Note Unless specified, the default is Decimal (alias IEEE
Decimal). (Typical for Unibasic conversions.)

1. Base 10000 representation is supported for older BITS and UniBasic files and is not portable

across hardware platforms.

2. The exact number of digits is based upon the decimal point alignment. Each byte-pair
(word) holds 4 digits and decimal point exists only on a word boundary. Therefore a 6-
byte (3-word) value can represent 12 integer and no fractional digits, or respectively 8 and
4, 4 and 8 or 0 and 12. When a value has both integer and fractional components, and
either component is less than 4-digits, you sacrifice the remaining digits in that word.

Revision date: 08/23/05 12 Dynamic Concepts Engineering

Precisions of Numeric Variables
The various Option Arithmetic statements cause the following mappings to
occur:

Option Arithmetic Decimal
Option Arithmetic IEEE Decimal

Precisio
n

Translates to Type description

1% %7 16-bit signed BCD integer
2% %13 2-word IEEE BCD floating
3% %14 3-word IEEE BCD floating
4% %15 4-word IEEE BCD floating
5% %16 5-word IEEE BCD floating
6% N/A N/A
7% %12 32-bit signed BCD integer

Option Arithmetic IRIS Decimal

Precision Translates to Type description
1% %7 16-bit signed BCD integer
2% %8 2-word IRIS BCD floating
3% %9 3-word IRIS BCD floating
4% %10 4-word IRIS BCD floating
5% %11 5-word IRIS BCD floating
6% N/A N/A
7% %12 32-bit signed BCD integer

Option Arithmetic BITS

Precisio
n

Translates to Type description

1% %1 16-bit signed integer
2% %5 2-word BITS floating
3% %3 3-word BITS floating
4% %4 4-word BITS floating
5% N/A N/A
6% %6 6-word BITS floating
7% %2 32-bit signed integer

Option Arithmetic ICE Binary

Precisio
n

Translates to Type description

1% %1 16-bit signed integer
2% %17 2-word IEEE floating X 100
3% %18 3-word IEEE floating X 100
4% %19 4-word IEEE floating X 100

Revision date: 08/23/05 13 Dynamic Concepts Engineering

5% N/A N/A
6% N/A N/A
7% %2 32-bit signed integer

Note: During file access, numeric data is converted to/from the type of data contained
within the file.

Date Variables

Table of Date Precisions

 % Description Bytes Minimum value Maximum value
 1 Days 2 2 Jan 1900 00:00:00 GMT 6 Jun 2079 00:00:00 GMT
 2 Minutes 4 1 Jan 0001 00:01:00 GMT 16 Feb 8167 04:15:00 GMT
 3 Milliseconds 6 1 Jan 0001 00:00:00.001

GMT
3 Aug 8920 05:31:50.655

GMT

Date arithmetic is always performed in terms of seconds, which can be fractional
if a date variable has sufficient precision. The precision of date variables is
determined exactly like numeric variables, with the p% or %p specification
controlling the currently-selected precision.
Unlike numeric precisions however, there is no mapping from p% to %p
controllable by the Option statement; e.g., 1% always means %1, etc.
1% Precisions default time to Noon GMT.

Training note: Variable names ending with # designate a date variable.
There are many intrinsic Functions and CALLs to convert Date variables to
viewable formats.
Data fields that are not populated will generate an Error 20, Date Overflow, if
you attempt to use the field.

Revision date: 08/23/05 14 Dynamic Concepts Engineering

Structures
Structures are a pre-defined, fixed grouping of variables defined at compile-time.
The items comprising a structure are said to be "members". Structure variables
provide numerous benefits to the application designer, for example:

 Defining a data record layout

 Operating on a large amount of organized data by referencing a single name

 Organizing related data into a form which simplifies programming and
eliminates errors

Structure (.) Variables
Structure variables are indicated by a "." suffix and must be explicitly defined
before use. To define a structure template, use one of the following general
forms:

Def Struct structname=name {, ... }
Def Struct structname

Member name {, ... }
 …
End Def
structname is a unique name tagged to this template. The name may be from
one to thirty-two characters in length, and contain letters, digits, and
underscores and the name cannot begin with a digit. Def Struct does not
actually allocate a structure using the supplied name, rather it informs the
compiler to define a unique structure template tagged with this name.

The name of a Member is any legal variable name, or precision declaration in
the form: %p or p%. name may be any type of variable, string, numeric, date,
binary or another structure. Any given member may also be an array. The
syntax and function of Member statements are nearly identical to that of DIM.

If the first general form is used, all Member names must be contained on a
single program line. The second general form may be used for readability, or
when all of the members cannot be defined on a single line. The two general
forms cannot be mixed within a single structname definition.

The End Def statement defines the end of a structure definition.

The following are examples of structure definitions:
Def Struct TestInfo
 Member StartTime$[25],StopTime$[25]
 Member 4%,TotalSeconds,Seconds[128]
 Member %1,MasterPort,FileClass
 Member %1,NoOfTests,NoOfPorts,Iteration
 Member %1,MinPorts,MaxPorts
 Member %1,StepValue,SampleSize,1%,date#
 Member %1,Timearray[5,5,5]

Revision date: 08/23/05 15 Dynamic Concepts Engineering

End Def

DEF STRUCT TEST=Q$[20],1%,R,S

Prior to using a structure, you must dimension one or more variables as a
specific structname. The following general form is used to dimension a
structure:

Dim variable. { [expr {, ... }] } As structname

variable. is an actual variable in the program which is to be referenced as a
structure. The variable may include array subscript dimensions, if the variable.
is to be an array of structures.

As structname informs the compiler which compiled structure definition is to be
used for variable.

Examples of dimensioning structure variables are:

 DIM A. AS TEST, B.[5] AS TEST !B is array of 0-5 (6) structures

A structure definition itself may contain one or more structures, or arrays of
structures. To define a structure which includes a structure, a Member is
expressed as follows:

 Member name. { [expr {, ... }] } As structname2

name. is the name within structname whose members are defined by the
structure definition structname2. structname2 must be an existing structname
which has been previously defined.

The names of structure members are distinct from any other names outside the
structure; e.g. Data.Q$ is distinct from Q$ which is distinct from Data1.T.Q$.

The members of a structure are physically contiguous in memory, and are
ordered in memory as defined by Def Struct. Individual structure members
cannot be re-dimensioned.

For syntactical reasons, a separator is needed between a structure variable and
a member name; this is also represented by a ".". The separator becomes
necessary for:

LET B.[3].Q$ = “quit”

"B." is the variable name, [3] is the third array element and the second "." is the
structure/member separator. In fact, a simple reference such as "A.Q$" is really
"A..Q$" internally, but the second "." is assumed where it is redundant.

The order in which members of a structure are declared is important because
this determines the order in which values are read from a DATA statement, or
transferred to/from a file, etc. For example:

WRITE #1;A. ! This WRITE is exactly

Revision date: 08/23/05 16 Dynamic Concepts Engineering

WRITE #1;A.Q$,A.R,A.S ! like this one

Indeed, many older-style statements which operate upon a fixed number of
parameters may now be supplied a structure instead. Supplying the structure
is interpreted as if you supplied each member as a single variable, separated by
comma. As discussed later, SEARCH is another statement where the Key,
Record and Status variables may be passed within a structure.

Structures benefit from all enhancements to arrays and strings (and follow the
same rules), so:

DIM B.[10]
LET B.R = 5 ! is equivalent to B.[0].R = 5

Revision date: 08/23/05 17 Dynamic Concepts Engineering

String Arrays

In a DIM statement, if the var.list contains a variable in the form
str.var$[num.expr1,num.expr2], it is defining a string array of num.expr1
elements with a maximum of num.expr2 characters each. The num.expr1 within
the subscripts is evaluated, truncated to an integer, and used to select the size
(number of elements) of the string array. The num.expr2 within the subscripts is
evaluated, truncated to an integer, and used as the maximum size of each string
array variable in characters. Any attempt to store data beyond this maximum
results in data truncation. String array variables must appear in a DIM or COM
statement before use by any other statement. They cannot be re-dimensioned
unless the variable is deallocated (see the FREE statement).

Re-dimensioning

Once a variable is allocated, it cannot be changed with one exception: an array
variable can be re-dimensioned to a different size, reduced or enlarged, (number
of elements, not length or precision of elements), preserving only those array
elements that remain within the new size of the array. An array can be enlarged
to any size with new elements initialized to zero, null or invalid dates.

Alternatively, a variable can be freed with the FREE statement (value is lost),
and then re-dimensioned (re-used).

Training Note on Dimensioning Structures :
A structure must be defined in a program using the DEF STRUCT statement
prior to dimensioning a structure variable. Structure Definitions must appear
in the program code before a dimension using the structure variable.

Training Note :
An Option statement, OPTION STRING REDIM IS LEGAL, allows strings to be re-
dimensioned. This is available for backwards compatibility to other languages
and is not a recommended programming method.

Assignment Operator: Colon Equal
The assignment operator, Colon Equal is different from “=” which is compare-
for-equality.
Compare-for-equality indicates that dL4 is attempting to determine if the values
are equal.
":=" is an assignment operator while "=" is a relational operator except for the
initial "=" in a LET statement.

Typically useful in IF statements, for example :
IF (X$:= function()) !X$ receives value from function, then Boolean
true or false if, null is false
 THEN
END IF

LET A:=B:=C:=1 !Results in A=1 B=1 C=1

Revision date: 08/23/05 18 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3A

Statements for
Structured

Programming

Revision date: 08/23/05 19 Dynamic Concepts Engineering

A number of new statements afford the ability to structure applications into blocks.
Block structuring provides the following benefits over conventional programming:

 Simplifies readability of application programs

 Reduces support

 Speeds development and customization

Throughout this document, the term expr and expression are used to indicate the
evaluation of any legal expression. Expressions are made up of operators, operands
and relations, such as >, <, etc.
When evaluating a boolean relation, i.e. A > B, within or as an expression, one is
returned if the relation is true, and zero if false.

The notion of so-called structured programming has become almost synonymous with
“GOTO elimination”.
Programs can be written in terms of only three control structures, namely the sequence
structure, the selection structure and the repetition structure.

The sequence structure is built into dL4 without line numbers. Unless directed
otherwise, the computer executes dL4 statements one after the other in the order in
which they are written.

dL4 provides three types of selection structures.
The IF statement and IF/END IF provides a single-selection structure.
The IF/ELSE IF/END IF provides a double-selection structure.
The SELECT CASE/CASE/END SELECT provides a multiple-selection structure.

dL4 provides three types of repetition structures, namely the DO LOOP, WHILE
WEND and FOR NEXT structures.

A WHILE is identical in behavior to DO WHILE.

Blocked IF - Else IF Statements

In addition to the familiar blocked IF structure supported in IRIS and UniBasic, an
ELSE IF clause has been added. The general form of an IF block is:

If expression
! Perform these statements if the expression is true
Else If expression !If first expression was false
! Perform these statements if this expression is true
Else If expression !Second expression was false also
! Perform these statements if this expression is true
Else
! Perform these statements only if all other expressions are false
Endif

The first expression is evaluated and if true, execution resumes at the next line. No
additional statements may follow the expression in a blocked If. An expression is
considered true if it evaluates to non-zero.
If the expression is false, any next corresponding Else If relation is performed. If true,
execution resumes at the next line. When corresponding Else If blocks are not

Revision date: 08/23/05 20 Dynamic Concepts Engineering

included, or should each evaluate false, execution resumes at any corresponding Else.
If the block does not contain an Else, execution resumes following the associated End
If.

Do, Do While, Do Until & Loop Statements

Program loops may be established using the Do and Loop statements as a means of
blocking a set of repeated statements. These statements provide greater flexibility and
looping control than For / Next. The general form of a Do loop is as follows:

Do { While | Until expression }
 stmnts
Loop { While | Until expression }

While or Until expression provides the loop with a specific termination condition.
While provides for looping as long as the expression remains true, whereas Until
provides for looping as long as the expression remains false - that is until it becomes
true.

The optional While or Until clause may be placed on either the line containing the Do
or Loop statement, depending upon when expression is to be tested. By placing the
clause with Loop, the developer ensures that at least one iteration is performed.

stmnts are any valid dL4 program statements. Execution resumes at the statement
following the Do and continues normally. Upon execution of the Loop statement,
execution resumes at the statement following the corresponding Do.

Unlike For, Do loops may nest indefinitely. In addition, each Do loop must contain
exactly one matching Loop statement. The compiler ensures that all loops are properly
matched. Although not recommended, branching from outside to inside a Do loop will
not cause an error, rather the program will remain in the loop until it terminates. The
Do statement itself need not be executed to commence looping.

Goto Label !not recommended, but you can branch into a Do Loop
Do Until Value > 100
 Print Value;
 Label: Value = Value + 1
Loop

The following example sets up an infinite loop which runs until explicitly exited by an
Exit Do statement.

Do
 statements
 If X Exit Do
Loop

Other variations of Do loop syntaxes :

Do While expr ! As long as the expression is true
 stmnts ! Execute the statements
Loop

Do Until expr ! As long as the expression is false
 stmnts ! Execute the statements
Loop

Revision date: 08/23/05 21 Dynamic Concepts Engineering

Do
 stmnts ! Execute the statements
Loop While expr ! As long as the expression is true
Do
 stmnts ! Execute the statements
Loop Until expr ! As long as the expression is false

While & Wend Statements

Program loops may be established using the While and Wend statements as a means of
blocking a set of repeated statements. These statements provide additional flexibility
and looping control beyond the simple For / Next. The general form of a While loop is
as follows:

While expr
 stmnts
Wend

expression is any legal expression which terminates the loop when true .

While provides for looping as long as the expression remains true. The expression is
tested prior to performing each loop. The loop is terminated once the expression is
false.

Training Note: While is identical in behavior to Do While ... Loop, but note that there
is not an equivalent to the Exit Do statement for a While loop and you cannot compare
on the Wend statement.

Unlike For, While loops may nest indefinitely. In addition, each While loop must
contain exactly one matching Wend statement. The compiler ensures that all loops are
properly matched. Although not recommended, branching from outside to inside a
While loop will not cause an error, rather the program will remain in the loop until it
terminates. The While statement itself need not be executed to commence looping.

Goto Label
While Value > 100
 Print Value;
 Label: Value = Value + 1
Wend

Exit Do Statement

The Exit Do statement gracefully exits a Do loop. It may be used within a with Do
Loop block . The general form of the Exit statement is:

Exit Do

The Do loop currently being executed is gracefully terminated. Exit Do is the preferable
method to terminate a Do loop when writing portable code. Branching out of a loop is
never recommended.

Do
 stmnts
 If ...
 ...
 If T < 100 Exit Do

Revision date: 08/23/05 22 Dynamic Concepts Engineering

 End If
Loop Until expr

Exit For Statement

The Exit For statement gracefully exits a For loop. It may be used within a with For
Next block . The general form of the Exit For statement is:

Exit For

The For loop currently being executed is gracefully terminated. Exit For is the
preferable method to terminate a For loop when writing portable code. Branching out
of a loop is never recommended, and may lead to stack overflows.

For I = 1 to 1000
 stmnts
 If ... Exit For
Next I

Select Case & End Select Statements

The Select Case statement organizes blocks of statements which are dependent upon
the value of a single expression. The general forms of Select Case are:

Select Case expression
 Case expr | expr TO expr | Is rel-op expr { , ... }
 stmnts
 Case Else
 stmnts
End Select

expression is the primary expression which is evaluated for subsequent selection within
the entire block.

For each expr value which requires further processing by the application, a Case
selection is specified. These may be in the form of a single expr which is compared for
equality, an inclusive range of values specified in the form expr TO expr, or a value
which results in a true relation, such as Is > 50. Multiple conditions, separated by
comma may be specified and are treated as OR conditions.

stmnts are those statements which are to be executed for the selected condition. Once
a Case is true and it’s block of statements are executed, further Case statements in the
Select block are NOT executed.

Case Else is optional and the associated stmnts are executed when no other Case expr
matched the value of the primary expression. If present, Case Else must be the last
Case in the block.

Example 1:
Search #Ch,4,1;K$,R,E
Select Case E
 Case 0
 ! Successful key insertion

Revision date: 08/23/05 23 Dynamic Concepts Engineering

 Case 1
 If R <> RecNum Error 236 ! Duplicate key in unique index
 Case Else
 Stop "Directory 1 key insertion failed"
End Select

Example 2:
 Select Case E$!String to compare to
 Case “0” TO “9” !0 through 9 inclusive
 Print “Numeric”
 Case “A” TO “Z” !A through Z inclusive
 Print “Capital Letter”
 End Select

Example 3:
 Select Case E$!String to compare to
 Case Is = “0”, Is = “1” !0 or 1 TREATED AS OR
 Print “0 or 1”
 Case “A” TO “Z”, Is = “ “ !A through Z inclusive or is space
 Print “Capital Letter or space”
 End Select

Try, End Try & Retry Statements

Try provides for the temporarily redirection of error branching within a block. The
general form of the statements are:

Try statement1 Else statement2

Try
 stmnts to be executed
{{ Else If expr
 stmnts
 {, ... }}
Else
stmnts to be executed
End Try

The Retry statement can be used within a Try block. The syntax for the Retry
statement is:
Retry

In the first general form, statement1 is executed. If any error is detected, statement2 is
executed. Otherwise, execution resumes on the next line.

The second general form provides for the attempted execution of multiple statements. If
any of the statements cause an error, execution resumes following the associated Else.
Nested Try blocks are permitted, as well as the optional Else If block.
Retry may be used within the Else block(s) to repeat the last Try block.
If any program error branching is in effect, it is temporarily suspended for the duration
of the Try statement or block. Error branching is restored at the upon the completion
of the line or block.

For example:

Try
 Open #0,"Filename" ! Try to open the file
Else if Spc(8) = 42 ! Not found
 Build #0,+"Filename!"

Revision date: 08/23/05 24 Dynamic Concepts Engineering

 Close #0
 Retry ! File not found
Else
 Call Error_Function(Spc(8)) ! Give up
End Try

Training note: The Try block relinquishes error trapping to outside the block once an
error occurs, thus errors within the Else blocks will be trapped by error trapping
outside the Try block, ie another Try block or IF ERR.

Training note: If a Try block traps an error, the error will not be seen by a surrounding
IF ERR trap, however SPC(8) will still contain the error that occurred.

Error Statement

The Error statement generates a dL4 error to the current running program. The
specified error number is returned by Spc(8), and forces an error event within a Try
block, procedure, or to any other error handler. The statement is helpful when writing
procedures or user calls to provide a meaningful exit to the caller. The general form of
the statement is:

Error expr

expr is any expression which, following evaluation, is truncated to an integer and
returned to the application as an error number (event).

Should the developer wish to create his own error numbers, use values >= 10,000.

Training note: A developer can use the Error statement to exit a Try block of code by
generating a ‘false’ error.

Revision date: 08/23/05 25 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3B

VBM
Virtual BASIC Machine

Revision date: 08/23/05 26 Dynamic Concepts Engineering

VBM VIRTUAL BASIC MACHINE

This discussion helps in understanding:

 A variable’s lifetime, which is defined to be the duration a variable exists
during the execution of a program

 A variable’s “visibility” or “scope”, which determines which portions of a
program can reference a particular variable

 Prerequisite for understanding dL4 procedures

 Program libraries

VBM Fundamentals

 A dL4 BASIC program is made up of one or more program units

 A program unit is either an external procedure or the main program

 A program unit consists of one or more program blocks

 A program block is a procedure, either an internal or an external procedure

 A program must always contain one main program unit and any number of
secondary program units

 A dL4 BASIC program runs in a Virtual BASIC Machine (VBM)

Program Unit

 A program unit is either an external procedure or the main program

 Each running program unit is one or more program-blocks and has it's own:

 Option settings
 Variables
 Argument variables
 TRY stack
 FOR stack
 GOSUB stack
 Current DATA statement position
 Current numeric precision
 Current date precision
 Current LIB setting
 Current values for:

Revision date: 08/23/05 27 Dynamic Concepts Engineering

 Last error number: SPC(8)
 Line number of last error: SPC(10)
 Stmt number on line of last error: ERR(5)
 Last END or STOP: SPC(24)
 Last determinant: DET(0)
 Last input element: MSC(1)
 Last input size: SPC(17)
 Input pend mode: SYSTEM 26/27

Main Program Unit

 A main program unit contains statements other than those blocked within
named procedure(s)

 Each running program is one or more program-units and has it's own:

Structure definitions
Saved disk image (program)

 The main program unit is considered empty if it does not contain any
executable statement

 The main program unit or secondary program units (External procedures)
may contain any number of program blocks (internal procedures).

 When a program is initiated by Chain or RUN, the main program unit of the
selected program is executed.

Program Block:

 A program block is a procedure, either an internal or an external procedure

 A program block is one or more lines of BASIC code

 Each running program block is one or more lines and has it's own:

 Argument variables
 Current program position
 Current TRY stack position
 Current FOR stack position
 Current GOSUB stack position

 Program branching between blocks is not permitted

 Nesting program blocks is not permitted

Revision date: 08/23/05 28 Dynamic Concepts Engineering

Linked Program

 Each running linked program is one or more programs and has it's own
Table of external procedure names

VBM

 Each running BASIC machine contains one or more linked programs and
has it's own:

- Open channels
- Standard input channel
- Standard output channel
- Trace channel
- Command line string: INPUT (0,K)
- Hot-key program
- Dynamic Window stack
- Single-step count

Pseudo Program Structure Example

dL4 BASIC program

 Program Unit A (ie External Procedure)

 Program Block 1 (ie Internal Procedure of Unit A)

 Program Block 2 (ie main block of Unit A)

 Program Unit B (ie another External Procedure)

 Program Block 1 (ie main block of Unit B)

 Program Unit C (ie main program unit)

 Program Block 1 (ie Internal Procedure of Unit C)

 Program Block 2 (ie main block of Unit C)

Revision date: 08/23/05 29 Dynamic Concepts Engineering

Typical Program Structure Example

 ! Comments about program
 Option Default statements if needed (Option Default applied to entire program
file

 !Define file structures used in program
 Def Struct customer
 Member name$[10] : Item 10
 End Def
 !etc

 !Use a Lib statement to specify directory to find programs if called by filename,
or
 !external libraries OR define a LIBSTRING environment variable.
 !Is the directory definition only!

 !Define external library sources if necessary (define filename)
 !directories to search for this filename is determined by LIBSTRING or an
overriding
 !Lib statement
 External Lib “filename of library with procedures”

 !Declare instrinsic subs & functions used
 Declare Intrinsic Sub ProgramDump
 Declare Intrinsic Function FindChannel

 !Declare external subs & functions used, if resides in external file or is used
before its

!definition
!preferred method is to have them defined before use
!can also be declared at the beginning of the block using it

 Declare External Sub myexternal

 !Declare internal subs & functions used, if used before its definition
 !preferred method is to have them defined before use
 !can also be declared at the beginning of the block using it
 Declare Sub myinternal

!first program block
External Sub A(receiving variables)
 Option statements that just apply to this block can be stated

 !internal procedure B used in Sub A, like a gosub
 Sub B()
 If ----- Exit Sub
 End Sub !B

 Call B()
End Sub !A recommend putting subroutine name in a comment on End

!second program block

Revision date: 08/23/05 30 Dynamic Concepts Engineering

External Function C()
 If ------ Exit Function value
End Function value !C

!main program block
Sub D() !an internal sub within the main block
 Print “Hello”
End Sub !D

Call A()
X = C()
Call D()

End

Training Note :
You don’t need to declare internal subs & functions or external subs & functions in the
same physical file if they appear before they are used. Thus it is common to have
procedures appear in the code prior to their use to eliminate the need to Declare them.

Revision date: 08/23/05 31 Dynamic Concepts Engineering

dL4
Product Training

Section 3C

Procedures

Revision date: 08/23/05 32 Dynamic Concepts Engineering

PROCEDURES

Procedures facilitate the grouping of program statements into organized, re-
usable program blocks. The resulting modularity simplifies development and
support for the programmer.

Modularity provides the developer with the following benefits:
 • Enhances readability of applications software.

• Each program contains only the code for it’s required functions and does
not contain duplicative subroutine code.

 • Provides for the organization of procedures into libraries.
 • Simplifies customization and support of applications.
 • Replaces dependency on GOTO and GOSUB.

Unlike saved program files under IRIS or BITS which contain only a single
program, dL4 programs are made up of one or more program units each of which
contain(s) one or more program blocks. A program block is one or more lines of
BASIC code, and a program unit is one or more program blocks.

A program is further described herein to contain a main program unit when it
contains statements other than those blocked within named procedure(s). A
program always contains a main program unit consisting of all executable
statements other than those embedded within procedure(s). If a program
contains no such executable statements, the main program unit is considered
empty, containing only an implied End statement. A main program unit has no
actual name.

IRIS programs have one program unit (the main one) consisting of a single
program block.

When a program is initiated by Chain or RUN, the main program unit of the
selected program is executed.

Each running program block is one or more lines and has it's own:
 Argument variables
 Current program position
 Current TRY stack position
 Current FOR stack position
 Current GOSUB stack position

Each running program unit is one or more program-blocks and has it's own:
 Option settings
 Variables
 Argument variables
 TRY stack
 FOR stack
 GOSUB stack
 Current DATA statement position
 Current numeric precision
 Current date precision

Revision date: 08/23/05 33 Dynamic Concepts Engineering

 Current LIB setting

 Current values for:
 Last error number: SPC(8)
 Line number of last error: SPC(10)
 Stmt number on line of last error: ERR(5)
 Last END or STOP: SPC(24)
 Last determinant: DET(0)
 Last input element: MSC(1)
 Last input size: SPC(17)
 Input pend mode: SYSTEM 26/27

Each running program is one or more program-units and has it's own:
 Structure definitions
 Saved disk image (program)

Each running linked program is one or more programs and has it's own:
 Table of external procedure names

Each running BASIC machine contains one or more linked programs and has it's
own:
 Open channels
 Standard input channel
 Standard output channel
 Trace channel
 Command line string: INPUT (0,K)
 Hot-key program
 Dynamic Window stack
 Single-step count

Types of Procedures

There are several types of procedures supported by the language. From simple
one-line functions, to complex external library routines, procedures simplify
programming tasks.

Variables are passed to procedures by reference, not by name. Expressions
are passed to procedures by value. Normally, procedures need not concern
themselves with what was passed; however the caller should be aware of
the appropriate calling sequence. If a procedure updates, or returns a
value in, a referenced variable, that operation will be lost if the caller
passed an expression.

Sometimes the caller may intentionally wish to pass an expression to prevent
the update of a local variable passed by reference. This may be accomplished by
converting the variable into an expression.
(a) ! Pass 'a' by reference
(a+0) ! Pass an expression equal to 'a'
((a#)) ! Force 'a#' into expression with parentheses
(a$ + "") ! Force a$ into expression

Revision date: 08/23/05 34 Dynamic Concepts Engineering

Single Line Functions

Single line functions are an extension of the familiar DEF FN_(x) functions and
permit the developer to define internal procedures, which return data of any
type when passed one or more arguments:

Def function-name (parameter1 {, ...})

A function name may be from one-to-thirty-two characters in length and must
end with the type designation matching the data type returned from the
function. Numeric data has no suffix, strings end with $, dates with # and
binary variables end with ?. For example :

Dim a$[10],b$[10],c$[10]
b$=”123”
c$=”456”
Def test$(x$,y$) = x$ + y$
a$=test$(b$,c$)
Print a$!results in 123456

Structures may be passed and operated upon, but a function cannot return a
structure.

Parameter is any numeric, string, date, binary or structure variables (or
expressions) to be passed to the function.

As with the familiar DEF FNA(X) = X * 2, the caller supplies an expression or
variable to the function which itself is referenced by the function for each
occurrence of X. Passing Y to the function returns the current value of Y being
multiplied by two. Older functions of this type were only permitted to perform
calculations on existing variables and the variable passed by reference. No
variable assignment was permitted within the function itself.

Unlike the older style single line DEF FN_, single line Def function have the
ability to alter existing variables as well as those passed by reference.

Single-line functions are still restricted to expressions (i.e. they cannot have
statements), however the new := operator permits the assignment of a value
within an expression.

Note: Single line functions are compiled as internal procedures and therefore cannot be
redefined at runtime.

! This function is passed two numeric expressions. The first is
! multiplied by the second after the second is incremented by 2.

Def test(y,z) = y * (z := z + 2)
a = 5;b = 2
c = test(a,b)
Print a;b;c 5 4 20

Revision date: 08/23/05 35 Dynamic Concepts Engineering

Note: Single line functions are unique program blocks and operate identically with
internal procedures, which share everything with their surrounding program unit.

The following example computes the difference between two date variables
returning the number of days. This type of function might be used in an aging
routine.

! Simple function which is passed two dates and returns the
! difference between them, returning the result in days
! Date arithmetic returns seconds; there are 86400 seconds / day

Def days(a#,b#) = (b# - a#) / 86400 !Define the procedure

! To call this procedure, define two date variables:
Dim 1%, first#, second#
first# = "Jan 1, 2002"
second# = "Jan 15, 2002"

! Subtracting the dates returns seconds:
Print second# - first# 1209600

! Using our function returns the difference in days:
Print days(first#,second#) 14

Training Note: Why is the function name days as opposed to days#?
It is because the result is a number not a date.

The following example computes the difference between two date elements in a
structure returning the number of days. When passing a structure to a
procedure, the declaration of the procedure must include a definition of the
structure being passed.

! Simple function which is passed two dates and returns the
! difference between them, returning the result in days
! Date arithmetic returns seconds; there are 86400 seconds / day

Def Struct dates ! Assuming we have defined this
structure
 Member 1%,first#
 Member 1%,second#
End Def

Def days(pass. As dates) = (pass.second# - pass.first#) / 86400

! To call this procedure, setup the dates in a structure:
Dim test. As dates
test.first# = "Jan 1, 2002"
test.second# = "Jan 15, 2002"

! Subtracting the dates returns seconds:
Print test.second# - test.first# 1209600

! Using our function returns the difference in days:
Print days(test.) 14

Training Note: DEF statements
Multiple function definitions (DEF statement) with the same function name in the same
program are not acceptable in dL4. Unibasic processes DEF statements at execution so
the same function name could be reused in a program. dL4 processes DEF statements at

Revision date: 08/23/05 36 Dynamic Concepts Engineering

compile time, so it cannot have two functions defined with the same name in a program.
Resolution: recode so all functions are uniquely named.

Multi-line Procedures

Multi-line procedures include the familiar Call "subprogram" procedures and
permit the developer to define procedures, which perform a wider range of
operations. There are two types of multi-line procedures available to the
developer, SUB and FUNCTION:

• Subprograms that may operate upon and return data through optionally passed arguments.

• Functions that may operate upon and return data through optionally

passed arguments and return a value to the caller.

Procedures may be declared External making them independent program units
within a program and visible to other program units both inside and outside of
the program. External procedures share nothing with the surrounding
program, except channels. Regardless of their physical location, they have
their own set of variables, Lib directory, DATA statements, current precision,
stacks, OPTIONS, random number seed, etc.

An External procedure is similar to a separate program in dL4 or IRIS. However,
an External procedure is a secondary program unit that is only executable when
called. Attempting to Chain or RUN a program that contains only External
procedure(s) will result in no operation.

Procedures that are NOT declared External are internal program blocks within
the surrounding program unit and DO share variables,etc. Internal procedures
are not visible outside the program unit that contains them. However, they are
considered a separate program block and are only executed when called. In
addition, they share everything with any surrounding program unit. In some
ways, internal procedures are similar to a block-structured GOSUB.

Any given program may include zero or one main program units and any
number of secondary program units. Any given program unit may include any
number of program blocks, however nesting program blocks is not permitted.
Therefore, the main program unit or secondary program units (External
procedures) may contain any number of program blocks (internal procedures),
however a program block (internal procedure) may not contain another program
block (internal procedure) or secondary program unit (external procedure).

Correct nesting of internal and external procedures:

External Sub doit() !This is a secondary program unit
 Sub dosomething() !This is a block within this unit
 Print "something"
 End Sub
End Sub

Call doit() !This is the main prog unit (1 stmt)

Incorrect nesting of internal and external procedures:

External Sub doit() !This is a secondary program unit
 Sub dosomething() !This is a block within this unit
 Print "something"

Revision date: 08/23/05 37 Dynamic Concepts Engineering

 Sub dosomething2() !Nesting another block is illegal
 Print "something2"
 End Sub
 End Sub
End Sub

Call doit() !This is the main prog unit (1 stmt)

Call by program name (old method) :
For backward compatibility purposes, the execution of a Unibasic syntax
statement Call "subprogram" calls the main program unit of the selected
subprogram. The Enter statement is used to accept all passed arguments.

Note: Any given program may have only one main program unit. A main program unit may be
RUN or called as a subprogram by filename.

A group of External procedures may be saved in a single program, called a
library file. If a program has an empty main program unit, attempting execution
via Chain or RUN results in no operation.

Training Note: It is good practice to name a library file with a .lib extension.

A program that has both an executable main program unit as well as External
procedures may also be referenced as a library by other programs. However, it
is advisable to segregate shared External procedures into library files that do not
include a main program unit to ensure that they remain constant and available
to other program units. An exception for compatibility purposes might be a
procedure that is called by filename (i.e. Call “program”) and therefore exists as a
main program unit of the library file.

Note: Program branching between blocks is not permitted. Variables are passed to a
procedure by reference. A procedure may alter those variables in the callers program
as a method of returning data. Procedures that are called by filename are physically
external. That is, they are stored in another program as the main program unit of that
program. They only share channels and any variables passed by reference with the
caller.

Passing variables by reference to a procedure is not the same as passing
common variables via Com or Chain Write. Common variables (Com) are
passed by name to a program and are literally copied into the variable space of
the new program. When that program operates upon the variables, it does so
with its own copy. To return or pass those variables back to a caller requires an
elaborate use of Chain and Jump.
When variables are passed by reference to a procedure, that procedure
actually points its referenced variables to the caller's supplied variable data
space. Any changes to the variable are affected in the caller's program.
For example:

! Perform a summation on three numeric arguments.
! Update the first argument to be twice the result.
! If the result is > 1000, set d to 1 otherwise 0
Sub compute(a,b,c,d)
 a = (a + b + c) * 2

Revision date: 08/23/05 38 Dynamic Concepts Engineering

 if a > 1000 let d=1 else let d=0
End Sub

! Call the function with three parameters
Call compute(r,200,g,k) ! r will be result, k the return flag

! Call the function ignoring the flag
Call compute(g,r*50,b,0)

The above example is better written as a Function returning the value. In that
way, selective ignoring of a return value is readily apparent:

! Perform a summation on three numeric arguments.
! Update the first argument to be twice the result.
! If the result is > 1000, return 1 otherwise 0
Function compute(a,b,c)
 a = (a + b + c) * 2
 if a > 1000 Exit Function 1 else Exit Function 0
End Function

Multi-line Procedures Stored in Program Files (Unibasic style call by
program name)

For compatibility with dL4 and IRIS, subprogram procedures may be saved as
separate programs. The main program unit of any program may be called as a
procedure.

The following statements are used in conjunction with subprogram procedures
stored as programs:

Lib Specify a directory to search when calling named programs as subprograms.

Call "program", Invoke a subprogram procedure by program name passing a list of parameters.

Enter Accept arguments into a subprogram.

End Terminate a subprogram program and return to the caller.

The Lib statement is used to specify an alternate directory to be searched when
procedures are called by filename. It is also used by Chain and Swap. A
program unit may contain any number of Lib specifications. Only the most
recent is in effect.

 Lib "dirname"
dirname selects a specific directory which is to be searched when calling a
procedure by name. dirname is also used when transferring control to another
program using Chain, Swap and Spawn. Only one dirname may be specified.

Revision date: 08/23/05 39 Dynamic Concepts Engineering

Note: The following search mechanism is used to locate programs when called by Call, Chain,
Swap and Spawn: (If the LUMAP environment variable is set, LUMAP is applied
during the initial translation of the program filename and, if mapped, the filename
becomes an absolute path which doesn’t use any of the search directories.)

 1. If the program unit has specified a Lib dirname , it is searched first. (If the LIBSTRING
environment variable is set, LIBSTRING is used unless overridden by a Lib
statement.)

 2. The directory where the calling program resides is searched.

 3. The users current working directory is searched.

When calling the main program unit as a multi-line procedure by filename, use
the Lib statement to specify the directory where the procedure is located. The
Lib declaration may be changed within a program unit as necessary to call
various named subroutines.

When calling a named program as a procedure (old method), the calling
program includes a statement in the form:

 Call "program" {, parameter1 {, ...}}

program is the name of a saved program. When called, the main program unit of
the program is executed.

Optional parameters may be passed to the procedure. The parameters may be
any type of data, including a structure.

A procedure called by filename looks like any other program with the following
exceptions:

 1.It usually contains an Enter statement to map variables and data passed by reference.

 2. It terminates with an End statement.

The Enter statement maps variables and expressions passed by reference to
names used within a procedure. The subprogram accepts and returns the
values of each variable. The general form of the Enter statement is:

 Enter variable {, ... }

Normally, all required arguments are specified within a single Enter. An error
results when a variable's type does not match the type of parameter passed by
the caller, or the caller supplied more or less than the specified number of
parameters.

Revision date: 08/23/05 40 Dynamic Concepts Engineering

Note: The '...' enclosed within braces is used to indicate that an optional list of parameters may
be entered. This syntax should not be confused with the '...' parameter itself which
permits Enter to selectively accept parameters. Refer to Variable Type and Number of
Arguments later in this section for more information.

When passing a structure, the procedure must also include its own structure
definition of an identical structure and supply the structures designation.

In the following example, the caller passes a structure, date variable, string
variable and numeric array using the Call statement. The procedure maps the
references to its own set of local names using Enter.

! Within the calling program
Call "testdata", T., v#, s$, X[]
! The procedure: Main program unit within "testdata" program
Def Struct Dates
 Member 1%, date1#
 Member 1%, date2#
End def

Enter this. as Dates, date3#, string$, array[]
Dim ... !Dimension its own local variables
!T. is passed to this. as a structure

In the above example, this is a 'Dates' structure and references the callers T.,
date3 references v#, string$ references s$ and array references X. Any changes
to any of the referenced variables will affect the caller's program.

A procedure which is called by filename causes the main program unit of that
filename to be executed. The program may also contain other program units, for
example:

External Function IsPrime(N)
 Dim %2,I
 If N = 1 Exit Function 0 ! not prime
 For I = 2 To Sqr(N)
 If Not(Fra(N / I)) Exit Function 0 ! not prime
 Next I
End Function 1

!--
! Main program
Enter Count
For J = 1 to Count
 If IsPrime(J) Print J;" is a prime number"
Next J
End

Multi-line Procedures Stored as Program Units and Blocks

When creating multi-line procedures, the developer decides and declares
whether any given procedure is internal or external. Internal procedures
(much like GOSUBs) are typically used when:

 The procedure is to operate on any variables passed by reference as well as variables or data

Revision date: 08/23/05 41 Dynamic Concepts Engineering

 elsewhere within the program unit.
 The procedure may change or set parameters which are to affect the surrounding program unit,
 The procedure desires to share a program unit’s current state.
 No other program will be calling the procedure.

Conversely, the developer declares a procedure External whenever:

 The procedure is to share only variables and data passed by reference with
the caller. It declares its own data, precisions and local variables which are
independent of any surrounding program unit.

 The procedure set its own parameters independent of the caller.
 The procedure shares nothing with the caller, except channels.
 Other programs need to call the procedure.

Multi-line procedures make use of the following statements for their declaration,
linkage and calling.

Sub name(...) Define a named subroutine program block
(internal)

Function name(...) Define a named function program block

External Sub name(...) Define an independent subroutine program unit

External Function name(...) Define an independent function program unit

Declare {External}. . . Identify a function/subroutine block or program unit which

appears in another program, or later in the current program.

Enter ... Accept additional arguments into a procedure.

External Lib "file" Declare named library file(s) in a list

 End Sub End a named subroutine program block.

Exit Sub Exit a named subroutine program block.

End Function value End a named function program block returning
value.

Exit Function value Exit a named function program block returning
value.

Sub (Internal implied) declares a subprogram which operates as a separate
program block within a program unit. A Sub operates upon, and returns values
through, supplied parameters passed by reference.

Function declares a function which operates as a separate program block
within a program unit which returns a value to the caller. A Function may also
operate upon, and return values through, supplied parameters passed by
reference.

A procedure name may be from one-to-thirty-two characters in length and must
end with the type designation matching the data type returned from the
procedure. Numeric data has no suffix, strings end with $, dates with # and

Revision date: 08/23/05 42 Dynamic Concepts Engineering

binary variables end with ?. Structures may be passed and operated upon, but
a procedure cannot return a structure.
Whenever a procedure is to be used before its definition within the current
program unit or program, or physically resides in another program, a Declare
statement must occur before its first use.

Declare { External | Intrinsic } Sub | Function name {, ...}

External identifies the procedure as a separate secondary program unit which
shares nothing with its surrounding program and any main program unit.

Intrinsic identifies the procedure as an internal language function, added by a
developer and linked into the runtime. These functions are written in C and
include some of the familiar IRIS calls, such as $TrxCo.

If the procedure is an internal procedure within the program unit, neither
External nor Intrinsic is declared. Internal procedures share everything with
the surrounding program unit. (Typically parameters are not passed to an
internal sub since they are already shared.)

If any of the declared procedures are External and outside of the program, they
must be in one of a declared list of library files. At runtime, those libraries are
opened and the required procedures are dynamically linked into the calling
program.

 External Lib filename {, ...}

filename is the name of a program which is to be opened during the dynamic
linking phase when the current program is first executed. External Lib
declarations may be placed anywhere within a program, and they affect the
entire program.

Whenever a program is loaded, via Chain, RUN, Call "filename" or Swap, all
references to External procedures must be resolved prior to execution. The
linking process consists of scanning the lists of External Lib filenames loading
and linking any required secondary program units until all External references
are resolved.

An error is generated if any External procedure references are unresolved.

In the following procedure, written as a function returning a value, the caller
passes a string parameter and two numeric parameters. The purpose of the
function is to prompt the user for input, using the supplied string parameter,
and permit the input of a numeric value. The value must be between the two
supplied numeric expressions. A numeric value is returned when the input is
successful. The function will re-prompt the user if the supplied input is not in
range.

The procedure is shown in both internal and External forms.

Function InputNum(Prompt$,Min,Max)
 Dim 4%,Z ! This may be a problem !!

 Do
 Print 'CR';Prompt$;
 Input Z

Revision date: 08/23/05 43 Dynamic Concepts Engineering

 If Not(Fra(Z)) And Z >= Min And Z <= Max Exit Do
 Print " VALUE OUT OF RANGE!";
 Loop
End Function Z !Return numeric value Z

External Function InputNum(Prompt$,Min,Max)
 Dim 4%,Z

 Do
 Print 'CR';Prompt$;
 Input Z
 If Not(Fra(Z)) And Z >= Min And Z <= Max Exit Do
 Print " VALUE OUT OF RANGE!";
 Loop
End Function Z

This function is designed to be declared External. Omitting this declaration has
the following {negative} effects on the caller:

1. DIM 4% specifies a new default precision for the calling program unit

each time this function is called.
2. Variable Z is a temporary variable used by this procedure. If the calling program unit has

a Z, this procedure will overwrite it's value.

The following example of the BUILDXF program illustrates the use of this
procedure and a program with two program units.

! "BUILDXF" == PROGRAM TO CREATE AN INDEXED FILE
! K = KEY LENGTH
! L = DATA RECORD LENGTH
! R = NUMBER OF INDEXED DATA RECORDS
! X = NUMBER OF DATA RECORDS
! D = NUMBER OF DIRECTORIES

External Function InputNum(Prompt$,Min,Max)
 Dim 4%,Z
 Do
 Print 'CR';Prompt$;
 Input Z
 If Not(Fra(Z)) And Z >= Min And Z <= Max Exit Do
 Print " VALUE OUT OF RANGE!";
 Loop
End Function Z

Dim N$[128]
Dim %1,E,I,D,K[62]
Dim %2,X,L,R,R2

Print 'CR';"PROGRAM TO CREATE AN INDEXED DATA FILE"
Do
 Input 'CR';"DESIRED FILENAME? ";N$
 If N$ = "" Exit Do
 X = InputNum("NUMBER OF DATA RECORDS",0,2^31)

 If X
 L = InputNum("DATA RECORD LENGTH (#WORDS)",1,2^30)
 Else
 L = 256
 End If

 R = InputNum("NUMBER OF INDEXED RECORDS",0,2^31)
 D = InputNum("NUMBER OF DIRECTORIES",1,62)
 Print 'CR CR';"ENTER KEY LENGTH (#WORDS) FOR EACH DIRECTORY:";

Revision date: 08/23/05 44 Dynamic Concepts Engineering

 For I = 1 To D
 K[I] = InputNum("#" + Str$(I),1,61)
 Next I

 Print 'CR CR';"PLEASE WAIT . . ."

 ! CREATE FILENAME STRING AND BUILD THE FILE
 Build #0,"["+Str$(X)+":"+Str$(L)+"] "+N$

 ! SET KEY LENGTH FOR EACH DIRECTORY
 For I = 1 To D
 Search #0,0,I;N$,K[I],E
 If E Stop 'CR' + "ERROR TYPE " + Str$(E) + " IN DIRECTORY " + Str$(I)
 Next I

 ! STRUCTURE THE DIRECTORIES
 Search #0,0,0;N$,R,E
 If E Stop 'CR' + "ERROR TYPE" + Str$(E) + "WHILE STRUCTURING
DIRECTORIES"

 ! READ FIRST REAL DATA RECORD NUMBER
 Search #0,1,0;N$,R2,E
 If E Stop 'CR' + "ERROR TYPE" + Str$(E) + "WHEN READING FIRST REAL
RECORD "

 Print 'CR';"FILE HAS";X;"DATA RECORDS";'CR'
 Print 'CR';"FILE STRUCTURE COMPLETED"
 Close #0
Loop
Chain ""

This program example places its External function at the start of the program,
before the main program unit. In this way, it is defined prior to its first use.

Variable Type & Number of Arguments Passed to Procedures

Procedures may be written to allow the caller to pass other than a fixed list of
parameters. Parameter types and number are not checked by the compiler or
interpreter. Rather, it is left to the procedure to process each of the arguments
passed by a caller.

To define a procedure of this type, the following general forms are supported:

Function name (...)

Sub name (...)

The definition of the procedure itself specifies '...' informing the compiler and
interpreter to leave the parameter type and number checking to the procedure.

It is also permitted to define a procedure which has a known (required) list of
parameters, followed by additional optional parameters. Optional parameters
must be the last parameters in the procedure definition. The following example
requires a numeric parameter and a string parameter, followed by an optional
number of parameters.

Function name (parameter1, parameter2$, ... }

Procedures of this type utilize the Enter statement to accept optional
parameters.

Revision date: 08/23/05 45 Dynamic Concepts Engineering

Subprogram procedures called by filename may also accept a variable list of
parameters. Unlike functions and subs, the compiler performs no type or
parameter checking for procedures called as programs. Checking is only
performed during the runtime processing of any Enter statement within the
called procedure. When calling a procedure of this type, it is the sole
responsibility of the procedure to check the passed parameters.

Call "filename" {parameter1 , { ... }}

In any case, a caller's list of arguments is placed into a list to be processed by
the actual procedure. The general form of the Enter statement when used for
this purpose is:

Enter expected parameter { , ... }

expected parameter specifies the type of parameter expected by the procedure. If
the next parameter in the list matches the supplied expected parameter, it is
extracted from the list and passed to the procedure. If not, an error is generated
to the procedure which may decide to alter its course of action.

The Enter statement must end with ... if additional parameters might follow.
This preserves any remaining arguments in the list passed by the caller. Do not
terminate the Enter statement with ... if the procedure is certain that additional
parameters are not in the list, or that an error should result if there are
additional parameters.

The following example illustrates the use of a variable number of parameters.

! Name:
! VerifyDate() - Verify date inputs
!
! Synopsis:
! Call VerifyDate(D${,R${,S}})
!
! History:
! CALL 24 on BITS systems and dL4.
! CALL 64 on some IRIS systems.

External Sub VerifyDate(D$,...) !... is part of syntax
 Option Date Format Native
 Dim 2%,D#,N
 Dim %1,NoStatVar

 Try Enter R$,... Else Dim R$[6]
 Dim %1
 Try Enter S Else S = 0;NoStatVar = 1
 Try
 Let D# = D$
 N = (Year(D#) Mod 100) * 10000 + Month(D#) * 100 + Monthday(D#)
 R$ = N Using "&&&&&&"

 Else
 S = 1
 End Try
 If S And NoStatVar Error 38
End Sub

General Notes on Procedures

Single line procedures, declared by Def behave as separate program blocks. For
example, the following two program blocks behave identically:

Revision date: 08/23/05 46 Dynamic Concepts Engineering

 Def XYZ(A,B)=Sin(A) + Cos(B)

 Function XYZ(A,B)
 End Function Sin(A) + Cos(B)

When a caller invokes a procedure, other than Call "name", which accepts a
specific list of arguments, the interpreter verifies that the parameter types being
passed are of the correct type. If the procedure calls for a string, the interpreter
will verify that the argument is string - nothing more. The procedure has no
method of identifying whether an expression or a reference to a string variable
was passed.

When a procedure is defined including the ... argument option, the procedure
itself assumes all responsibility for the type and size of each passed argument.

An error is not generated should a caller pass an expression when the procedure
assumes a variable reference. The caller simply elects not to care about any
result returned in that variable reference. However, if a procedure assumes that
it was passed a variable and attempts to modify specific subscripts, an error will
be generated to the caller if the argument is not of sufficient size.

The developer can elect to pass BASIC errors encountered in a procedure
back to the caller (by not explicitly handling them locally), alter the actual error
returned (Error statement) or change the behavior of the procedure.

External Sub Check(S$)
 Dim %2,I

 For I = 1 To Len(S$)
 Select Case S$[I,I]
 Case "0" To "9"
 Rem These are valid characters
 Case Else
 Error 38 ! Force an error to the caller
 End Select
 Next I
End Sub

The developer can explicitly handle errors in routines and pass them back to the
caller as such :

 10 Rem a way to trap and report all errors in subs
 20 Declare Sub a,b
 30 Dim e$[50]
 100 Sub a()
 110 Try
 120 Call b()
 130 Else
 140 If Spc(8) < 10000 Let e$ = "sub a " + Msc$(2) + " at " +
Str$(Spc(10))
 150 Error 10000
 160 End Try
 170 End Sub
 200 Sub b()
 210 Try
 220 x$ = ""
 230 Else
 240 If Spc(8) < 10000 Let e$ = "sub b " + Msc$(2) + " at " +
Str$(Spc(10))
 250 Error 10000
 260 End Try

Revision date: 08/23/05 47 Dynamic Concepts Engineering

 270 End Sub
 300 Rem main
 310 Try
 320 Call a()
 330 Else
 340 If Spc(8) < 10000 Let e$ = "main " + Msc$(2) + " at " +
Str$(Spc(10))
 350 Print e$
 360 End Try

Note: A procedure may deallocate its use of a referenced variable, using the FREE
statement. However, the procedure cannot deallocate variables in the calling
program.

Occasionally, it might be necessary to loop through a variable number of
arguments. In this example, the procedure accepts arguments from the
command line input buffer. This procedure parses a command line, for
example:

 #test 0 123 44 18 20

External Sub GetCommandLineArgs(...)
 Dim S$[80]
 Dim %1,P

 Input (0,K)S$! Get the input command string
 !special Input mode to input command string
 !see INPUT statement in Reference manual
 !mode 0=read command line, K=not used in this mode

 Do
 ! Skip to next arg in command line string
 ! This skips the first which is the supplied program name
 P = Pos(S$, = " ")
 If P Let S$ = LTrim$(S$[P + 1]) Else S$ = ""
 !Ltrim removes any extra spaces between parameters

 If Not(S$) Exit Sub ! No more parameters
 ! S$ now has a parameter
 ! Assign to caller's numeric var by referencing as 'N'
 Try Enter N,... Else Exit Do ! No more, or wrong type
 N = S$! Assign to callers var
 Free N ! So next time points to next param
 Loop ! Loop until no more parameters
End Sub ! Done

User Calls as Procedures

To facilitate the development of User Calls, dL4 treats procedures written in C
virtually identical to those written in BASIC. In addition, procedures may be
written in C as Functions returning a value to the caller.

This streamlined mechanism allows developers the flexibility to create
procedures in either C or BASIC while maintaining a uniform calling sequence:
• Procedures written in C are declared Intrinsic

• Procedures written in BASIC are declared internal (implied) or External.

Revision date: 08/23/05 48 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3D

New & Enhanced
Statements

Revision date: 08/23/05 49 Dynamic Concepts Engineering

The following are new statements available in dL4, in addition to the new statements for
Structured Programming and new statements for accessing various drivers, which are
described in the driver sections. New statements MOVE and SIZE are described in the
GUI section.

BOX

Synopsis
Draw a rectangular figure on display device.

Syntax
BOX {chan.no;} {@x1,y1;} [TO @x2,y2;] | [SIZE w,h]

Parameters
chan.no identifies a valid channel number.

x1,y1 are the column, row coordinates of the upper left corner of the rectangle. If not
specified the current cursor position is used.

TO is a keyword which must be followed by the lower right coordinates of the box,

-or-

SIZE is a keyword which must be followed by two integers representing the number of
columns and rows.

x2,y2 are the lower right column, row coordinates.

w,h identify the width and height.
Executable From Keyboard?

Yes.
Remarks

Box drawing is a function of the window and printer drivers, and uses the #,#RECTTO
and #,#RECT mnemonics. When running on Unix, your terminal description file must
contain a definition for these mnemonics.

If @x1,y1 is not specified, the current cursor position is used as the upper left corner.
Examples

Box @7,2; To @70,10;

Box @7,2; Size 70,19

Box To @70,10;

Revision date: 08/23/05 50 Dynamic Concepts Engineering

CHAIN READ IF

Synopsis
Like CHAIN READ of specified variables, but without reporting an error if any of
the variables weren’t passed.

Syntax
CHAIN READ IF var.list

Parameters
var.list is a list of comma separated variables of any dL4 data types.

Executable From Keyboard?

No.
Remarks

See CHAIN READ for further remarks..
Examples

CHAIN READ IF SubTotal, Filename$

See also
 CHAIN READ,CHAIN WRITE

CHANNEL

Synopsis
Low-level statement to perform a driver-specific command.

Syntax
CHANNEL chan.cmd, chan.expr {expr.list}

Parameters
chan.cmd is an integer value indicating a driver-class dependent action.

chan.expr is a driver-class dependent channel expression.

expr.list is an arbitrary number of comma separated expressions or variables of any dL4
data types.

Executable From Keyboard?
Yes.

Remarks
Refer to the dL4 Files and Devices reference manual for information on channel
commands supported by specific drivers.

Examples
Channel 38, #1, 1; Creationdate#

Channel 38, #1, 2; LastAccessdate#

Channel 38, #1, 3; Modificationdate#

Revision date: 08/23/05 51 Dynamic Concepts Engineering

Channel 36, #1; “E” !Channel 36 sets open mode, i.e. “E”
Exclusive Open

Example of use with the Windows driver:

Channel 11, #1; !shows window

Channel 12, #1; !hides window

CHDIR

Synopsis
Change default directory to a specified path.

Syntax
CHDIR str.expr

Parameters
str.expr is an expression yielding a string value.

Executable From Keyboard?
Yes.

Remarks
The str.expr must be a legal filename of a directory.

Examples
Chdir C$

Chdir "../menu"

DUPLICATE

Synopsis
Copy a file.

Syntax
DUPLICATE str.expr {AS driver-class | driver-name}

Parameters
str.expr is a string literal or expression containing a source filename followed by a
destination filename (space separated) each of which is optionally proceeded by a relative
or absolute pathname.

driver-class specifies the driver-class.

driver-name specifies the driver-name.

Revision date: 08/23/05 52 Dynamic Concepts Engineering

Executable From Keyboard?
Yes.

Remarks
If the destination file already exists, an exclamation point (“!”) must be appended to the
destination filename to overwrite the existing file.

If the file consists of two or more subfiles, each file will be copied. For example, an
Indexed Contiguous file might consist of a data file (“source”) and an index file
(“source.idx”). These files would be copied to the destination filename (“destination” and
“destination.idx”).

Examples
Duplicate “PAYROLL PAY1QTRBKUP”

Duplicate “/usr/ub/23/file /u/u1/23/file”

Revision date: 08/23/05 53 Dynamic Concepts Engineering

EOPEN

Synopsis
Open an existing file for exclusive access.

Syntax1
EOPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,}
file.spec.str {AS driver-class | driver-name}} ...

Syntax2
EOPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,}
file.spec.items AS driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent
references to the file.

file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4
file specification used to open a file.

driver-class specifies the driver-class, instead of using a default driver-class derived from
the file.spec.

driver-name specifies the driver-name, instead of using a default driver-class derived
from the file.spec.

file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid
dL4 file specification used to open a file.

Executable From Keyboard?
Yes.

Remarks
Similar to the OPEN statement except opens a file exclusively. Exclusive
open only allows the file to be opened if it is not already open by another
user. Once opened exclusively it cannot be opened by other users until
closed.

Examples
Eopen #2,"cust.masterfi" AS "Full-ISAM"

Revision date: 08/23/05 54 Dynamic Concepts Engineering

ERASE

Synopsis
Perform driver-class dependent erase function.

Syntax
ERASE chan.no

Parameters
chan.no is a valid channel number.

Executable From Keyboard?
Yes.

Remarks
Refer to the dL4 Files and Devices reference manual for information on a specific driver.

Examples
! This is an example of the Erase statement
Dim s$[1]
Print 'CS'
W = 38 \ H = 12
Open #1,{" Windows ","TITL",W,H} As "Window"
Print #1; "Enter any character to Erase (Clear) Window ";
Read #1;S$
Erase #1

See also
CHANNEL

FREE

Synopsis
Deallocate (undimension) variable(s).

Syntax1
FREE var.list1

Syntax2
FREE ALL {EXCEPT var.list2}

Parameters
var.list1 is an arbitrary number of comma separated variables of any dL4 data types.

var.list2 is an arbitrary number of comma separated variables of any dL4 data types,
which are not freed.

Executable From Keyboard?
Yes.

Remarks
A freed string variable should not be referenced.

Revision date: 08/23/05 55 Dynamic Concepts Engineering

Freeing a numeric variable causes the next reference to reDim it to the last precision
level.

Examples
Free N

Free N,P$,D#

Free All Except N,P$

See also
DIM

GET

Synopsis
Obtain driver-class dependent information from a channel.

Syntax
GET chan.expr var.list

Parameters
chan.expr is a driver-class dependent channel expression.

var.list is an arbitrary number of comma separated variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

Refer to the dL4 Files and Devices reference manual for information on using GET with
a specific driver.
The GET statement can be used to retrieve the local or remote IP
addresses associated with a socket. Example:

 Get #c,-1598;RemoteAddress$
 Get #c,-1599;LocalAddress$

Get #c,-399;S$ can be used to retrieve the index character set from an indexed-
contiguous or Full-ISAM file.

Get #c,-1299;Name$ can be used to determine the character set used on channel c.

By using the DUPCHANNEL intrinsic CALL, these operations can also be
used on the standard input and output channels if they are open to a
socket.

Examples
Get #2,1,-1;Opt,name$

See also
SET

Revision date: 08/23/05 56 Dynamic Concepts Engineering

LINE

Synopsis
Draw a line on a display device.

Syntax
LINE {chan.no;} {@x1,y1;} TO @x2,y2; { TO @x2,y2; } ...

Parameters
chan.no identifies a valid channel number.

x1,y1 are the column, row coordinates of the start of a line.

x2,y2 are the ending column, row coordinates of a line.
Executable From Keyboard?

Yes.
Remarks

Line drawing is a function of the window and printer drivers. If running on a character
terminal, your terminal description file must contain a definition for the mnemonic
#,#LINETO.

If @x1,y1 is not specified, the current cursor position is assumed.

TO is a keyword which must be followed by the ending coordinate position of the line
segment.

Examples
Line @3,3; To @30,3;

Line @3,3; To @3,9; TO @30,9;

Line To @30,1;

See Also
BOX

Revision date: 08/23/05 57 Dynamic Concepts Engineering

OPTION

Synopsis
Specify runtime option(s) for the current program.

Syntax
OPTION { DEFAULT } opt.spec setting {, opt.spec setting } ...

Parameters
opt.spec is a runtime option specifier.

setting is a runtime option parameter.
Executable From Keyboard?

No.
Remarks

The OPTION statement is used to specify various runtime options for the current
program unit. Each of the options shown below are processed at compile-time and may
be set once in each program unit, applying to the whole unit.

An OPTION DEFAULT statement sets runtime options for all program units within
a program file (it does not set options for libraries used by the program).

Unlike global environment variables, OPTION settings follow a program from system to
system and are preserved in all forms of the program.

Default Alternatives

OPTION ARITHMETIC DECIMAL OPTION ARITHMETIC IRIS DECIMAL

 OPTION ARITHMETIC ICE BINARY

 OPTION ARITHMETIC IEEE DECIMAL

 OPTION ARITHMETIC NATIVE

 OPTION ARITHMETIC BITS DECIMAL

OPTION DATE FORMAT STANDARD OPTION DATE FORMAT NATIVE

OPTION COLLATE STANDARD OPTION COLLATE NATIVE

OPTION ANGLE RADIANS OPTION ANGLE DEGREES

OPTION BASE YEAR 1988 OPTION BASE YEAR numconst

OPTION FOR NESTING 8 OPTION FOR NESTING numconst

OPTION GOSUB NESTING 8 OPTION GOSUB NESTING numconst

OPTION TRY NESTING 8 OPTION TRY NESTING numconst

OPTION COMMA SPACING 15 OPTION COMMA SPACING numconst

OPTION USING DECIMAL IS PERIOD OPTION USING DECIMAL IS COMMA

OPTION FILE ACCESS STANDARD OPTION FILE ACCESS RAW

OPTION FILE UNIT IS WORDS OPTION FILE UNIT IS BYTES

OPTION DISPLAY AUTO LF ON OPTION DISPLAY AUTO LF OFF

OPTION CHAIN FAILURE IS RETURNED OPTION CHAIN FAILURE IS ERROR

OPTION CLOSE FAILURE IS ERROR OPTION CLOSE FAILURE IS IGNORED

OPTION IF BY LINES OPTION IF BY STATEMENTS

OPTION INPUT TIMEOUT SIGNAL ON OPTION INPUT TIMEOUT SIGNAL OFF

OPTION STRINGS STANDARD OPTION STRINGS RAW

Revision date: 08/23/05 58 Dynamic Concepts Engineering

OPTION OPEN AUTO CLOSE OFF OPTION OPEN AUTO CLOSE ON

OPTION RETURN BY STATEMENTS OPTION RETURN BY LINES

OPTION NUMERIC FORMAT STANDARD OPTION NUMERIC FORMAT NATIVE

OPTION INPUT BUFFER 256 OPTION INPUT BUFFER numconst

OPTION CHAIN ALTERNATE DIRECTORIES ON OPTION CHAIN ALTERNATE DIRECTORIES
OFF

OPTION STRING SUBSCRIPTS STANDARD OPTION STRING SUBSCRIPTS IRIS

OPTION DIALECT STANDARD OPTION DIALECT IRIS

 OPTION DIALECT IRIS1

 OPTION DIALECT BITS

 OPTION DIALECT BITS1

 OPTION DIALECT IMS

OPTION AUTO DIM ON OPTION AUTO DIM OFF

OPTION FLUSH AFTER STATEMENT OFF OPTION FLUSH AFTER STATEMENT ON

OPTION RECORD LOCK TIMEOUT –1 OPTION RECORD LOCK TIMEOUT numconst

OPTION STRING REDIM IS ERROR OPTION STRING REDIM IS LEGAL

 OPTION STRINGS HAGEN

OPTION ZERO DIVIDED BY ZERO IS
LEGAL

OPTION DEFAULT ARGUMENT CHECKING IS
WEAK

OPTION PROGRAM TAG “text”

The OPTION USING DECIMAL [IS PERIOD | IS COMMA] only controls the
meaning of period (".") and comma (",") in USING mask strings, not which character is
output. The output character is controlled by OPTION NUMERIC FORMAT
[STANDARD | NATIVE] and the operating system locale setting.

The OPTION INPUT BUFFER numconst specifies the size in characters of the input
buffer used by the INPUT and MAT INPUT statements.

The OPTION STRING SUBSCRIPTS [STANDARD | IRIS] controls the handling of
the subscript if it evaluates to zero. String subscript values of zero are not normalized by
default (STANDARD). Zero string subscripts are normalized when OPTION STRING
SUBSCRIPTS IRIS is used, such that a starting subscript of 0 becomes 1, with an
ending subscript of 0 being treated as if no ending subscript were given.

The OPTION CHAIN ALTERNATE DIRECTORIES [ON | OFF] controls whether
the CHAIN and SPAWN statements use a search path to locate programs. By default
(ON) the Lib dirname of the program unit is searched first. The directory of the calling
program is searched next. Finally, the users current working directory is searched. If
disabled (OFF), no search path is used and the program file is located just as in the
OPEN statement.

The OPTION DATE FORMAT [STANDARD | NATIVE] controls the date
input/output formats. STANDARD specifies the USA format of MM/DD/YY and
NATIVE specifies the format as determined by the system locale setting.

The OPTION AUTO DIM [ON | OFF] enables or disables auto-dimensioning of
variables. When a program that uses OPTION AUTO DIM OFF is saved, error
messages will be generated for each variable that is not declared in a DIM, COM or
CHAIN READ statement, or parameter list.

Revision date: 08/23/05 59 Dynamic Concepts Engineering

The OPTION FLUSH AFTER STATEMENT [OFF | ON] enables a flushing of the
record buffer at the end of each write statement for those file drivers that support a flush
record without unlock operation.

The OPTION RECORD LOCK TIMEOUT numconst sets the default record lock
timeout period in tenth seconds for I/O statements that do not specify a timeout period.
This option only effects I/O to disk file and database drivers. The value of numconst
must be between –1 (wait forever) and 36000 inclusive.

The OPTION STRING REDIM IS LEGAL allows re-dimension of simple string
variables without FREEing the variable.

The OPTION STRINGS HAGEN provides compatibility with Unibasic HAGEN string
mode.

The OPTION ZERO DIVIDED BY ZERO IS LEGAL allows zero divided by zero to
equal zero rather than causing an arithmetic overflow.

The OPTION DEFAULT ARGUMENT CHECKING IS WEAK allows passing array
variables to subprograms (CALL by filename) without using the empty bracket notation.
This improves IMS compatibility. (Only available in OPTION DEFAULT mode.)

The OPTON PROGRAM TAG “text” can be used to place user defined text in a
compiled program file as ASCII text. This option can be used to add listable revision text
strings to be printed by the Unix “what” utility.

The OPTION DIALECT [STANDARD | IRIS | BITS | IRIS1 | BITS1] sets multiple
options. The default option settings should serve best for all IRIS programs.

The statement OPTION DIALECT IRIS is equivalent to OPTION STRING
SUBSCRIPTS IRIS. OPTION DIALECT IRIS1 also includes OPTION ZERO
DIVIDED BY ZERO IS LEGAL.

IMS users should add the following line to each program:

 OPTION DIALECT IMS

Which is the equivalent of OPTION DIALECT IRIS1, plus IMS Using “mask” behavior

BITS users should add the following line to each program:

 OPTION DIALECT BITS

This is equivalent to adding the lines:

OPTION FILE ACCESS RAW,FILE UNIT IS BYTES,DISPLAY AUTO LF
OFF

OPTION CHAIN FAILURE IS ERROR,CLOSE FAILURE IS IGNORED

OPTION IF BY STATEMENTS,INPUT TIMEOUT SIGNAL OFF,STRINGS
RAW

OPTION OPEN AUTO CLOSE ON,RETURN BY LINES

OPTION DIALECT BITS1 is the equivalent of all the above, plus :

 OPTION DEFAULT ZERO DIVIDED BY ZERO IS LEGAL

 Final value of FOR/NEXT loop is BITs compatible

Revision date: 08/23/05 60 Dynamic Concepts Engineering

 Using mask is BITs behavior

 Initial numeric precision is 4%
Examples

Option Date Format Native

PORT (enhanced)

Synopsis
Attach and control other ports.

Syntax
PORT num.expr1, 4, num.var1, str.var

Parameters
num..expr1 is an expression used to select a target port number.

num.var1 is a variable of numeric data type used to receive operational status.

str.var is a variable of string data type used to receive response.
Executable From Keyboard?

Yes
Remarks

The following modes have been added to the PORT statement :

Mode 4-Return name of Current Program of Specified Port

Port mode 4 returns the name of the current program on a specified port. For example,
the statement :

 Port P,4,S,L$

will return in L$ the name of the program running on port P.

Mode 5-Return current line # and library name of Specified Port

Port mode 5 returns the current line number and library name executing on a specified
port. For example, the statement :

 Port P,5,S,L$

will return in L$ the current line number of the program running on port P. If the program
is executing a line in a library, then L$ will have the format “library:line#” where
“library” is the name of the library. A status is returned in S indicating success (zero) or
failure (one).

Mode 6-Determine if blocked by record lock on Specified Port

Port mode 6 determines whether a port is blocked by a record lock and which other port
is holding the needed record lock. The statement:

 Port portnum,6,status,isblocked,blockingport

sets the variable "isblocked" to one if the dL4 program running on port "portnum" has
been waiting for over 20 seconds for a record lock and to zero if it is not blocked. If the
port is blocked by a record lock, the variable "blockingport" is set to the port number of
the program that currently has the record locked or to -1 if the blocking port number

Revision date: 08/23/05 61 Dynamic Concepts Engineering

cannot be determined. PORT mode 6 is supported for record locks on formatted,
contiguous, and indexed contiguous files.

Mode 7-Return user name and work station name of Specified Port

Port mode 7 returns the user name and work station name of a specified port. For
example, the statement :

 Port portnum,7,status,userid$,station$

Will query port "portnum" and returns in "userid$" the user name, if any, associated with
the port and returns in "station$" the terminal name, if any, used by the port. Mode 7 can
optionally return the group name, current directory path, terminal type, numeric account,
and numeric group for the selected port. The group name, numeric account, and numeric
group values are returned as "" under Windows. Example:

 Port p,7,status,userid$,station$,group$,dir$,term$,usern$,grpn$

Mode 8-Returns the open channels on the Specified Port

Port mode 8 returns the open channels on a specified port. For example, the statement :

 Port P,8,status,firstchan,lastchan,chaninfo.[]

will return open channel information into the array 'chaninfo.[]' for channels between
'firstchan' and 'lastchan'. The 'chaninfo.[]' variable must be an array of structures using
the following structuredefinition:

 Def Struct CHANINFO

 Member 1%,ChanNum

 Member Path$[200]

 Member 3%,RecordNum

 Member 1%,RecordState

 End Def

The member names, dimensioned size of the Path$ member, and the numeric precisions
of the other structure members can be varied as desired. The filename returned in Path$
may be truncated if it is longer than Path$ or if it exceeds system limitations. If the
number of open channels in the specified range is less than the dimensioned size of
'chaninfo.[]', then the first unused element of the array will have a ChanNum value
of -1. If the number of open channels in the specified range is greater than the
dimensioned size of 'chaninfo.[]', the extra channels will be ignored.

Mode 9-Determines if a specified file is open on the Specified Port and if a record is
locked

Port mode 9 determines if a specified file is open on a specified port and optionally
determines if a specified record number is locked in the file. For example, the statement :

 Port P,9,status,filepath$,recordnum,channum

Performs The PORT statement has been extended with a new mode, 9, that determines if
a specified file is open on the port and optionally determines if a specified record number
is locked in the file. The statement

 PORT portnum,9,status,filepath$,recordnum,channum

Revision date: 08/23/05 62 Dynamic Concepts Engineering

performs an inquiry on port 'portnum' to determine if it has 'filepath$' open on a channel
with the record 'recordnum' locked. If 'recordnum' is negative, the search will be
performed using only the file path. If a match is found, the channel open to the file will
be returned in 'channum'. If a match is not found, then 'channum' will be set to -1.

Examples
Port P,4,S,L$ \ If S Stop !get program name

Port P,5,S,L$ \ If S Stop !get current line # and library

See also

SWAP, SPAWN

SET

Synopsis
Set driver-class dependent information in a channel.

Syntax
SET chan.expr expr.list

Parameters
chan.expr is a driver-class dependent channel expression.

expr.list is an arbitrary number of comma separated expressions or variables of any dL4
data types.

Executable From Keyboard?
Yes.

Remarks
Refer to the dL4 Files and Devices reference manual for information on a specific driver.

Examples
Set #1,0,0,0;CustRec.Name$, "Name"

Set #1,0,1,0;CustRec.Address1$, "Address1"

Set #1,0,3,0;CustRec.City$, "City"

Set #1,0,4,0;CustRec.State$, "State"

Training Note: This is a low level method of defining a file if the program
is allowing the user to interactively define the file. It is easier to use
defined structures and the Define Record command.

See also
GET

Revision date: 08/23/05 63 Dynamic Concepts Engineering

SYSTEM (enhanced)

Synopsis
Execute operating system specific commands.

Syntax
SYSTEM str.expr [,num.var]

Parameters
str.expr is a command passed to the native operating system.

num.var is a variable of numeric data type to return the status.
Executable From Keyboard?

Yes.
Remarks

The following modes have been added to the SYSTEM statement :

SYSTEM 29 sets alternate sources of Environment Variables. This function requires the
special form: SYSTEM 29,str.var where str.var contains an alternate source path for
variables that are not defined in the environment. On Windows systems, this path is an
application registry key within the user or system software keys, for example
“DynamicConcepts\\dL4\\Environment”. Note the extra backslash required to preface a
backslash in a string. Also note, the SYSTEM 29 statement must use a string variable, not
a string expression. This mode is not supported on Unix systems.

SYSTEM 30 executes system commands with standard input and output assigned to
/dev/null. This eliminates most screen output by the system command.

SYSTEM 31 When using dL4Term, it is possible to run programs on the user's PC. The
statement SYSTEM 31,"C:\\Program Files\\Application\\program.exe",S will try to
execute "program.exe" on the user's PC. The variable "S" will be set to zero if the
program was successfully started and non-zero if the program couldn't be started. The
SYSTEM statement suspends execution of the dL4 program and waits until the program
exits. To execute in a non-modal fashion (execution of the dL4 program continues), run
the application via the cmd.exe (or preferably use SYSTEM 33), such as

SYSTEM 31,"cmd.exe /c start c:\\Progra~1\\Intern~1\\IEXPLORE.EXE",S

In the default dL4Term configuration, the user will be prompted via a message box to
permit or deny running the command. See the dL4Term documentation and readme.txt
file for information on changing the message box configuration. The DWORD registry
value

HKEY_CURRENT_USER\Software\DynamicConcepts\dL4Term\AllowSYSTEMCmd

 Or

HKEY_LOCAL_MACHINE\Software\DynamicConcepts\dL4Term\AllowSYSTEMCm
d

can be set to one to automatically accept commands without displaying the message
box (note: if set to zero, an "AllowSYSTEMCmd" value in HKEY_CURRENT_USER
will require the message box no matter how the HKEY_LOCAL_MACHINE value is
set).

Revision date: 08/23/05 64 Dynamic Concepts Engineering

SYSTEM 32 will return the number of available 512 byte disk blocks on a file system.
The statement SYSTEM 32,”path”,B returns in B the number of available blocks on the
file system that contains the directory or file “path”.

SYSTEM 33,"C:\\Program Files\\Application\\program.exe",S
will try to execute "program.exe" on the user's PC. The variable "S" will be set to zero if
the program was successfully started and non-zero if the program couldn't be started.
Unlike SYSTEM 31, the statement does not wait for the program to finish and exit. This
statement is intended for use with dL4Term or dL4 for Windows.

Examples

SYSTEM 30,CommandString$

See also

WOPEN

Synopsis
Open an existing file for Write-Only access.

Syntax1
WOPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,}
file.spec.str {AS driver-class | driver-name}} ...

Syntax2
WOPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,}
file.spec.items AS driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent
references to the file.

file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4
file specification used to open a file.

driver-class specifies the driver-class, instead of using a default driver-class derived from
the file.spec.

driver-name specifies the driver-name, instead of using a default driver-class derived
from the file.spec.

file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid
dL4 file specification used to open a file.

Executable From Keyboard?
Yes.

Remarks
Similar to the OPEN statement except access is write-only.

Examples
Wopen #2,"cust.masterfi" AS "Full-ISAM"

Revision date: 08/23/05 65 Dynamic Concepts Engineering

Changed Statements

BUILD # - Declare Type of File to Create

In addition to the older syntax , BUILD provided application selection of a driver or
driver class when creating a new file:
Build #c; <filename> AS "CLASS NAME"
Build #c; <filename> AS "DRIVER NAME"
class might be "Full-ISAM" for any available full ISAM driver, or a specific full ISAM
driver.
Older-style BUILD statements such as:
BUILD #1,+"MYFILE!"

can be made more readable as:
BUILD #1,"MYFILE!" AS "TEXT"

CALL – Calls program name or procedure

In addition to calling other programs, a procedure can be called as described in the
Procedures section.

CLEAR - Initializing Variables

In addition to clearing channels (CLEAR #1), the CLEAR statement can be used to clear
variables, i.e. to initialize them as if they were FREEd and re-DIMensioned.
CLEAR X,Y,A$

Clearing a variable initializes its value as if the variable had just been DIMed. Numeric
and binary values are zeroed. String values are set to nulls. Date values are set to a
special value that indicates that it isn't a valid date.

DATA - Quoted Strings

Character strings in DATA statements must be enclosed in quotes (").

Data "quoted string, has comma"

OPEN # - Declare Driver to Process a File

In addition to the older syntax , OPEN provides application selection of a driver or driver
class when opening a file:
OPEN #c; filename AS "FULL-ISAM"

The AS clause works as described above for the BUILD statement.

Revision date: 08/23/05 66 Dynamic Concepts Engineering

READ # and WRITE # - Binary, Date and Structure Variables

Normal READ and WRITE statements support all of the new data types. Whether a
particular type can be transferred to/from a channel is driver/file-specific. When
reading or writing a structure variable, each separate element is read or written
sequentially.
If CUST. is a structure with members NAME$, ADDR$ and CITY$, then the statement:
READ or WRITE #c,r,b; CUST.

is identical to:
READ or WRITE #c,r,b; CUST.NAME$, CUST.ADDR$, CUST.CITY$

The additional functionality of mapping structure elements to fixed or named positions
within a file are supplied by the new statements READ RECORD and WRITE RECORD.

SEARCH # - Locate First, Last, >=, <= Keys

For use with full ISAM data files, the SEARCH statement has been streamlined.
SEARCH relation #c,index; structure

Where relation is =, >, >=, <, <=, index selects the directory for the operation and
structure is any structure variable which defines the key parts.

Revision date: 08/23/05 67 Dynamic Concepts Engineering

Removed Statements
 EXECUTE Compile / execute statement immediately from string

 INDEX Use SEARCH (automatically converted by CONVERT command)

 RDREL Use READ binary variable to the 'raw' file driver

 WRREL Use WRITE binary variable to the 'raw' file driver

 CREATE Use BUILD (automatically converted by CONVERT command)

Revision date: 08/23/05 68 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3E

Global Variables

Revision date: 08/23/05 69 Dynamic Concepts Engineering

Global Variables

Two Intrinsic Call Subroutines are available for the purpose of setting or reading global
variables for a user. The variable table will be maintained throughout the dL4 session.
Globals can be broken up into named ‘sets’ or ‘groupings’. Up to 1000 different global
variables can be stored per user.
You can think of global variables as similar to reading/writing to record 0 of a formatted
file, except the field type can change at anytime.

CALL SETGLOBALS

Synopsis
Set the value of a global variable

Syntax
CALL SETGLOBALS (num.expr1{,str.expr1 or num.expr2 {,str.expr2 or
num.expr3 …} })

CALL SETGLOBALS (str.expr1,num.expr1,str.var1 or num.var1{,str.var2 or
num.var2 …})

Parameters
str.expr1 is an optional string variable or expression specifying a named set of global
values .

num.expr1 is a numeric variable or expression specifying the global item number to set.

 str.expr1 is a string variable or literal specifying the value to be stored and associated
with the item number.

num.expr2 is a numeric variable or expression specifying the value to be stored and
associated with the item number.

str.expr2 and num.expr3 are optional subsequent items to be set.
Remarks
 Element numbers begin at 0.

Up to 1000 elements can be stored.

If only the item number is specified, the value of that item is cleared.

 Otherwise, either a string or numeric expression is provided to set the item.

Additional string or numeric expressions can be listed, comma separated, to set
subsequent items.

Examples
Call SetGlobals(3) !clears global item 3

Call SetGlobals(3,”123456”)

Call SetGlobals(fieldnumber,value)

Call SetGlobals(1,x$,35,y$)

Call SetGlobals(“mylib”,0,N$,A) !set values in mylib set

Revision date: 08/23/05 70 Dynamic Concepts Engineering

CALL GETGLOBALS

Synopsis
Get the value of a global variable

Syntax
CALL GETGLOBALS (num.expr1,str.var1 or num.var1{,str.var2 or num.var2 …})

CALL GETGLOBALS (str.expr1,num.expr1,str.var1 or num.var1{,str.var2 or
num.var2 …})

Parameters

str.expr1 is an optional string variable or expression specifying a named set of global
values .

num.expr1 is a numeric variable or expression specifying the global item number to get.

str.var1 is a string variable to retreive the value stored in the global variable.

num.var1 is a numeric variable to retreive the value stored in the global variable.

str.var2 and num.var2 are optional subsequent items to be set.

Remarks

Items stored as numerics must be retrieved as numerics.
 Items stored as strings must be retrieved as strings.

Additional string or numeric variables can be listed, comma separated, to get
subsequent items.

Examples
Call GetGlobals(3,customer$)

Call GetGlobals(fieldnumber,value)

Call GetGlobals(1,x$,d,y$)

Call GetGlobals(“mylib”,0,N$,A) !get values from mylib set

Revision date: 08/23/05 71 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3F

Functions

Revision date: 08/23/05 72 Dynamic Concepts Engineering

Predefined Functions

Name Parameters of Function
ABS(n) Absolute value.
ASC(s$) Unicode value of first character in string.
ATN(n)1 Arctangent.
BSTR$(n,b) Returns the string representation of the value n converted to the specified base b. The base must be 2, 8, or 16.

Examples: BStr$(15,2) = "1111" ; BStr$(15,8) = "17" ; BStr$(15,16) = "F"
BVAL(n$,b) Returns a numeric value for the string representation n$ of a number to the base b. The base must be 2, 8, or

16. Examples: BVal("1010",2) = 10 ; BVal("12",8) = 10 ; BVal("A",16) = 10
CHF(n) Various numeric parameters of an open channel. The argument must be the channel number (0-99) of an open

channel plus a constant which is a multiple of 100 to select mode. Interpretation of each mode is
driver-dependent.

CHF(000 + c) Driver dependent: typically number of records in the file open on channel c. This count will include any base
record number such as used in Indexed-Contiguous files.

CHF(100 + c) Driver dependent: typically current record number in the file open on channel c.
CHF(200 + c) Driver dependent: typically current item number or offset in the file open on channel c.
CHF(300 + c) Driver dependent: typically record length in words (16 bit) or bytes (if OPTION set) for the file open on

channel c.
CHF(400 + c) Driver dependent: typically file size in bytes for the file open on channel c.
CHF(500 + c) Driver dependent: typically record length in bytes for the file open on channel c.
CHF(600 + c) Driver dependent: typically file header length in bytes for the file open on channel c.
CHF(900 + c) Driver dependent: typically file owner id number, if any, for the file open on channel c.
CHF(1000 + c) Driver dependent: typically file group id number, if any, for the file open on channel c.
CHF(1100 + c) Driver dependent: typically file permissions for the file open on channel c.
CHF(1200 + c) Driver dependent: typically current column number for the file open on channel c.
CHF(1300 + c) Driver dependent: typically current row number for the file open on channel c.
CHF(1500 + c) Returns the number of characters read by the last I/O operation.
CHF#(n) Various date/time parameters of an open channel. The argument must be the channel number (0-99) of an

open channel plus a constant which is a multiple of 100 to select mode. Interpretation of each mode
driver-dependent.

CHF#(100 + c) Driver dependent: typically creation date/time for the file open on channel c. Not supported on operating
systems such as Unix that do not provide a file creation time.

CHF#(200 + c) Driver dependent: typically last access date/time for the file open on channel c.
Note: Opening a file will change the last access date/time unless the “Raw” file driver is used.

CHF#(300 + c) Driver dependent: typically last modification date/time for the file open on channel c.
CHF$(n) Various string parameters of an open channel. The argument must be the channel number (0-99) of an open

channel plus a constant which is a multiple of 100 to select mode. Interpretation of each mode is
driver-dependent.

CHF$(100 + c) Open mode (“R”, “W”, “E”, and “L”) for the file open on channel c.
CHF$(600 + c) Driver class name for the driver open on channel c.
CHF$(700 + c) Driver name for the driver open on channel c.
CHF$(800 + c) Filename (may be a relative or absolute path) or equivalent for the file open on channel c.
CHF$(900 + c) Driver dependent: typically file owner name for the file open on channel c.
CHF$(1000 + c) Driver dependent: typically file group name for the file open on channel c.
CHF$(1100 + c) Driver dependent: typically file permissions for the file open on channel c.
CHF$(1200 + c) Driver dependent: typically last input termination character for the file open on channel c.
CHF$(1300 + c) Filename, always as the native absolute path of the file open on channel c.
CHR(n) Returns the decimal characteristic of the argument. This is an integer exponent X such that: 10X-1 <= n < 10X

1 Angles are interpreted as either radians or degrees depending on setting of the
OPTION ANGLE statement.

Revision date: 08/23/05 73 Dynamic Concepts Engineering

CHR$(n) Returns the Unicode character whose value is n. Note: when converting BITS programs, CHR() must be
manually converted to CHR$().

COS(n)4 Cosine.
DAT#(y,m,d) Combines the given numeric year, month, and day values into a single date/time value.
DAT#(y,m,d,h,m,s) As before but includes hour, minute, and second values.
DET(n) Determinant of the last matrix inverted. See the MAT INV statement.
ERM$(n) Supplies a descriptive text message for error number n..
ERR(n) Various values pertaining to error, ESCAPE and interrupt branching.
ERR(0) Number of last error.
ERR(1) Line number of last error.
ERR(2) Line number of last ESCaped statement.
ERR(3) Line number of last interrupted statement.
ERR(4) Statement number on line of last error, ESCAPE, or interrupt.
ERR(5) Statement number on line of last error.
ERR(6) Statement number on line of last ESCaped statement.
ERR(7) Statement number on line of last interrupted statement.
ERR(8) Returns -1 (Unibasic compatibility)
EXP(n) Exponential, the constant e to the power given (en)
FRA(n) Fractional portion. For example: FRA(4.5) yields 0.5.
GMT$(d#)2 Converts the given date/time value to an equivalent character string representation, using Greenwich Mean

Time (i.e., Universal Time Coordinated) as the time zone.

GMT#(d$)5 Converts the given character string to an equivalent date/time value, using Greenwich Mean Time (i.e.,
Universal Time Coordinated) as the time zone.

HEX?(s$) Returns a binary string containing the converted contents of s$, which is assumed to contain a hexadecimal
representation of binary data.

HEX$(b?) Returns a character string containing the hexadecimal representation of b?.
INT(n) Returns the greatest integer less than or equal to n. For example: INT(4.5) yields 4, while INT(-4.5) yields -5.
INT(s$) Returns the Unicode value of the first character in the string. This is functionally identical to the ASC

function.
IXR(n) Decimal radix 10 to the power of n. For example: IXR(3) returns 1000.
LBOUND(a[],0) Number of dimensions of array a. Trailing brackets ("[]") must follow array a.
LBOUND(a[],n) Lower subscript bound of dimension n of array a. Trailing brackets ("[]") must follow array a.
LCASE$(s$) Converts all upper-case letters to lower-case.
LEN(s$) Length of string in characters.
LOG(n) Logarithm base e of n. Logarithm in any base B can be achieved using the theorem: logBX=logeX/logeB
LTRIM$(s$) Removes leading white-space characters.
MAN(n) Decimal mantissa of n in base 10.
MONTH(d#) Numeric month value from d#; 1 - 12.

MONTH$(n)5 Name of month from n, 1 - 12.

MONTHDAY(d#) Day number of month from d#; 1 - 31.
MSC Miscellaneous numeric functions
MSC(0) Current port number.
MSC(1) Last logical input element accepted.
MSC(2) Returns -1 or value of SPC(4) runtime parameter (Unibasic compatibility)
MSC(3) Line number of last GOSUB executed. Value is returned and removed from the GOSUB stack.
MSC(5) Current column counter on default output channel. When MSC(5) is used in a PRINT statement, the initial

value of the column counter is returned.
MSC(6) Returns current unused variable space as a large integer constant (INT_MAX), typically 231-1.
MSC(7) Current user and/or group ID number.

2 Exact character representation of date components depends on setting of the OPTION
DATE FORMAT statement.

Revision date: 08/23/05 74 Dynamic Concepts Engineering

MSC(18) The constant π (3.141592653589793).
MSC(19) The constant e (2.718281828459045).
MSC(20) Maximum channels per user; returns 100.
MSC(30) Current line number.
MSC(31) Current statement number on line..

Number of columns on the default I/O channel. (GUI) MSC(33)
Number of rows on the default I/O channel. (GUI) MSC(34)

MSC(35) Input buffer size in characters.
Maximum number of ports supported. MSC(37)

MSC(38) Total number of ports currently in-use.
MSC(39) Current OPTION DATE FORMAT setting; 0 = Standard, 1 = Native.
MSC(40) Number of columns for Dynamic Windows display device.
MSC(41) Number of rows for Dynamic Windows display device.
MSC(42) Window nesting level in Dynamic Windows.
MSC(43) Current row counter on default output channel, i.e. current screen row. When MSC(43) is used in a PRINT

statement, the initial value of the row counter is returned.
MSC(44) Returns 1 if Dynamic Windows are on, else will return 0
MSC$(n) Miscellaneous string functions.
MSC$(-1) Returns -1 or value of SPC(4) runtime parameter formatted as “RLLBBSS” (Unibasic compatibility)
MSC$(0) System date and time in international format: dd mon year hh:mm:ss
MSC$(1) Current working directory path
MSC$(2) Text description of last error.
MSC$(3) System date and time in US format: mon dd, year hh:mm:ss
MSC$(4) Filename of the current program.

Filename of the parent program, when the current program was invoked by SWAP. MSC$(5)
MSC$(6) Return the current LIBSTRING value.
MSC$(7) Return hot-key character used to invoke current swap program or " ".
MSC$(8) Returns native path separator string. dL4 for Unix returns a forward slash (/)
MSC$(9) Returns the native absolute path of the directory containing the current program file
MSC$(264) Returns “”

Logical NOT. Returns 1 if n is zero, or zero if n is not zero. NOT(n)
String NOT. Returns 1 if s$ is null (length 0), or zero if s$ is not null. NOT(s$)
Convert numeric or string value(s) to "character parameters", suitable for prefacing certain command
characters.

PCHR$(n{,...})

POS(s$,op t${,s{,o}}) First position in s$ where op t$ is true. s is an optional position step value; o is an optional occurrence value
(default 1). op can be any relational operator < <= > >= = <>. s can be negative to indicate backwards
searching from the end of string. Ex. POS(s$,= t$)
The expression "POS(S$, IS T$)" will search for the first character in the string S$ that matches a character
in the string T$. The expression "POS(S$, EXCEPT T$)" will search for the first character in the string
S$ that does not match a character in the string T$.

REP$(s$,n) Repeats s$ n times.
RND(n) A pseudo-random number X is generated in the range 0 < X < n.
ROUND(n,d) Rounds n to d decimal places.
RTRIM$(s$) Removes trailing white-space characters.
SGN(n) Signum function. Returns the sign of n; -1 if n < 0, 0 if n = 0, or 1 if n > 0.

SIN(n)4 Sine.

SPC(n) Special numeric functions.
SPC(0) CPU time used in tenth-seconds.
SPC(1) Connect time used in minutes.
SPC(2) Hours since the system base date. This value is computed assuming all months have 31 days.
SPC(3) Current tenth-second of the hour.
SPC(4) Returns -1 or value of SPC(4) runtime parameter (Unibasic compatibility)

Revision date: 08/23/05 75 Dynamic Concepts Engineering

SPC(5) Current user and/or group ID number.
SPC(6) Current port number.
SPC(7) User-defined.
SPC(8) Last error number.
SPC(9) Current line number.
SPC(10) Line number of last error.
SPC(11) Current directory name represented as a number, if possible.
SPC(12) Directory of the current program represented as a number, if possible.
SPC(13) Returns terminal type number from terminal definition file
SPC(14) Line number of last GOSUB. Value is returned and removed from the stack.
SPC(15) Return and clear the last error number.
SPC(16) Line number of last GOSUB. Value is returned and left on the stack.
SPC(17) Length of last character-limited input.
SPC(18) Constant base year; always returns 1980.
SPC(19) The system license id in the form of a 32-bit unsigned integer.
SPC(20) Current base year.
SPC(21) Input buffer length.
SPC(22) Returns available program space in words: a large integer constant (INT_MAX), typically 2^31-1.
SPC(23) Current library directory from last LIB statement. -1 is returned if no current library, or if it is not

representable as a number.
SPC(24) Line number of last END, STOP or SUSPEND statement.
SPC(264) Returns -1 or value of SPC(264) runtime parameter (Unibasic compatibility)
SPC(272) Returns -1 or value of SPC(272) runtime parameter (Unibasic compatibility)
SQR(n) Square root.
STR$(n) Convert the numeric value n into a character string. Unlike direct assignment, no white-space is included.

TAN(n)4 Tangent.

TIM(n) Returns miscellaneous time-related numeric values.
TIM(0) CPU time used in seconds.
TIM(1) Connect time used in minutes.
TIM(2) Hours since base date.
TIM(3) Current tenth-second of the hour.
TIM(4) Current date in the form: MMDDYY where MM is the month (1-12), DD is the day of the month (01-31) and

YY is the year such as 89.
TIM(5) Current date in the form YYDDD where DDD is the day of the year (1-366).
TIM(6) Number of days since 0 January 1968.
TIM(7) Current day of week (0=Sunday, 6=Saturday).
TIM(8) Current year in the form YY, such as 89.
TIM(9) Current month; 1=January, 12=December.
TIM(10) Current day of the month; 1-31.
TIM(11) Current hour of the day; 0-23.
TIM(12) Current minute of the hour; 0-59.
TIM(13) Current second of the minute; 0-59.9.
TIM(14) Current date in the form: MMDDYYYY where MM is the month (1-12), DD is the day of the month (01-31)

and YYYY is the year, such as 2001.
TIM(15) Current date in the form YYYYDDD where DDD is the day of the year (1-366) and YYYY is the year, such

as 2001.
TIM(16) Current year in the form YYYY, such as 2001.
TIM#(0) Current real-time.
TIMEZONE(d#) Local time-zone offset from GMT in seconds in effect as of d#.
TRUNCATE(n,d) Truncates n to d decimal places.
UBOUND(a[],0) Number of dimensions of array a. Trailing brackets ("[]") must follow array a.
UBOUND(a[],n) Upper subscript bound of dimension n of array a. Trailing brackets ("[]") must follow array a.

Revision date: 08/23/05 76 Dynamic Concepts Engineering

UCASE$(s$) Converts all lower-case letters to upper-case.
VAL(s$) Convert the string value s$ to a number.
WEEKDAY(d#) Day of week number from d#; 1 = Sunday, 7 = Saturday.

WEEKDAY$(n)5 Day of week name for day n; 1 = Sunday, 7 = Saturday.

YEAR(d#) Year number from d#.
YEARDAY(d#) Day of year number from d#; 1 - 366.

Make note of the following dL4 Functions that were not available in Unibasic :
LCASE$
UBOUND
UCASE$
LTRIM$
RTRIM$
PCHR$
POS
REP$
ROUND
TRUNCATE
Numerous functions related to Dates:
DAT#,MONTH,WEEKDAY,YEAR

Additions to intrinsic Functions (require a DECLARE INTRINSIC statement) :

o Intrinsic function, FindChannel, returns the first closed channel number in a
 specified range. If no range is specified, the first channel between 99 and 0 (note
 descending order) is returned. An error will be generated if an illegal number of
 parameters, parameter type, or parameter value is used.

 BASIC syntax:
 x = FindChannel()
 x = FindChannel(startchan,endchan)

o Intrinsic function, FmtOf, returns a number that is interpreted as the
 precision (for a numeric variable) or dimension (for a string, binary or array variable)
of
 the var.

o Intrinsic string function, Trim$(), removes both leading and trailing blanks or other
 whitespace.

o Intrinsic string function, ENCFNM$(), adds quotation marks to a filename if required.
The
 function can be invoked with either one or two string arguments. With two
arguments,
 the first argument will be treated as a directory prefix to be added to the second
filename
 argument.

o Two intrinsic functions, MD5? and ADDMD5?, have been added
 to dL4. MD5?() returns the MD5 checksum of the first argument. The
 argument must be either a binary or a string value. An optional second
 binary argument can be used to pass an intermediate value from a previous
 call to ADDMD5?(). This allows a combined checksum of multiple values to
 be calculated. Checksums are calculated against the DIMed size of

Revision date: 08/23/05 77 Dynamic Concepts Engineering

 strings so that zero characters can be included in the checksum. To
 avoid this, simply pass strings with subscripts. So that string values
 will produce the same checksums on all platforms, each UNICODE character
 of a string is forced into a most-significant-byte first ordering for
 calculation.

 BASIC syntax:

 Dim chksum?[16], intermediate?[128]

 chksum? = MD5?(var)
 chksum? = MD5?(var,intermediate?)

 intermediate? = AddMD5?(var)
 intermediate? = AddMD5?(var,intermediate?)

o Intrinsic function, CRC32() returns a 32-bit CRC checksum code of the first
 argument which must be either a binary or string variable. An optional second
numeric
 argument can be used to pass the CRC value from a previous call and calculate a
combined
 CRC of several variables. CRCs are calculated against the DIMed size of strings so
that
 zero characters can be included in the CRC. Subscripts can be used to limit the
number of
 characters included in the CRC. So that string values will produce the same CRC
values
 on all platforms, each UNICODE character of a string is forced into a most-
significant-
 byte-first ordering for CRC calculation. An error will be generated if an illegal
number of
 parameters, parameter type, or parameter value is used.

 BASIC syntax:
 x = CRC32(var)
 x = CRC32(var, oldcrc)

o Intrinsic string function, DATEUSING$, is available to format date values. The
function
 syntax is:
 DateUsing$(DateValue#, FormatString$)
 where "DateValue#" is a date expression to be formatted and
 "FormatString$" is a string expression containing a mask string. The
 following formatting codes are recognized in the mask string:
 D Numeric day of week (0 - 6, 0 is Sunday)
 d Numeric day of week (0 - 6, 0 is Sunday)
 DAY Day name in upper case (SUNDAY, MONDAY, ...)
 day Day name in mixed case (Sunday, Monday, ...)
 Day Day name in mixed case (Sunday, Monday, ...)
 DY Abbreviated day name in upper case (SUN, MON, ...)
 dy Abbreviated day name in mixed case (Sun, Mon, ...)
 Dy Abbreviated day name in mixed case (Sun, Mon, ...)
 DD Numeric day of month zero filled ("01" - "31")

Revision date: 08/23/05 78 Dynamic Concepts Engineering

 Dd Numeric day of month space filled (" 1" - "31")
 dD Numeric day of month space filled ("01" - "31")
 dd Numeric day of month ("1" - "31")
 DDD Numeric day of year zero filled ("001" - "366")
 Ddd Numeric day of year space filled (" 1" - "366")
 ddd Numeric day of year ("1" - "366")
 HH Numeric hour of day zero filled ("00" - "23")
 Hh Numeric hour of day space filled (" 0" - "23")
 hH Numeric hour of day space filled (" 0" - "23")
 hh Numeric hour of day ("0" - "23")
 MM Numeric month of year zero filled ("01" - "12")
 Mm Numeric month of year space filled (" 1" - "12")
 mm Numeric month of year ("1" - "12")
 MONTH Month name in upper case (JANUARY, FEBRUARY, ...)
 month Month name in mixed case (January, February, ...)
 Month Month name in mixed case (January, February, ...)
 MON Abbreviated month name in upper case (JAN, FEB, ...)
 mon Abbreviated day name in mixed case (Jan, Feb, ...)
 Mon Abbreviated day name in mixed case (Jan, Feb, ...)
 NN Numeric minute of hour zero filled ("00" - "59")
 Nn Numeric minute of hour space filled (" 0" - "59")
 nN Numeric minute of hour space filled (" 0" - "59")
 nn Numeric minute of hour ("0" - "59")
 PM "AM" for time before noon, "PM" for time afterward
 pm "am" for time before noon, "pm" for time afterward
 P "A" for time before noon, "P" for time afterward
 p "a" for time before noon, "p" for time afterward
 Q Numeric quarter of year ("1" - "4", 1 is Oct - Dec)
 q Numeric quarter of year ("1" - "4", 1 is Oct - Dec)
 SS Numeric second of minute zero filled ("00" - "59")
 Ss Numeric second of minute space filled (" 0" - "59")
 sS Numeric second of minute space filled (" 0" - "59")
 ss Numeric second of minute ("0" - "59")
 TH Ordinal number in upper case ("1ST", "2ND", ...)
 th Ordinal number in lower case ("1st", "2nd", ...)
 WW Numeric week of year zero filled ("01" - "53")
 Ww Numeric week of year space filled (" 1" - "53")
 wW Numeric week of year space filled (" 1" - "53")
 ww Numeric week of year ("1" - "53")
 YYYY Four digit year
 YY Two digit year
 Formatting codes are replaced by their associated values. Any
 unrecognized characters will be copied unchanged to the result
 string.
 Example:

 Print DateUsing$(Tim#(0), "MM/DD/YYYY HH:NN")

o The SPC(n) function has been extended to return the numeric value of
 the environment variable "SPCn" where "n" is an undefined SPC function
 number. For example, if the environment variable SPC105 was set to
 "65", then SPC(105) would return a value of 65. User defined SPC
 functions should be defined at 100 and above to avoid conflicts with
 any future standard SPC functions.

Revision date: 08/23/05 79 Dynamic Concepts Engineering

o Intrinsic function, ErrMsg$(), is available to replace the UniBasic ERM() function.
The
 ErrMsg$() function is used with CALL InitErrMsg() to replace the error message
facility
 provided by UniBasic ERM() function and CALL 40.

o Intrinsic function, UBMem(), is used to replace the UniBasic MEM() function. Like
the
 UniBasic MEM() function, UBMem() always returns zero.

Revision date: 08/23/05 80 Dynamic Concepts Engineering

o Intrinsic function, CRC16(), calculates 16 bit CRC values. BASIC syntax:
 x = CRC16(mode, polynomial, string, oldcrc)
 where:
 "mode = 0" - calculate 8-bit sum of lower 8 bits of each character
 "mode = 1" - calculate CRC using lower 8 bits of each character

 An XMODEM compatible CRC can be calculated using mode one, a
 polynomial value of 4129 (0x1021), and an initial CRC of zero.

o Two intrinsic string functions simplify replacing string values within a string. The
 function

 Replace$(Source$,Old$,New$,Count)

 returns the string 'Source$' replacing the first 'Count' occurrences of the string
'Old$' with
 the string 'New$'. All occurrences of the string may be replaced by omitting the
'Count'
 parameter or using 'Len(Source$)' as the value of 'Count'. The function ReplaceCI$()
is
 identical to Replace$() except that it uses a case-insensitive search for 'Old$'.

o A new intrinsic CALL, UBSTRING(), and two new intrinsic functions, UBASC() and
 UBCHR$(), have been added to provide uniBasic-like character conversion routines.
The
 parameters and return values of the routines are identical to CALL STRING(), ASC(),
and
 CHR$() except that ASCII characters are mapped to the integer range 129 through
255
 and uniBasic compatible mnemonics are mapped to the range 1 through 127. These
 routines can be used to simplify conversion of uniBasic programs to dL4.

o A new intrinsic function, CALLSTAT$(), has been implemented to return
 a string describing the program position at a specified level in the
 procedure stack. This function would typically be used to generate
 information for an error log. The procedure stack includes all function,
 procedure, Call-Subprogram, and SWAP levels. The level type ("Swap",
 "SubPgm", "ExtSub", "ExtFunc", "IntSub", "IntFunc", or "") is returned
 in a function argument. The current position is level 0, the caller is
 level 1, and so on. An error 38 is generated if a non-existent level
 is specified.

 BASIC syntax:

 CallStat$(Level, LevelType$)

 Example:

 Print "Caller position is ";CallStat$(1,Type$)
 Print "Caller type is ";Type$

Revision date: 08/23/05 81 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3G

New Calls

Revision date: 08/23/05 82 Dynamic Concepts Engineering

Listed below are some of the new CALLs implemented in dL4.

See the Debugging section for information on the PROGRAMDUMP and
FORCEPORTDUMP Calls.

CALL CHSTAT

Synopsis
Returns current swap level information

Syntax
CALL CHSTAT(SwapLevel, ParentLineNum, ParentName$)

CALL CHSTAT(SwapLevel, ParentName$, ParentLineNum)

CALL CHSTAT(SwapLevel, ParentName$)

CALL CHSTAT(ParentName$, SwapLevel, ParentLineNum)

CALL CHSTAT(ParentName$, SwapLevel)

CALL CHSTAT(ParentName$)

CALL CHSTAT(SwapLevel, ParentLineNum)

CALL CHSTAT(SwapLevel)

Parameters

SwapLevel receives the current SWAP level number (zero if there are no
SWAPs in progress)

ParentLineNum receives the line number of the SWAP statement in the
parent program (zero if none)

 ParentName$ receives the name of the parent program ("" if none).

Remarks

Implemented for IMS compatibility

Examples
Call CHSTAT(C,S$)

Revision date: 08/23/05 83 Dynamic Concepts Engineering

CALL CALLSTAT

Synopsis
Returns current Call-by-filename level information

Syntax
CALL CALLSTAT(CallLevel, ParentLineNum, ParentName$)

CALL CALLSTAT(CallLevel, ParentName$, ParentLineNum)

CALL CALLSTAT(CallLevel, ParentName$)

CALL CALLSTAT(ParentName$, CallLevel, ParentLineNum)

CALL CALLSTAT(ParentName$, CallLevel)

CALL CALLSTAT(ParentName$)

CALL CALLSTAT(CallLevel, ParentLineNum)

CALL CALLSTAT(CallLevel)

Parameters

CallLevel receives the current CALL-by-filename level number (zero if
there are no CALLs-by-filename in progress)

ParentLineNum receives the line number of the SWAP statement in the
parent program (zero if none)

 ParentName$ receives the name of the parent program ("" if none).

Remarks

Implemented for IMS compatibility

Examples
Call CALLSTAT(C,S$)

CALL DUPCHANNEL

Synopsis
Duplicate existing open channels onto an available channel number.

Syntax
CALL DUPCHANNEL (num.expr1,num.expr2)

Parameters
num.expr1 is a numeric variable or expression specifying a closed user channel (0 - 99),
i.e. new channel, onto which an open channel will be duplicated. An error will be
generated if num.expr1 specifies a channel that is already open.

num.expr2 is a numeric variable or expression with a value of an open user channel (0 -
99), i.e. old channel, standard input channel (-1) or standard output channel (-2) to

Revision date: 08/23/05 84 Dynamic Concepts Engineering

duplicate. (Channel -3 is the current input channel and channel -4 is the current output
channel.) The standard input and output channels are the original base channels and not
the window channels used by Dynamic Windows. An error will be generated if
num.expr2 specifies a channel that is not open.

Remarks

Duplicate channels can be used to perform I/O in the same way as the original channels.

The primary use of DUPCHANNEL is to duplicate the standard input and output
channels that are used by INPUT and PRINT when a channel isn't specified. By
duplicating the standard input or output channel onto a user channel number, a program
can apply channel oriented statements such as SET to a standard channel.

Because DUPCHANNEL duplicates the base standard input and output channels, it can
also be used to avoid window tracking when Dynamic Windows are active. Closing the
duplicate or original channel has no effect other than freeing the channel number unless
all copies of the original channel are closed.

The following program uses DUPCHANNEL to change the title of the main window.

External Function ChangeWinTitle(NewName$)
 Declare Intrinsic Sub DupChannel
 Call DupChannel(99, -2) !duplicate output channel

 !set mode -1073 changes window title
 Set #99,-1073;NewName$
 Close #99
End Function 0

Input A
B = ChangeWinTitle(" Test Win Name ")
Input A
Stop

Examples
Call DupChannel(1,2)

Call DupChannel(newchannel,oldchannel)

Revision date: 08/23/05 85 Dynamic Concepts Engineering

CALL ENV (enhanced)

Synopsis
Get or change the value of an environment variable

Syntax
The following syntax have been added to the Env Call

CALL ENV (num.expr1, str.expr1$, str.expr2$)
Parameters

Num.expr1 is a numeric variable or expression indicating the mode. “mode" is 1 to read
the value of environment variable "str.expr1$" into "str.expr2$" and "mode" is 2 to set a
new value for environment variable “str.expr1$” with the value of “str.expr2$.

Remarks
Mode 1 is equivalent to a SYSTEM 28 statement. (read)

Mode 2 is equivalent to original syntax of no mode. (set)

For mode equal to 1,the following special value names will be recognized and will
override any environment variables with the same name:

PID Unix process id

GID Unix group id

UID Unix user id

Examples
Call ENV(1,”TERM”,value$)

CALL FLUSHALLCHANNELS

Synopsis
Requests Operating System to write all system buffers to disk for each open
channel on a Windows system

Syntax
CALL FLUSHALLCHANNELS ()

Parameters
 None
Remarks

Has no effect when called in dL4 for Unix.

The CALL provides the same functionality as a "CHANNEL #c,DCC_SYNC,1;" on each
open channel.

It could be used to reduce the risk of losing data if the user were to simply turn their
Windows system off.

Examples
Call FLUSHALLCHANNELS()

Revision date: 08/23/05 86 Dynamic Concepts Engineering

CALL NRC32

Synopsis
Compute the NCRC32 checksum of a string

Syntax
CALL NCRC32 (num.var1,str.expr1{,num.expr1})

Parameters
num.var1 is a ten digit or larger numeric variable to receive the calculated CRC-32
checksum.

str.expr1 is a string variable or literal to be checksummed.

num.expr1 is an optional numeric value containing a CRC-32 value from a previous
calculation.

Remarks

Is available for compatibility with Unibasic 7.

The CALL provides the same functionality as the existing CRC32() intrinsic function.

Examples
Call NCRC32(C,S$,O)

Revision date: 08/23/05 87 Dynamic Concepts Engineering

CALL PROGRAMCACHE

Synopsis
Manipulate and/or read status of the current shared program cache.

Syntax0
CALL PROGRAMCACHE (0, num.var1, num.var2, str.var1, num.var3)

Syntax1
CALL PROGRAMCACHE (1, num.var1, str.expr)

Syntax2
CALL PROGRAMCACHE (2, num.var1)

Syntax3
CALL PROGRAMCACHE (3, num.var1, str.var2)

Parameters
num.var1 is a numeric variable to contain the return code.

num.var2 is a numeric variable that determines which cache entry (starting at 0) is read.

str.var1 is a string variable that will receive a program file path.

str.expr is a string expression that will supply a program file path.

num.var3 is a numeric variable set to the number of users of the program.

str.var2 is a string variable that will receive the cache error message.
Remarks

The intrinsic procedure ProgramCache() is used to read the current shared program
cache status and to manipulate the cache. An error will be generated if improper
arguments or argument values are passed to ProgramCache(). Any error that occurs
while processing the operation will be reported by setting the error code argument to a
non-zero dL4 error code.

The first parameter to the ProgramCache function specifies the mode of operation as:

mode Operation

0 Read next entry in cache.

1 Load program into cache as a permanent entry.

2 Delete cache when the current process exits.

3 Get cache error status message, if any

The return code in num.var1 will be set to 0 if the operation is successful or to a standard
dL4 error code if not. For example, if the cache is not available, the statement Call
ProgramCache(0,e,p,f$,c) will set the variable "e" to 42 (file not found).

num.var2 should be set to zero to read the first entry. Each mode 0 call will update the
value of num.var2 so that the next call will read the next cache entry. The precision of
num.var2 must be such that it can contain any value between 0 and 232-1 without any loss
of precision (a 3% variable is adequate). The caller should only pass num.var2 values of
zero or those returned by the previous mode 0 call to ProgramCache().

num.var3 is a usage count and if set to -1 indicates that the program has been added to the
cache as a permanent entry.

Revision date: 08/23/05 88 Dynamic Concepts Engineering

 Examples

Example 1: Adding a program to the cache as a permanent entry

Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode
Call ProgramCache(1, ErrorCode, "MenuLibrary.lib")

Users in static cache mode can only use cached programs and libraries that have been
added as permanent entries. These permanent entries must be created by a user in
dynamic cache mode using mode 1 of ProgramCache(). Once made, permanent entries
cannot be individually deleted because there is no way to determine whether or not a
static mode user is currently executing the program or library. See the program cache
description in the dL4 Installation and Configuration Guide for more information on
dynamic and static cache modes.

Example 2: List entries in cache

Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode, 3%, CachePos, File$[200], Usage
CachePos = 0
Do
 Call ProgramCache(0, ErrorCode, CachePos,
File$, Usage)
 If ErrorCode Exit Do
 If Usage < 0
 Print "Permanent ";
 Else
 Print Using "######### ";Usage;
 End If
 Print File$
Loop
If ErrorCode = 73 Print "The program cache is not
enabled"

Example 3: Deleting the program cache

Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode
Call ProgramCache(2, ErrorCode)

This example will delete the program cache when the current user exits dL4. The
program cache should be deleted if it is desired to increase the size of the cache or if the
cache has become corrupted. The cache can be deleted only by the owner of the cache or
by the root user. Since the cache cannot be deleted until the user exits, no error is
returned if the caller lacks delete permission. All other users should exit dL4 before the
cache is deleted.

Example 4: Printing the cache error message

Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode, ErrorMsg$[200]
Call ProgramCache(3, ErrorCode, ErrorMsg$)
If ErrorMsg$ Print “Cache initialization error:
“;ErrorMsg$

Configuration errors can prevent the program cache from being successfully initialized. If
this happens, dL4 will run, but with reduced performance. This example determines
whether such an error has occurred and prints a message describing the error.

Revision date: 08/23/05 89 Dynamic Concepts Engineering

CALL IMSMEMCOPY

Synopsis
Copies a number of bytes from one variable to another

Syntax
CALL IMSMEMCOPY (var1,var2,num.expr1)

Parameters
var1 is a variable of any type, considered the Destination variable.

var2 is a variable of any type, considered the Source variable.

num.expr1 is a numeric variable or expression indicating the number of bytes to copy.

Remarks

Duplicates the behavior of CALL 90 in IMS.

The CALL copies "ByteCount" bytes from the "Source" variable to the
"Destination" Variable.

If both "Destination" and "Source" are string variables or arrays, then
"ByteCount" characters are copied.

This CALL is dangerous and will corrupt memory if "ByteCount" exceeds the size
of the destination variable. This is allowed so that "Destination" variable can be a
subscripted array element identifying the start of a copy range.

Examples
Call IMSMemCopy(Destination, Source, ByteCount)

CALL RMVSPACES() and RMVSPACESI()

Synopsis
Remove leading and trailing spaces from of a string

Syntax
CALL RMVSPACES (str.expr1,str.var1{,num.expr1})

CALL RMVSPACESI (str.expr1,str.var1{,num.expr1})

Parameters

str.expr1 is a string variable or literal of the source string.

str.var1 is a string variable if the destination string.

num.expr1 is a numeric variable or expression indicating the MODE.

Revision date: 08/23/05 90 Dynamic Concepts Engineering

Remarks

Duplicates the behavior of CALL $RSPCS() in UniBasic.

If "MODE" is equal to 1, then source string is copied to destination string with all spaces
removed except those within quotes, all characters after and including an unquoted "!"
are removed, and a trailing linefeed is appended if the string ends in a "!". This can be
helpful in creating text files of code.

Call RMVSPACESI() differs in that "MODE" 1 always appends a linefeed and a
"MODE" other than 0 or 1 causes an error.

Examples
Call RMVSPACES(SOURCE$,DEST$,O)

Revision date: 08/23/05 91 Dynamic Concepts Engineering

CALL SORTINSTRING

Synopsis
Sort Keys in a String. This CALL has been extended to support sorting arrays of
strings or arrays of structures where the first structure member is a string.

Syntax
CALL SORTINSTRING (num.var, num.expr1, num.expr2, str.var1, str.var2)

Parameters
num.var is a numeric variable to receive a return status from the sort operation.

num.expr1 is a numeric variable or expression which, after evaluation , is truncated to an
integer to specify the number of strings to be sorted.

num.expr2 is a numeric variable or expression which, after evaluation , is truncated to an
integer to specify the length of each string.

str.var1 is a string variable containing the keys to be sorted. It may contain any number
of fixed-length fields to be sorted. Sorting is based upon the supplied length (num.expr2)
of each item, up to number (num.expr1) of items.

str.var2 is any temporary work string DIMensioned to a minimum of length
(num.expr2) +8.

Remarks
The meaning of the return status value from the sort operation:

status Description

0 Successful sort operation.

1 Parameter Error.

2 number or length was passed as zero.

3 sort string is too small; less than number * length

4 work string is too small; less than length + 8.

The resulting sorted string is returned in str.var1.

Replaces Unibasic Call 65.

Examples

Call SortInString(E, 100, 10, A$, W$)
!where E is status, 100 is number of fields to sort, 10 is length of each
field, A$ is the string containing the 100 ten character fixed-length
strings and A$ will receive the resulting sorted string, W$ is the work
string dimensioned to 18 minimum (10+8).

New formats:

 Call SortInString(status,keycnt,keylen,keys$[],work$)
 Call SortInString(status,keycnt,keylen,keys.[],work.)

The 'work$' and 'work.' variables should be identical to individual
elements of the 'keys$[]' and 'keys.[]' arrays. The 'keylen' value specifies
the maximum number of significant characters in the sorted values and

Revision date: 08/23/05 92 Dynamic Concepts Engineering

can be used to perform a sort on the first 'keylen' characters of each key
value.

Revision date: 08/23/05 93 Dynamic Concepts Engineering

o A new intrinsic CALL, WHOLOCK(), is now available to determine what port
 or process has locked a specific record of a file. The CALL syntax is:

 CALL WHOLOCK(Channel, RecordNumber, PortNumber [, ProcessID])

 where "Channel" is a channel number open to a file and "RecordNumber" is
 the record number in that file to be tested. If the record is locked,
 then "PortNumber" will be set to the port number of the process that
 has locked the record. If "ProcessID" is specified, it will receive
 the Unix process id number of the process that locked the record. If
 the record is not locked, than "PortNumber" and "ProcessID" will be set
 to -1. "PortNumber" will also be set to -1 if the process that locked
 the record is not a dL4 process (note that UniBasic processes are not
 dL4 processes) or if the dL4 process is executing on a remote system.
 In this release, CALL WHOLOCK() is supported only for formatted,
 contiguous, and indexed contiguous files.

 CALL WHOLOCK() is an OS dependent CALL (Unix only) and it should not
 be used in dL4 for Windows.

o A new intrinsic CALL, IMSPACK(), has been implemented to provide
 compatibility with CALL $PACK in IMS BASIC. The syntax of CALL
 IMSPACK() is:

 Call IMSPack(Mode, Src$, Dest$)
 Call IMSPack(Mode, Dest$, Src$)

 where "Mode" equals zero packs characters from "Src$" into "Dest$"
 and a non-zero "Mode" unpacks characters from "Src$" into "Dest$".
 The packing algorithm uses a radix 50 style mechanism.

o A new intrinsic CALL, TRANSLATE(), has been added to translate strings to
 or from binary strings according to a specified character set. The syntax
 and arguments of CALL TRANSLATE() are:

 Call Translate(DestCnt,Dest$,SrcCnt,Src?,CharSet$)
 Call Translate(DestCnt,Dest?,SrcCnt,Src$,CharSet$)

 DestCnt - receives the number of characters translated into the
 destination.
 Dest$ - destination string that receives the characters
 translated from Src?.
 Dest? - destination binary string that receives the characters
 translated from Src$.
 SrcCnt - receives the number of characters translated from the
 source.
 Src$ - source string of characters to be translated. String
 terminator characters are copied as data and the source
 size is controlled by the total size of the variable
 and any double subscripting.

Revision date: 08/23/05 94 Dynamic Concepts Engineering

 Src? - source binary string of bytes to be translated. The
 source size is controlled by the total size of the
 variable and any double subscripting.
 CharSet$ - character set name such as "ASCII", "ANSI", or "UTF-8".

 If a character cannot be translated, translation will stop. Translation
 errors can be detected by comparing the returned source translation count
 to the source size.

Revision date: 08/23/05 95 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3H

Ported Old Calls

Revision date: 08/23/05 96 Dynamic Concepts Engineering

Almost all documented and undocumented Unibasic CALLs are now available in dL4,
including CALL 97 (read file header), CALL 127, and the legacy BASIC programs which
use them, such as LIBR, QUERY, etc.

The most notable newly ported CALL is the implementation of CALL WHOLOCK.

The following are Unibasic Calls that are implemented as intrinsic Calls :
Call AvPort(PORTNUM {,MINPORT {,MAXPORT}})
Call CheckDigits(STRING$)
Call CheckNumber(STRING$)
Call ConvertCase(MODE, STRING$ {,START})
Call DateToJulian({MODE,} DATE$ {,CONVERTED_DATE$ {,STATUS}})
Call DecToOct(NUMBER, OUTPUT_NUMBER_OR_STRING_VARIABLE)
Call Echo(MODE)
Call FindF(PATH$, STATUS)
Call FormatDate(DATE$ {,CONVERTED_DATE$ {,STATUS {,MODE}}})
Call JulianToDate({MODE,} JULIAN$ {,CONVERTED_DATE$ {,STATUS}})
Call MiscStr({M,}S${,...})
Call ReadRef(CHAN, MODE)
Call Rename(LU, OLDNAME$, NEWNAME$, CHANNEL, STATUS)
Call String(MODE,...)
Call StringSearch({F,}A${,S},T$,P{,N{,S1{,T1}}})
Call Time(T$)
Call VerifyDate(DATE$ {,CONVERTED_DATE$ {,STATUS {,MODE}}})

The following are additional Unibasic Calls that are implemented as intrinsic Calls, as
of vers 5.1 :

UniBasic CALL New equivalent dL4 Intrinsic
CALL $ATOE Call AToE()
CALL $CKSUM Call Cksum()
CALL $CLU Call CLU()
CALL $DATE Call Date()
CALL $DEVOPEN Call DevOpen()
CALL $DEVCLOSE Call DevClose()
CALL $DEVREAD Call DevRead()
CALL $DEVWRITE Call DevWrite()
CALL $DEVPRINT Call DevPrint()
CALL $ETOA Call EToA()
CALL $LOCK Call Lock()
CALL $MEMCMP Call MemCmp()
CALL $RDFHD (97) Call Rdfhd()
CALL $VOLLINK (91) Call VolLink()
CALL 1 Call StrSrch1()
CALL 2 Call BitsNumStr()
CALL 5 Call MemCopy()
CALL 7 Call SetEcho()
CALL 15 Call PkUnPkDec()
CALL 18 Call PkRdx5018()
CALL 19 Call UnPkRdx5019()
CALL 20 Call PkDec20()
CALL 21 Call UnPkDec21()
CALL 29 Call EditField()

Revision date: 08/23/05 97 Dynamic Concepts Engineering

CALL 30 Call CopyStr()
CALL 40 Call InitErrMsg()
CALL 44 Call StrSrch44()
CALL 45 Call PkDec45()
CALL 46 Call UnPkDec46()
CALL 47 Call Misc47()
CALL 48 Call PkRdx5048()
CALL 49 Call UnPkRdx5049()
CALL 53 Call ASC2EBCDIC()
CALL 57 Call ClearStr()
CALL 72 Call Gather()
CALL 73 Call Scatter()
CALL 81 Call StrSrch81()
CALL 95 Call IRISOS95()
CALL 116 Call CloseAll()
CALL 117 Call AvailBlks()
CALL 118 Call NextAvPort()
CALL 127 Call FileInfo()

Unibasic CALL $MONITOR has been implemented as a dL4 subroutine in the
tools/oldcalls.lib. It is not an intrinsic Call. library. This is a partial implementation
that does not support returning the full list of open channels.

Revision date: 08/23/05 98 Dynamic Concepts Engineering

dL4
Product Training

SECTION 3I

How To’s

Revision date: 08/23/05 99 Dynamic Concepts Engineering

Background Jobs

There are several methods to launch and control programs on another port.

The easiest method to launch a program is by using the SPAWN statement.

Messages can be sent to and received by the launched program using the SEND and
RECV statements (identical to the SIGNAL 1 and 2 statements).

CALL TRXCO() and PORT statements can also be used to communicate to a program
initiated by SPAWN.

CALL TRXCO() and PORT statements can also be used to launch programs on another
port.

SPAWN

Synopsis
Launch a background BASIC program.

Syntax
SPAWN filename {, num.var }

Parameters
filename is a string literal or expression containing a name which is optionally preceded
by a relative or absolute directory pathname.

num.var is a numeric variable in which the program's port number is returned.
Executable From Keyboard?

No.
Remarks

SPAWN creates another process to run the BASIC program. This child process inherits
the current environment and current working directory. All channels are closed, and no
COM or CHAIN WRITE variables may be passed.

SPAWN is simpler than the PORT or CALL TRXCO() functions to launch a phantom
port into a BASIC program. It is especially suited for launching background reports,
spoolers and other programs communicated with using SEND, RECV or SIGNAL.

When the program terminates to command mode or BASIC program mode from STOP,
non-trapped error, END, CHAIN "", or SYSTEM 0/1, the process terminates releasing
the port.

SPAWN locates an unused port number scanning backward from the value of the
runtime parameter MAXPORT.

The optional port num.var is returned with the port number assigned to the background
program. SEND and SIGNAL, as well as CALL TRXCO() and PORT statements may
be used to communicate with a port initiated by SPAWN.

Revision date: 08/23/05 100 Dynamic Concepts Engineering

For UNIX users, in order to use the SPAWN statement, the executable file “run” must be
within one of the directories in your PATH environment variable. Otherwise, the
environment variable RUN must be set to the path of the “run” executable, e.g.:

 RUN=/usr/bin/run
 export RUN

The SPAWN statement uses the LIBSTRING environment variable to find BASIC
program files unless an OPTION CHAIN ALTERNATE DIRECTORIES OFF
statement is used. An error 206 (“subprogram file not found”) will be returned if the
specified program cannot be located.

Examples
Spawn "1/SPOOLER"

Spawn A$,K ! Start program, get port number

o The SPAWN statement uses LIBSTRING to find BASIC program files
 unless an OPTION statement with "CHAIN ALTERNATE DIRECTORIES OFF" is
 used. An error 206 ("subprogram file not found") will be returned
 if the specified program cannot be located.

o In order to use CALL TRXCO() or the PORT statement, the executable
 file "scope" must be within one of the directories in your PATH.
 Otherwise, the environment variable SCOPE must be set to the path of
 the "scope" executable, e.g.:
 SCOPE=/usr/bin/scope
 export SCOPE

Revision date: 08/23/05 101 Dynamic Concepts Engineering

Modify Terminal Definition File

How would I edit the default terminal definition file to activate the
Esc key as it is typically used in Unibasic?

The primary change would be in the "[InputActions]" section where ESCAPE
would be associated with the ESCAPE action. For example, in the vt100
definition file, the line

'EOT'=Escape

would be changed to:

'ESC'=Escape

There can be multiple characters defined as the ESCAPE action, but only
one will interrupt running programs (the others will be recognized only
if an INPUT is in progress). The vt100 is an important case, since the
function keys definitions (that use an ESCAPE character as a leadin)
must be removed. So, in the "[FunctionKeys]" section, the lines

'MU'=\E[A
'MD'=\E[B
'MR'=\E[C
'ML'=\E[D
'MH'=\E[H
'F1'=\EOP
'F2'=\EOQ
'F3'=\EOR
'F4'=\EOS

would have to be removed (otherwise ESCAPE will only be recognized in
INPUT statements). This is not a problem on Wyse terminals where
function keys do not use the ESCAPE character.

Refer to an ASCII chart to determine mnemonics to keyboard conversion,
For example,
 ‘EOT’ = Control D
 ‘ESC’ = Escape
 ‘FS’ = Control \

To change Abort from Control \ to Control D change ‘FS’ = Abort to ‘EOT’ = Abort

Sample program to display what a key is outputting :

Print “IOBI” !binary mode
Input Len(1);””A$!press key
Print “IOEI” !end binary input mode
Print ASC(A$) !print ascii value of A$

Revision date: 08/23/05 102 Dynamic Concepts Engineering

dL4

Training Class

SECTION 4

Debugging

Revision date: 08/23/05 103 Dynamic Concepts Engineering

Commands

New or changed commands available in SCOPE:

DRIVERS is available at SCOPE to display the dL4 drivers available. The command can
be followed by a specific search string, ie DRIVERS ISAM.

EXEC allows you to execute the contents of a text file.

LEVEL is available at SCOPE to display the dL4 revision level and the license number.

! (exclamation point), followed by an external command, executes the command. For
example,
!ls –l on Unix executes the ls command or !notepad on Windows executes notepad.

There is a history of commands that is maintained within scope that can be accessed
with the up and down arrows.

New or changed commands available in BASIC mode:

BREAK, XBREAK and NOBREAK to set break points

CHECK verifies code is okay without saving. By default it will verify that all string
variables have been dimensioned. If a “-u” option is used undeclared numeric
variables will also be listed.

EDIT is not vi oriented, use right arrow key instead of spaces to move right, use insert &
delete keys, carriage return when done. You can also use the up and down arrow keys
to select additional lines for editing once in EDIT mode.

LABEL converts line # references to labels. You can then DUMP to text to eliminate line
numbers.

LOAD command has been extended to load programs from saved program files as well
as source text files.

SHOW is similar to FIND to show where a variable name is used, ie C$, ABC$ or X.

EXAMINE allows you to select the library file name or main program name to view.
Similar to debugger LEVEL command which allows you to move up and down the CALL
stack to view various program files.

Basic Debugger Commands

A Debugger session is started whenever any of the following events occur:
• Step (“.” Or “..”) command line count reached
• Non-trapped BASIC error or forced termination (ESCAPE or CTRL D)

Revision date: 08/23/05 104 Dynamic Concepts Engineering

• Breakpoint
• STOP or SUSPEND statement
• Abort
• Untrapped ESCape event

To resume execution, type GO. To exit debugger, type END. To exit debugger and BASIC
type EXIT.

To display a list of commands, type “?”.

The Debugger is available only through the SCOPE Command Line IDE. Those
programs that are run from outside the Command Line IDE do not have access to the
debugger.
Abbreviations of commands can be used by using enough characters to make the
command unique.
For example, command STATUS can be abbreviated to ST.

Refer to the Command Reference Manual for Debugger command details. The table
below lists and briefly describes the commands.

Command Description

 ?

;
!
.
..
BREAK

XBREAK

CONTINUE

 DISPLAY

 Display a list of commands or a description of <command>
 Display values of specified variables of the current running
program
 Execute external operating system command

 Execute the next n program lines

Execute next program line and step through function
Create a breakpoint at specified position or positions or BREAK

IF
ERR
Same as BREAK but applies to current program and programs
entered via CHAIN, CALL subprogram, or SWAP.
Resume execution of stopped program
Display values of specified variables of the current running
program

DUMP

END
EXAMINE
EXIT
FILE
FIND
GO

HELP

List a program to a text data file or pipe driver (printer).
-u option to include line #’s even if line #’s not used
Exit from Debugger to BASIC
Examine and select which is the current program mode
Abort program and exit debugger and BASIC to SCOPE
Display current program and opened all files
Search and list selected program statements (case insensitive)
Resume execution of stopped program. <line#> GO to continue
execution at a specific line.
Print text description of an error

Revision date: 08/23/05 105 Dynamic Concepts Engineering

 LET
LEVEL
LIST
NOBREAK

OEM
PDUMP
RETURN
SHOW
SIZE

STATUS

 TRACE
 WB
 WF
 WH
 WINDOW
 WS
 WT

Change variable value
Moves current Debugger view between levels in CALL/SWAP
stack
Decode/display dL4 statements. –c option disables paging
Delete a breakpoint at specified position or positions
If no line number, all breaks deleted
Lists the currently authorized OSNs (OEM Security Number)
Print variable values & other status information to a file
Continue execution until current procedure exits

 Display where a variable name is used
 Display memory usage for current program/data
 (-l option displays sizes and names of all linked libraries)

Print the name of the current program file and execution status
(ST B shows breakpoints set)
Enable statement trace debugging
Move the debug window to the bottom of the screen
Resize the debug window to full screen
Resize the debug window to half screen
Move,resize, or change treatment of the debug window
Resize the debug window to quarter screen
Move the debug window to the top of the screen

Use Of Call Program Dump

 ProgramDump is an Intrinsic procedure

 Replaces UniBasic SAVE with variables

 Used to print stack, variables, open channel, and other miscellaneous
information of a running program to a text file

 May aid in debugging a program

 ProgramDump itself is not a debugger

 The BASIC interpreter does not automatically call ProgramDump

 ProgramDump must be explicitly called from within a program

DESCRIPTION

The intrinsic procedure ProgramDump() prints program context such as current
location, open channels, and variable values to the file filename$. The dump output
consists of the following sections:

Revision date: 08/23/05 106 Dynamic Concepts Engineering

Title The date and time at which the dump was generated and the name of the
program.

Last Error The location and text of the last statement on which an error occurred.
The

values of each variable used in the statement are also listed. If there is
no error line (SPC(10) equals 0), this section is not produced.

Call Stack Beginning with the current procedure or program, the locations of all
active function calls, subroutine (SUB) calls, subprogram calls, and
program swaps are listed. For each level, the GOSUB stack, if non-
empty, is also displayed.

Miscellaneous Status The values for all SPC(), MSC(), ERR(), and MSC$() functions.

Open Channels This section begins with a table of all open channels, the driver used by
the

channel, and the filename, if any, open on the channel. Each open
channel is then examined in detail by listing all CHF() and CHF$()
function values.

Variables The values of all local variables are displayed for each call level from the
call
 stack. The variable listing is ordered according to type and name.

CALL PROGRAMDUMP

Synopsis
Print stack, variables, open channels and other miscellaneous information.

Syntax
CALL PROGRAMDUMP ({str.expr}{str.expr2})

Parameters
str.expr1 is the name of the text file in which to write the dump information.

str.expr2 is an optional string value. If set to “append” will cause PROGRAMDUMP()
to append the new output to the output file rather than replacing the output file.

Remarks
The intrinsic procedure PROGRAMDUMP is called by an application to dump the
current program status, variable values, and channel information to a text file. If str.expr1
is specified, then it is used as the filename of text file. If str.expr1 is not specified, the
current value of the DL4PORTDUMP runtime parameter determines the filename (see
CALL FORCEPORTDUMP for a description of the DL4PORTDUMP parameter). In
the example below, any unexpected error will cause PROGRAMDUMP to be called and
the dump information written to the text file "dumpfile" in the directory "dumpdir":

Declare Intrinsic Sub ProgramDump
If Err 0 Goto UnexpectedError
Dim InFile$[40], 3%, X
InFile$ = "TestFile"
Build #1,+InFile$+"!"
X = 17
X = 4 / 0 ! Divide-by-zero error which will trigger a

Revision date: 08/23/05 107 Dynamic Concepts Engineering

dump
Close #1
Chain ""
UnexpectedError:

Call ProgramDump("dumpdir/dumpfile!")
Print "Unexpected error";Spc(8);"at line";Spc(10)
Chain ""

Note that, in this example, the directory "dumpdir" must exist in the current working
directory or the call to PROGRAMDUMP will fail.

The PROGRAMDUMP intrinsic CALL will print repeated array values on a single line
using an array slice notation. For example, if the array V had 10 elements and all of the
elements were zero except for V[4]=7 and V[8]=9, then PROGRAMDUMP would
produce the following output:

 * V[0;3],%13 = 0

 V[4],%13 = 7

 * V[5;7],%13 = 0

 V[8],%13 = 9

 V[9],%13 = 0

Note that all lines with repeated data are prefixed with an asterisk.
Restriction: If the last error is to be displayed, ProgramDump() should be
called within the same program unit as the error. If it is called indirectly
via a subprogram CALL or a call to an external procedure, the last error
will be that of the subprogram or the external procedure.

The command “PDUMP filename” while in the BASIC mode of SCOPE outputs a
PROGRAMDUMP() style listing of the current program status to “filename”.

The intrinsic CALL PROGRAMDUMP, the PDUMP command, and the force port
dump feature support options to control line width and to enable printing string values
that include nulls. The options are:

 COLUMNS=<width>

 NULLS=<boolean-value>

Options are specified in the CALL PROGRAMDUMP options parameter or in
an options ("(options. . .)") field in the filename. The default line width is now 78
columns and long lines will be broken into multiple lines to improve readability. A width
of zero will print lines of any width in a single line. The NULLS options may be used
with or without a boolean value (the option "NULLS" is equivalent to "NULLS=TRUE").
If enabled, null characters in a string are printed as "\0\". Examples:

Declare Intrinsic Sub ProgramDump
 Dim a$[100]
 a$ = "first"
 a$[20] = "second"
 Call ProgramDump("dump.txt!","columns=50,nulls")

pdump (nulls,columns=60)t.txt

Revision date: 08/23/05 108 Dynamic Concepts Engineering

The options can be used in parentheses in the DL4PROGRAMDUMP
variable: DL4PORTDUMP="(nulls,columns=40)/tmp/dump.txt!"

Examples
Call ProgramDump(d$)

Call ProgramDump("dumpdir/dumpfile")

See also
CALL, CALL FORCEPORTDUMP

Revision date: 08/23/05 109 Dynamic Concepts Engineering

CALL FORCEPORTDUMP

Synopsis
Generate program dump on selected port number.

Syntax
CALL FORCEPORTDUMP (num.expr1, num.expr2, num.var)

Parameters
num.expr1 is the dump mode.

num.expr2 is the port number on which the dump is to be generated.

num.var is the status of the dump request.
Remarks

The FORCEPORTDUMP intrinsic CALL causes the port number selected by
num.expr2 to produce a dump listing file. The dump format is identical to that of the
ProgramDump() intrinsic CALL and lists the current execution location of the target
program, the CALL stack, current variable values, the status of open channels, and
various other values. If num.expr1 is zero, the selected port will exit dL4 after producing
the dump file. If num.expr1 is equal to one, the selected port will resume execution after
producing the dump. Because producing the dump interrupts and possibly interferes with
program execution, FORCEPORTDUMP should only be used for debugging purposes.

FORCEPORTDUMP sets num.var to zero if the dump request was successfully sent to
the selected port. Sending the request does not guarantee that the dump will actually be
produced. If an error occurs while sending the request, num.var will be set to one. On
some operating systems, such as Unix, the caller of ForcePortDump() must either be the
same user as that of the target port or be a privileged user (such as root on Unix)

Because the contents of the program dump could reveal passwords and other restricted
data, dump output is controlled by the DL4PORTDUMP runtime parameter. If
DL4PORTDUMP is not defined for the selected port, then ForcePortDump() will not
generate a dump. On Unix, DL4PORTDUMP is an environment variable that must be
set in each users environment (perhaps set by the .profile script). Under Windows, the
DL4PORTDUMP value can be supplied either as an environment variable or as a string
value in the registry:

HKEY_CURRENT_USER\Software\DynamicConcepts\dL4\Environment\dL4PortDump

HKEY_LOCAL_MACHINE\Software\DynamicConcepts\dL4\Environment\dL4PortDu
mp

In any form, DL4PORTDUMP is the filename to which the dump will be written.
DL4PORTDUMP must be an absolute path. For example, under Windows,
DL4PORTDUMP might be defined as "D:\Dumps\DumpFile.txt". The following macro
values can be used in a DL4PORTDUMP path string to create a variable filename:

 %PORT% Port number of target port

 %DATE% Current date ("YYMMDD")

 %TIME% Current time ("HHMMSS")

 %name% Value of environment variable "name"

Revision date: 08/23/05 110 Dynamic Concepts Engineering

These macro values, if used in the DL4PORTDUMP path, will be replaced by their
current values. For example, if DL4PORTDUMP was defined with the value
"D:\Dumps\%PORT%.txt" and a dump was triggered on port 15, then the dump would be
written to the file "D:\Dumps\15.txt".

Examples
Call ForcePortDump(0,PortNum,Status)

See also
CALL, PORT, CALL PROGRAMDUMP

Revision date: 08/23/05 111 Dynamic Concepts Engineering

dL4
Product Training

SECTION 5

Data File Drivers

Revision date: 08/23/05 112 Dynamic Concepts Engineering

dL4
Training Class

Channel Expression

& File Spec

Revision date: 08/23/05 113 Dynamic Concepts Engineering

Channel

 Channels allow unification of dL4 I/O statements
 The dL4 BASIC interpreter remains purposely oblivious of the actual

effect or behavior of most channel I/O statements allowing flexibility to
add new drivers

 dL4 BASIC interpreter simply collects I/O arguments and passes them to
the controlling driver

 A channel expression combines a channel number followed by three
optional numeric parameters. It begins with a # and ends in a semicolon

 The interpretation of optional parameters in a channel expression are
driver dependent, except for the third READ/WRITE parameter which
represents a timeout value in tenth of a second

File Spec

 A file.spec is an expression used in a dL4 BASIC program to either open
or build a file

 The expression consists of a list of items

 The standard list of items consists of a Filename Item, an Option Item, a
Protection item, a Number of Records Item, and finally a Record Length
Item

 The standard list of items can be specified either as a single string
expression or as a list of items

 A list of items must be used when opening a driver that requires a non-
standard list of items

 The file.spec may be a single string expression, referred to here as
file.spec.str, if it is a standard list of items, or it may be a list of comma
separated items, referred to here as file.spec.items. file.spec.items can be
used for either a standard or non-standard list of items.

 Examples:

BUILD #9, “(charset=ebcdic) <62> $99.99 [100:10] myfile!” !as
single string

BUILD #9,{“myfile!”, “charset=ebcdic”, ”62”, 99.99, 100,10} As
“Contiguous”

file.spec.str

 A generic and a specific example of a file.spec.str respectively would be:

“(option item) <protection item> $cost item

Revision date: 08/23/05 114 Dynamic Concepts Engineering

[number of records item : record length item] filename
item!”

“(charset=ebcdic) <62> $99.99 [100:10] myfile!”

The following rules apply to a file.spec.str:

 Except for the filename item which is required and must be the last item,
the remaining individual items are discretionary and can be expressed in
any order, but they must be grouped together as a single string
expression.

 The exclamation point (!) in the filename item is used only with the
BUILD statement to replace an existing file.

 The option item, the protection item, and the cost item must be
surrounded by parentheses (()), angle brackets (<>), and must begin with
a leading dollar sign ($), respectively.

 The dollar sign ($) is the only allowable currency designator in the cost
item.

 The number of records and the length of each record are specified as a
single item, enclosed by square brackets ([]), and are separated by a
colon (“:”).

An example of a file.spec.str using the BUILD statement is as follows:

BUILD #9, “(charset=ebcdic) <62> $99.99 [100:10] myfile!”

The BUILD statement above builds a new Contiguous file, called myfile, by
replacing myfile if it already exists. An explanation of each individual
item in this example follows:

 Option Item - selects an EBCDIC character set instead of the default
character set. See the Files and Devices manual for a list of standard
character sets. The character set is typically set when building the file.
The default is IRIS high bit set. Except for text files, which have no
header, the system will know by the file header which character set to
use and do the translation automatically without specifying the character
set in the OPEN statement.

The "U" option letter ('BUILD #1,"<U>[10:100]file"') can be used to
select the "Universal" format when creating a Portable
Formatted,Contiguous, or Indexed file.

The "H" option letter ('BUILD #1,"<H>[10:100]file"') can be used to
select the "Huge" format when creating a Portable Formatted,
Contiguous, or Indexed file. This option allows a file to grow tomore
than 2 gigabytes in size on operating systems that support user files
of that size.

 Protection Item - set to 62, prohibiting reading and writing by other
groups, and prohibiting writing by the same group.

 Cost Item - 99.99 is selected.

Revision date: 08/23/05 115 Dynamic Concepts Engineering

 Number of Records Item - create 100 initial records.

 Record Length Item - create a file with a record length of 10 words each.

 Filename Item - the name of the file is myfile, which is created in the
user’s current directory. The exclamation point replaces myfile if it
already exists.

Training Note : Use character set UTF-8 to store full set of dL4 mnemonics
in a file.

Option Item

An Option Item changes driver-class dependent behavior of the driver-class. The
general syntax for an Option Item is:

option-name=value {, option-name=value}...

For example, to create a file with the EBCDIC character set, the option item in
the BUILD statement is set to charset=ebcdic. In the absence of the Option
Item, the driver-class would have built the file with its own default character set.
Various character sets available are “ASCII”, “ANSI”, “IRIS”, “uniBasic”,
“Windows”, “EBCDIC”, and “UTF-8”.

The syntax optionally allows for additional comma separated options.

Protection Item

A Protection Item allows for the manipulation of file permissions. It can be
specified to change the default read and write protection during the building or
opening of a file. The methods for specifying protection during BUILD and
OPEN are described in the following paragraphs.

Specifying Protection During BUILD

There are three (3) methods to specify a protection string while building a file.
These methods are described in the following paragraphs.

Protection by Attribute Letters

The first method is to specify attribute letters. The meaning of each letter is
listed below:

A Allow reading by any member of the group.
B Allow writing by any member of the group.
D Prohibit deletion of the file. (operating system specific.)
P Allow reading and writing by all.
R Prohibit reading by anyone except the file owner.
W Prohibit writing by anyone except the file owner.

Revision date: 08/23/05 116 Dynamic Concepts Engineering

The attributes are created by combining the above letters, where each letter is
used only once. In other words, “RR” is an illegal protection value.

For example, “AW” allows reading by any member of a group, and prohibits
writing by anyone except the file owner.

Protection by Two-Digit Number

The second method to specify protection is to use a two-digit number. The meaning of each digit is
described below:

40 Prohibit reading by other groups.
20 Prohibit writing by other groups.
10 Prohibit copying by other groups. (operating system specific.)
04 Prohibit reading by the same group.
02 Prohibit writing by the same group.
01 Prohibit copying by the same group. (operating system specific.)

The two-digit attributes are calculated by summing the desired digits, where each digit is added
only once in a valid operation. In other words, 48 (40 + 4 + 4) is an illegal protection
value, because 4 is added twice. Thus, 77 is the highest available legal value.

For example, if the desired attributes are “Prohibit reading by other groups” and
“Prohibit writing by the same group”, then these attributes can be summed as
40 plus 02 to equal a sum of 42.

Protection by Three-Digit Number

The third method to specify protection is to use a three-digit number. The
meaning of each digit is described below:

40
0

Owner can read the file.

20
0

Owner can write to the file.

10
0

Owner can execute the file.

40 Group can read the file.
20 Group can write to the file.
10 Group can execute the file.
04 Others can read the file.
02 Others can write to the file.
01 Others can execute the file.

The meaning of the execute permission is operating system specific.

The three-digit attributes are calculated by summing the desired digits, where
each digit is added only once in a valid operation. In other words, 448 (400 + 40
+ 4 + 4) is an illegal protection value, because 4 is added twice. Thus, 777 is the
highest available legal value.

Examples are shown below:

PROTECTION MEANING
777 Owner, group, and public can read, write, and execute file

Revision date: 08/23/05 117 Dynamic Concepts Engineering

744 Owner can read, write, and execute; group and public can read file
644 Owner can read and write; group and public can read file
711 Owner can read, write, and execute; group and public can execute

file

Training NOTE :File protections on Unix after a BUILD statement. BUILD applies
umask to the requested permissions. So building a file with IRIS standard <00> or
Unix standard <666>, the end result is a file protection of <644>.
A MODIFY statement can be added after the BUILD statement (and after the
indexes are created) to change a file’s protection. Example, MODIFY “filename
<666>”

Protection on Windows NT

This section is for those users using NTFS file system under Windows NT. File
permissions other than read-only will be ignored unless the file is part of an
NTFS (Windows NT) file system.

File permissions can be specified when building or modifying a file. The file permissions can be
specified using Unix octal notation, IRIS octal notation, BITS permissions letters, or the
new Win32 access control list format. The example below builds a file which can be
read by any user, but can only be modified by the users "Fred" and "Alex":

 Build #1,"<+Fred(rw)+Alex(rwpo)+everyone(r)>testfile"
An access control list consists of one or more entries. Each entry begins with a plus ("+") sign

which is followed by the user or group name and then one or more permissions letters
surrounded by parentheses. The permissions letters used by the access control list format
are:

 "r" read access allowed
 "w" write access allowed
 "x" execute access allowed
 "p" change permissions access allowed
 "d" delete allowed
 "o" change ownership access allowed

Specifying Protection During OPEN

When a file is opened, protection is specified by selecting a combination of the
letters listed below:

R Open a file without read permission
W Open a file without write permission
E Open a file in exclusive mode (driver-class dependent)
L Open a file and disable record locking (driver-class dependent)

Up to four unique letters can be selected.

For example, “RW” protection value prohibits reading from and writing to the file. A “RWW”
protection value is an illegal combination, because the letter W is selected twice.

Revision date: 08/23/05 118 Dynamic Concepts Engineering

file.spec.items

 A generic and a specific example of a file.spec.items respectively would
be:

{“filename item!”, “option item”, “protection item”, cost item, number of
records item, record length item}

 {“myfile!”, “charset=ebcdic”, ”62”, 99.99, 100,10}

 The actual interpretation of each item in the list of items is driver-class
dependent

 A file.spec.items must be used if the driver-class interprets the list of
items differently

 Each individual item in a file.spec.items must be defined separately

 Each item has a data type associated with it, and the appropriate data
type must be used for each particular item

 The As “driver-class” must be used with the BUILD statement

The data types of each individual items in a file.spec.items are as follows:

ITEM DATA TYPE COMMENTS

Filename Item String A required item with an optional
exclamation point (!) to replace and build
an existing file. “” is allowed, but will
generate an error since “” is not a valid
filename.

Option Item String “” is allowed, meaning no option
specified. Surrounding parentheses ()
are not allowed.

Protection
Item

String “” is allowed, meaning no protection
specified. Surrounding angle brackets
(<>) are not allowed.

Cost Item Numeric Must specify a legal value. A zero is
allowed.

Number of
Records Item

Numeric Specified as a single numeric item.

Record Size
Item

Numeric Specified as a single numeric item.

The following rules apply to a file.spec.items:

Revision date: 08/23/05 119 Dynamic Concepts Engineering

 A standard list of items must be in the following order: Filename Item,
Option Item, Protection Item, Cost Item, Number of Records Item, Record
Length Item.

 Surrounding parentheses (()) are not allowed in an Option Item.

 Surrounding angle brackets (<>) are not allowed in a Protection Item.

 The interpretation of each item is driver-class-specific. Therefore, the
way each item is interpreted depends upon which specific driver-class is
in use.

 The list of items must always appear in order.

 Any discretionary item after the last specified item may be omitted while
attempting to open a file. Thus, a file may be opened without write
access as follows:

 OPEN #9,{“”myfile””, “”, “w”}

 The driver-class/name must be specified with an AS clause if the list is
used in a BUILD statement.

An example of a file.spec.items using the BUILD statement is as follows:

BUILD #9,{“myfile!”, “charset=ebcdic”, ”62”, 99.99, 100,10} As
“Contiguous”

In addition to grouping the list of items within braces, “{}”, the list of items can
also be specified in a structure variable. Thus, the previous example can also be
written as:

BUILD #0, struct.var As “Contiguous”

The BUILD statements above build a Contiguous file, called myfile, and replace
myfile, if it already exists. An explanation of each individual item for the above
example follows:

 Filename Item - the name of the file is myfile, which is created in the
user’s current directory. The exclamation point (!) replaces the file that
may already exist.

 Option Item - selects an EBCDIC character set instead of the default
character set.

 Protection Item - set to 62, prohibiting reading and writing by other
groups, and prohibiting writing by the same group.

 Cost Item - 99.99 is selected.

 Number of Records Item - create 100 initial records.

 Record Length Item - create a file with a record length of 10 words each.

 Each item in the list of items must be specified, even if it is not used,
while building a file.

Revision date: 08/23/05 120 Dynamic Concepts Engineering

dL4
Training Class

Data Files

Revision date: 08/23/05 121 Dynamic Concepts Engineering

CONVERTING EXISTING DATAFILES TO UNIVERSAL FORMAT

 Universal formatted files are platform independent (files can be
copied to any supported Unix and Windows platform)

 Universal formatted files are read/write accessible by Unibasic
and dL4. (The character set used is IRIS ASCII/IEEE BCD,
allowing ASCII and basic Unibasic mnemonics, no European
special characters.)

 To convert non-BCD (BITS) files to Universal format, a utility
called ctool is used. Record definitions must be provided to use
this utility.

 To convert IRIS BCD (Unibasic) files to Universal format, a utility
called ubconvert is used. (If on query <Q> bit is set.

 Portable format was available prior to Universal format, which
was platform independent, but based on the more limited ANSI
character set (no Unibasic mnemonics).

 The most extensive character set available for dL4 would be the
“UTF-8” Unicode character set.

SUPPORT FOR HUGE FILES

 The maximum size of the index portion of Portable and Universal
Indexed-Contiguous files has been increased to 256 gigabytes on
Unix systems that support files larger than 2 gigabytes. The size
of the data portion is limited only by the amount of storage space
available. To use this feature a file must be created as a "Portable
Huge Indexed-Contiguous" or "Universal Huge Indexed-Contiguous" file.
Example:

Build #1,"[1:40]File" As "Portable Huge Indexed-Contiguous"

Currently, huge files are supported on UnixWare 7, AIX 4.3 and RedHat 7.
They are not supported on SCO OpenServer because OpenServer does not allow
user files to be larger than 2 gigabytes. In order to build huge files
on UnixWare 7 or AIX, the file system must be configured to support
files larger than 2 gigabytes. Please see the UnixWare or AIX OS
documentation for instructions on how to configure file systems. To
share huge files across a network, both the file server and the client
systems must support sharing files larger than 2 gigabytes in size.

Revision date: 08/23/05 122 Dynamic Concepts Engineering

RECORD LOCKING

 Record locking works across most commonly used network software

 A record should be read with lock and should remain locked while its
various fields are being updated

 Except for Text and Rawfile drivers, any read or write operations will
obtain a record lock

 If the read or write operation end in a semicolon (;), then the record
lock is released after the read or write is performed

 If a timeout value is not specified, the program execution is
suspended until the record becomes available or until the program
execution is interrupted

 If a timeout value is specified, the program execution is suspended
until either the record becomes available or the program times out

 An error is generated if a timeout value is specified and the record is
not available within the timeout period

 At most one record can be locked on any given channel

 Attempting to lock a second record on a channel unlocks any
previously locked record i.e. any read or write will release any
previously existing lock

 A different record can be locked on each channel when the same file
is opened on multiple channels

 Attempting to lock the same record on different channels when the
same file is opened on multiple channels is O/S dependent. This is
strongly discouraged

 the BASIC OPEN statement has options to prohibit record locking

 SWAP and SWAPF statements no longer fork and thus it is the same
process. Therefore, all the rules above apply to record locking in a
SWAP or SWAPF program. The usage of the fork system call was
eliminated since the fork system call is not available on Windows
systems.

Revision date: 08/23/05 123 Dynamic Concepts Engineering

AUTOSELECT DRIVER

 dL4 uses the autoselect driver to open a file when the “As” specifier is not used

 The driver may first open a file and read the file header to determine the file type

 After determining the file type, it closes the file and relinquishes itself to the proper
driver

 A file’s access time is updated since the driver accesses the file’s header

Revision date: 08/23/05 124 Dynamic Concepts Engineering

DIRECTORY DRIVER

 Used to open or create a directory

 Allows reading from the directory

 Does not allow writing to the directory

 Only sequential access

 Random access not available

 Can rewind to the beginning by reading record number zero

 Returns only filenames

 Open the file and use CHF or other functions to get specific file information

Examples:

open #0,”c:\\dl4”
read #0;a$
read #0,0;a$! rewind to beginning
build #1,”c:\\dl4training” as “directory” ! create dl4training directory

 Driver, "Sorted Directory", is available to provide a sorted directory listing. The

driver is otherwise identical to the normal directory driver. The driver is used by
opening a directory with an AS clause.

Example:
Rem List the current directory contents in sorted order
Dim F$[255]
Open #1,"." As "Sorted Directory"
Do
 Read #1;F$
 If F$ = "" Exit Do
 Print F$;
Loop
Close#1

Revision date: 08/23/05 125 Dynamic Concepts Engineering

RAWFILE DRIVER

 May be used to open a device

 Allows functionality for UniBasic RDREL and WRREL statements

 Does not provide record locking on a READ or a WRITE statement

 Records can be locked using dL4 Channel statements

 Raw Regular File driver is used to open a disk file

 Raw File driver can open both a device and a disk file

 Does not provide character set support

 Strings are converted as 8-bit binary data in the least significant bits (lsb)

 Most significant bits (msb) are set to all zeros

 Must specify record length on an OPEN statement

Example:

!open a file called rawfile using the Rawfile driver. Record
length=5 words
!Note that the record count is ignored by the Rawfile driver

open #0, “[100:5] rawfile” as “raw”

Revision date: 08/23/05 126 Dynamic Concepts Engineering

TEXT DRIVER

 No record locking is available

 Can specify a character set on an OPEN statement

 Cannot specify a character set on a BUILD statement

 Default character set is UniBasic ASCII

 Can create a file with a different character set by first creating the file, then closing
and opening the file with character set option

 Can read a UNIX, DOS or a Macintosh format transparently

 A line of text is read from the file and it is appended with a carriage return character

 Builds a file for native O/S format, e.g. DOS, UNIX, etc.

 Can build a DOS format file by specifying AS “DOS Text”

 Can build a UNIX format file by specifying AS “UNIX Text”

 Can build a Macintosh format file by specifying AS “Macintosh Text”

 Can position within a text file using the SETFP #c,p1p2; command, where p1 is
record and p2 is byte-displacement, assuming 512-byte records. Thus SETFP
positioning is interpreted as p1*512+p2.

 The record number -4 has been defined in the text file driver to position to the end
of the file. A program can append to a text file with a statement such as :

 PRINT #1,-4;”message”

 The driver, "ANSI Text", will create and access text files that uses the ANSI character
set. Using the driver is equivalent to opening a text file with the "charset=ansi"
option. This can be set as the default using the DL4DRIVERS environment variable.

Revision date: 08/23/05 127 Dynamic Concepts Engineering

PIPE DRIVER

 This is not specifically a printer driver, but is typically used to access printers

 Output pipe is opened with a single leading $

 Input pipe is opened with double leading $$

 Bi-directional pipe is opened with no leading $ or $$. A good example of using the
bi-directional pipe is to perform ftp within a program.

 Finds the command using PATH if a relative filename is specified

 An error is generated if the command does not exist

 Character set and lock options may be specified as the first line in a script or a
batch file

 Character set option can also be specified on an OPEN statement

 The script or batch file takes precedence if a character set exists in the file and if the
character set option is also used in the OPEN statement

 Default character set is UniBasic ASCII character set

 The lock option in the script or the batch file prevents concurrent open

 The lock option specifies the absolute filename of a lock file to be built by the driver
on a UNIX system

 UNIX users may have to manually remove the lock file in the event of a system
crash

 The lock option specifies record locking in the form of TRUE or FALSE on dL4 for
Windows

 The default lock option is set to none on both UNIX and Windows, meaning allow
concurrency

 If an OPEN statement uses a "$" (output pipe) or "$$" (input pipe) filename to open a
script then the name of the current program will be passed to the script in the
environment variable "DL4PROGRAM". The script can then use the program name
to control printer spooling or special handling.

 The CLOSEWAIT option sets the time in seconds that the driver will wait for the
child process to exit before the channel is closed. The option "CLOSEWAIT=0" will
not wait at all. The pipe driver does NOT terminate the child process when the
CLOSEWAIT period expires; the driver simply closes the channel and leaves the
child process running. If not set the channel will remain open indefinitely or until
closed. Example: Open #1,"(closewait=120)$$script.sh"

 The option, "binary=true" option, will cause all data written to or read from the pipe
will be passed as 8-bit binary characters without any formatting or end-of-line
processing. Example: Open #1,"(binary=true)$program"

Revision date: 08/23/05 128 Dynamic Concepts Engineering

 The pipe driver ('OPEN #1,"$xxxx"') accepts multiple "# dl4opts=" lines at the
beginning of a shell script. This makes it easier to specify multiple pipe driver
options. Each option line can contain multiple options, but an individual option
cannot span lines.

Driver examples (see Installation Guide, Printer Configuration for more details) :

θ dL4 for UNIX:
dL4opts=charset=utf-8,lock=/tmp/lpt1.lk

θ dL4 for Windows:
rem dL4opts=charset=utf-8,lock=true

Bi-directional Pipe Driver example program :

 Open #1,”/bin/sh” As “Bidirectional pipe command”
 Print #1;”date”
 Read #1;L$
 Print L$

Revision date: 08/23/05 129 Dynamic Concepts Engineering

PROFILE DRIVER

Overview
A driver within the Profile class provides facilities to process textual data stored
within specially organized text files. Such special text files are called profile files.

Some examples of profile files include Posix tty terminal description files and
Full-ISAM Bridge Profiles. Profile files are well suited for the organization and
retrieval of configuration information and are easily maintained by a text-editor
or word-processor. Profile files are a portable feature of dL4.

A profile file contains one or more lines of text in the following general forms:

• blank lines
• ; Comments
• [Section Name]
• left=right

where blank line is any empty line.

; specifies a comment line.

Blank lines and comment lines are ignored during normal processing of the file.

Section Name is any set of valid characters stored within []. All lines following a
Section, up to either the end-of-file or the start of [Another Section] are
considered part of the named section Name.

left is any label, terminating with an '=' whose leading and trailing spaces are
ignored.

right is any text, including spaces, to be returned as the value of the label
specified by left.

The Profile Driver supports the following operations: OPEN, ROPEN, READ, and
SEARCH.

Accessing a profile file

In order to access a text profile file, it must first be opened for read-access.

Synopsis: OPEN #chan, "profilefile" AS "Profile"

Where chan is any valid channel number, profilefile is any valid Profile file. The
"AS Profile" clause is required to prevent the dL4 autoselection mechanism from
opening the file as a standard text file.

Profile files are designed to be read-only. The current implementation does not
support writing to the file. In addition, the driver does not support any locking
mechanism, due to the read-only implementation.

Revision date: 08/23/05 130 Dynamic Concepts Engineering

Following a successful OPEN, an initial SEARCH must be performed prior to
using READ to access data.

Open #0,"/usr/lib/dl4/term/wyse50" As "Profile"
Dim a$[100],b$[100],c$[100]
Search #0;a$!Position to the first section
Print a$!Display the name of the section
Read #0,-2;a$,b$!Read the first record
Print a$;b$!Display the items

Reading profile data

Synopsis: READ #chan,record,item;svar {,svar}

Where record (-2) specifies the current record, and (-1) selects the next record.
Following a SEARCH operation, an initial record=-2 read is required to load the
current record. Subsequent records are read by specifying record -1.

item selects the item to read, 0 or 1. 0 selects the left label, with leading and
trailing spaces removed, and 1 selects the right label, with all data to the right of
the = .

svar is the name of any string variable into which to read data.

Only the Current (-2), or Next (-1) record may be accessed. A Record Not Written
error occurs at the end of a Section, or physical end-of-file.

Searching profile data

Synopsis: SEARCH #chan; svar

Synopsis: SEARCH #chan; svar1, svar2, svar3

The first form is used to perform a search for a specific section name. svar
contains the named Section Name to locate. The search operation is case
insensitive. If svar is null, a search is performed forward to the next section.
svar is returned with the name of the located section, if any. An error is
returned if the section is not found, or the end-of-file was reached with a null
string search.

The second search form is used to locate a specific left label within a section.
svar1 contains the named section, svar2 the left label, and svar3 is returned
with the right value.

If the operation is successful, the file is positioned to the first element of the
named section. An error occurs, if the named section is not within the file. The

Revision date: 08/23/05 131 Dynamic Concepts Engineering

search operation is circular, that is, the file is searched from the current
position forward. If an end-of-file is reached, the search continues from the
beginning of the file up to the current position. A search for the next section is
not circular in nature, resulting in an end-of-file error.

Revision date: 08/23/05 132 Dynamic Concepts Engineering

FULL-ISAM DATABASE FILES

Full-ISAM database files are designed to offer the developer a powerful alternative to
Indexed files. Some of the immediate benefits include:

 • Providing a structured approach to data storage and retrieval.
 • Access to a file is field-oriented using named fields.

• Indices are maintained automatically and may be added and deleted as
required.

 • Fields may be expanded, added or deleted with little or no programming.
• Directly accessible by industry-standard third-party applications and

programming languages.
• Capable of supporting a number of underlying data-base engines without reprogramming.

Full-ISAM database files represent a new class of object with which applications may
interact. An extensive set of language components, interface and statements are
included for applications {and drivers} supporting Full-ISAM files.

• Record access to Full-ISAM files is field-oriented and operates on similar
principles as do formatted files. Each field has an associated type and
an error results should an application attempt to read or write the wrong
type of data. Fields are numbered, starting at zero.

• Include a data dictionary which defines field names, types and sizes. Access to a
given field is performed by specifying it's item number, or alternately a structure
variable which may be mapped by field name to the dictionary definition.

When operating on Full-ISAM files, the application is responsible for adding, deleting,
reading and writing records. Record allocation/deallocation and key maintenance is
performed by the file structure. For the designer, it is no longer necessary to modify
applications when adding a new index to the file, or when changing the size of a data
field.

Data fields may be added to or deleted from a file with little or no rewriting of
application code.

Full-ISAM database files rely extensively on the use of structure variables. They are the
preferred method of communication with the file structure.

! Define a structure Customer with 8 members, two of which are
! themselves structures.
Def Struct ExtraInfo=1%,X,Y,Z
Def Struct Test1 = Q$[20],%1,R,S
Def Struct Customer ! Define the customer structure
 Member Name$[25] ! ie larger structures.
 Member Address$[25]
 Member City$[25] ,State$[2] ,Zip$[10]
 Member 3%,Balance
 Member Xtra. As ExtraInfo ! Member is another structure
 Member T. As Test1 ! Member is another structure
End Def
! Dimension B. as an array of 11 Customer structures (0-10)
Dim B.[10] AS Customer

The names of structure members are distinct from any other names outside the
structure; e.g. A.Q$ is distinct from Q$ which is distinct from B.T.Q$.

Revision date: 08/23/05 133 Dynamic Concepts Engineering

The members of a structure are physically contiguous in memory, and are ordered in
memory as defined by Def Struct. Individual structure members cannot be re-
dimensioned.

The order in which members of a structure are declared is important because this
determines the order in which values are read from a Data statement, or transferred
to/from a file, etc. For example:

Def Struct Test = Q$[20],%1,R,S
Dim A. As Test
Write #1;A. ! This WRITE executes exactly
Write #1;A.Q$,A.R,A.S ! like this one

Indeed, many older-style statements which operate upon a fixed number of parameters
may now be supplied a structure instead. Supplying the structure is interpreted as if
you supplied each member as a single variable, separated by comma. As discussed
later, Search is another statement where the Key, Record and Status variables may be
passed within a structure.

Def Struct SearchVar
 Member Key$[100]
 Member %3, RecordNumber
 Member %1, StatVar
End Def

Dim Key. As SearchVar
Search = #channel, index; Key.
 Select Case Key.StatVar
 Case 0:
 ! Success
 Case Else
 ! Failure
End Select

Using 'item' Designations in Structure Variables

Structure elements may also declare an 'item number' or 'key option' assignments, for
use by file drivers, associated with each member. While most statements ignore the
item designation, file drivers utilize such information for record definitions and
positioning.
Def Struct Customer ! Define structure for Indexed file
 Member Name$[25] : ITEM 0 ! supplying byte displacements.
 Member Address$[25] : ITEM 25
 Member City$[25] : ITEM 50
 Member State$[2] : ITEM 75
 Member Zip$[10] : ITEM 77
 Member 3%,Balance : ITEM 100
End Def

The above example might be used to access older style contiguous or indexed data files.
To access database files, the same structure definition may define items using
'fieldnames', such as:
Def Struct Customer ! Define using 'fieldnames'
 Member Name$[25] : ITEM "Name" ! supply database fieldnames.
 Member Address$[25] : ITEM "Addr"
 Member City$[25] : ITEM "City"
 Member State$[2] : ITEM "State"
 Member Zip$[10] : ITEM "PostCode"
 Member 3%,Balance : ITEM "CurrBal" : DECIMALS 2
End Def

Revision date: 08/23/05 134 Dynamic Concepts Engineering

Directories may also be defined and managed using structure definitions. By defining
the named key CustKey as a unique, packed directory, one can define a structure as
follows:

Def Struct CustKey : KEY "NameCtyBal" + Unique + Packed
 Member Name$[25] : KEY "Name" + Ascending + Uppercase
 Member City$[25] : KEY "City" + Ascending
 Member 3%,Balance : KEY "CurrBal" + Descending
End Def

Training Note: A colon (:) is used to separate ITEM, KEY and DECIMALS specifiers.
Multiple ITEM or KEY specifications are concatenated with a +.
Key member fieldnames MUST be defined and MUST match the name of the fields that
make the key in the database.
In the example above NameCtyBal is the name of the key itself in database.

The VARLEN option can be used with Full-ISAM files to create variable length or memo
fields instead of fixed length character fields. An example would be :

 Member Comment$[100] : ITEM “Comment” : Varlen

Building a Full-ISAM Database File

Creating a Full-ISAM file is performed by first building the file, followed by the definition
of the record layout and indices. The Build statement is used to create a Full-ISAM
database file. The General form of the Build statement for this class of object is:

Build #channel, filename As "Full-ISAM"

Build #channel, filename As "FoxPro Full-ISAM"

channel is any numeric expression which, after evaluation is truncated to an integer
specifying an unopened channel on which to build a new Full-ISAM database file.

filename is any filename expression including the name of the file.

The string given in an As clause is interpreted either as a driver-class name or a specific
driver-description, whichever is found first in the main driver table. When a specific
driver is desired, it should be specified. Otherwise, specification of the class only
results in the selection of the default driver assigned to the class.

If no error occurs, the file is created. The following parameters outline the capabilities
of the FoxPro compatible Full-ISAM database driver supplied with dL4.

! MAXIMUM LENGTH OF FIELD NAME = 10 CHARACTERS (10 is correct for FoxPro)
! MAXIMUM NUMBER OF FIELDS PER RECORD = 255
! MAXIMUM LENGTH OF A CHARACTER FIELD = 32767 CHARACTERS
! MAXIMUM NUMBER OF DIRECTORIES = 47
! NUMBER OF DECIMAL PLACES IN NUMERIC FIELDS IS REQUIRED
! RECORD NAME PARAMETER IS IGNORED
! BINARY FIELDS NOT DEFINABLE IN BASIC
! KEY PART OPTIONS ALLOWED: UPPERCASE (FOR STRING FIELDS)
! NUMBER OF DECIMALS (FOR NUMERIC FIELDS)
! DIRECTORY OPTIONS ALLOWED: DESCENDING SEQUENCE
! DUPLICATES ALLOWED

Revision date: 08/23/05 135 Dynamic Concepts Engineering

Defining a Full-ISAM Record Definition

The Define Record statement is used to establish the record definition and data
dictionary of a newly built Full-ISAM database file. The general form is:
Define Record # channel ; structvar

channel is any numeric expression which, after evaluation is truncated to an integer
specifying an opened channel with a newly built Full-ISAM data file.

structvar is the name of a structure variable including Item "Fieldname" specifications
for each member of the structure template.

The record layout of the file is structured according to the members of the given
structure, i.e. types, sizes, and fieldnames.

No data records are written to the file by the Define Record operation.

For example, given the following structure template:

Def Struct Customer ! Define using 'fieldnames'
 Member Name$[25] : ITEM "Name" ! supply database fieldnames.
 Member Address$[25] : ITEM "Addr"
 Member City$[25] : ITEM "City"
 Member State$[2] : ITEM "State"
 Member Zip$[10] : ITEM "PostCode"
 Member 3%,Balance : ITEM "CurrBal"
End Def

Dim Cust. As Customer
Build #5, "Customers" As "Full-ISAM"
Define Record #5; Cust.

If no errors result, the record definition was accepted and written to the file.

Adding an Index to a Full-ISAM File

Indices may be added and deleted to a Full-ISAM file at any time. The process of
defining an index requires defining a structure which identifies the various parts of the
key. The general form is:

Add Index # channel, index; structvar

channel is any numeric expression which, after evaluation is truncated to an integer
specifying an opened channel with a newly built Full-ISAM data file.

index is any numeric expression which, after evaluation is truncated to an integer and
used to select an unused index (directory) number within the opened Full-ISAM
database file.

structvar is the name of a structure variable including Key "Definition" specifications for
each member of the structure template.

Options for the entire Key include: Unique, Duplicates and Packed.

Options for Key members include: Ascending, Descending, Uppercase.

Revision date: 08/23/05 136 Dynamic Concepts Engineering

Def Struct CustKey1 : KEY "NameCtyBal" + Duplicates + Packed
 Member Name$[25] : KEY "Name" + Ascending + Uppercase
 Member City$[25] : KEY "City" + Ascending + Uppercase
 Member 3%,Balance : KEY "CurrBal" + Descending
End Def
Dim Key1. As CustKey1
Add Index #5,1;Key1.

In this example, the structure CustKey1 is named "NameCtyBal" and represents an
index of possibly duplicate keys packed to save space within the file.

The member Name$ is a 25-character string from the data field with the same name. It
is to be uppercased and stored in ascending order. The field City$ is a 25-character
string from the data filed with the same name. It is also to be uppercased and stored in
ascending order. The last part of this key, Balance, is a 3% numeric field from the field
named "CurrBal" which is to be collated in descending order.

Once the structure is defined, a new directory is added by the statement and all active
records are keyed immediately. If no errors result, the selected index was successfully
defined.

Deleting an Index from a Full-ISAM File

When an index is no longer required, it may be deleted. It is driver dependent whether
deleting an index results in savings of disk space. In most cases, it is assumed that the
file structure will reuse the empty portion of the file. The general form is:

Delete Index # channel, index;

channel is any numeric expression which, after evaluation is truncated to an integer
specifying the channel of an opened Full-ISAM data file.

index is any numeric expression which, after evaluation is truncated to an integer and
used to select an existing index (directory) number within the opened Full-ISAM
database file which is to be deleted.

If no errors result, the selected index was successfully deleted.

Aligning a Structure to a Full-ISAM File

Often it is necessary to work with a subset of fields within a database or provide for
later changes in the field order within the file. The Map Record statement allows a
program to 'marry' a structure definition to the current file's data dictionary. The
general form is:

Map Record #channel As struct

channel is any numeric expression which, after evaluation is truncated to an integer
specifying the channel of an opened Full-ISAM data file.

struct is the name of a template Def Struct structure definition which is to be aligned
with the fieldnames of the database. struct members must have Item fieldname
definitions.

Revision date: 08/23/05 137 Dynamic Concepts Engineering

Map Record defines an alternate item number mapping at run-time. This statement
allows a custom (sub-) record schema for record access, but does so dynamically by the
item's fieldname.

For example, if the field "Addr", which is item 1 in the structure, is currently item 4 in
the physical record, a Map Record would cause the driver to perform the necessary
item-number translation so that any further access to item 1 will actually access item
4.

This kind of dynamic record access not only insulates the application from certain
modifications to the file structure, but also could be used by individual programs to
limit record accesses to only those fields which are directly used. Depending on the
format of the underlying record data (which is subject to the rules of the actual file
being driven, e.g., FoxPro, etc.), this may circumvent unnecessary data conversion and
thereby boost performance.

An example of Map Record is presented at the end of this section.

You can also map a key name using the syntax Map #channel,keyno;”keyname”,
For example, Map #1,1;”CUSTID”
Which will map the key named “CUSTID” to key 1, even if it is not truly key 1 in the file.

Adding a new Record to a Full-ISAM File

A new record is added to a Full-ISAM file using the Add Record statement. The general
form is:

Add Record #channel ; structvar

channel is any numeric expression which, after evaluation is truncated to an integer
specifying an opened channel with a newly built Full-ISAM data file.

structvar is the name of a structure variable containing the new record.

A new record is allocated, written and all keys associated with this record are inserted.
When the add operation is complete, the new record becomes the current record.

If no errors result, the selected record was successfully added to the file.

Deleting a Record within a Full-ISAM File

A record may be deleted from a Full-ISAM file using the Delete Record statement. The
general form is:

Delete Record #channel ;

channel is any numeric expression which, after evaluation is truncated to an integer
specifying an opened channel with a newly built Full-ISAM data file.

The current record is deallocated, and all keys associated with this record are removed.
The current record must be locked in order to be deleted.

If no errors result, the current record was successfully deleted.

Revision date: 08/23/05 138 Dynamic Concepts Engineering

Locating Records within a Full-ISAM File

To access Full-ISAM files, the Search statement is used to specify an index and set a
current record position within the file for further Read and Write Record statements.
It is not necessary to issue repeated Search statements unless a random repositioning
is required.

When performing a search operation on a Full-ISAM file, the arguments to the Search
statement represent the parts of the selected key, rather than the familiar
"<key$>,<record>,<status>". A structure, such as the one used to actually create the
index, can also be used; supplying a structure is equivalent to explicitly supplying each
of its members.
Def Struct CustKey1 : KEY "NameCtyBal" + Duplicates + Packed
 Member Name$[25] : KEY "Name" + Ascending + Uppercase
 Member City$[25] : KEY "City$" + Ascending + Uppercase
 Member 3%,Balance : KEY "CurrBal" + Descending
End Def
Dim Key. as CustKey1
Key.Name$ = "Acme" ; Key.City$ = "Toledo" ; Key.Balance = 0
I = 1
Search = #C, I; Key. !Exact search (NO PARTIAL MATCH!)
Search > #C, I; Key. !Search Greater
Search < #C, I; Key. !Search Less
Search >= #C, I; Key. !Search Greater or Equal
Search <= #C, I; Key. !Search Less than or Equal
Search < #C,1; !Position to last key of Index 1
Search > #C,1; !Position to first key of Index 1

Note: You must MAP the key # to the actual key name, see previous page.
KEY definitions in a key structure are only needed if using the structure to build the
file.
You do not have to use a structure variable to do the search, the Search statement can
be a variable list of the key parts.

If the Search succeeds, the current record position is set accordingly and the index
used becomes the current index. Relative record access forward or backward is then
performed using this index.

When used in conjunction with Full-ISAM files, the application would perform an initial
SEARCH and read the current record. A loop, such as WHILE or DO can then be used
to read next or previous through the file.

When SEARCH is used with older-style indexed files, structure variables can still be
used by defining a structure containing the traditional parameters supplied to a
SEARCH statement. Only the modes =, >, < are supported for Indexed files.

Def Struct Key ! Old-style Key structure
 Member Key$[20] ! Contains string for Key
 Member 3%,V1 ! V1 for record number
 Member 1%,V2 ! V2 for returned status
End Def
Dim K. AS Key
SEARCH = #1,1;K. \ IF K.V2 ... ! etc.

Managing Records within a Full-ISAM File

The management (changing) of data records within a Full-ISAM database file is
accomplished by simply reading and writing a record. The indices are updated
automatically.

Revision date: 08/23/05 139 Dynamic Concepts Engineering

The general forms are:

Read Record # channel , record {, item {, timeout } } ; structvar

Write Record # channel , record {, item {, timeout } } ; structvar

channel is any numeric expression which, after evaluation is truncated to an integer
specifying the channel of an opened Full-ISAM data file.

record is any numeric expression which, after evaluation is truncated to an integer
specifying a numbered record or record selection choice. record may select an actual
record number for dL4 files or may be specified as -1 or -2. Full-ISAM files may only
select one of the following:

 -1 Read next (ascending) record

(relative to the index ordering of index last searched)
 -2 Read current record
 -3 Read previous (descending) record.

item is any numeric expression which, after evaluation is truncated to an integer
specifying the item number or byte displacement within the record to begin the transfer.

timeout is any numeric expression which, after evaluation is truncated to an integer
specifying the number of tenth-seconds to wait for a record which is locked.

structvar is the name of a structure variable the contents of which is to be read or
written.
The Read and Write Record statements are similar to normal Read and Write of a
record except for the requirement that a structvar is supplied and the computation and
override of the item number for each member.

The first example illustrates the use of structures and the new statements on an old-
style existing Indexed or Contiguous file.

Def Struct DRCR
 Member 3%, Debit : ITEM 0 !Note item displacement is relative
 Member 3%, Credit : ITEM 6 !to where we begin a transfer
End Def

 Def Struct Cust
 Member Number$[8] : ITEM 0
 Member Name$[30] : ITEM 10
 Member Addr$[30] : ITEM 42
 Member Balance. As DRCR : ITEM 74
 Member 1%,LastOrderNumb# : ITEM 86
End Def
Dim Customer. As Cust
Write Record #c,r,b,t;CUSTOMER. ! identical to:
Write #c,r,b+0,t;Customer.Number$
Write #c,r,b+10,t;Customer.Name$
Write #c,r,b+42,t;Customer.Addr$
Write #c,r,b+74+0,t;Customer.Balance.Debit
Write #c,r,b+74+6,t;Customer.Balance.Credit

The starting (or supplied) byte displacement is incremented by any Item declaration
within the structure. Since the structure Customer contains the structure DRCR as
Balance beginning at offset 74, the original definition of the structure DRCR has
starting offsets of zero. If one were to transfer a DRCR structure separately, a starting
offset of 74 would have to be supplied in the transfer statement itself.

Revision date: 08/23/05 140 Dynamic Concepts Engineering

The following example defines the same sample structure using item 'fieldnames'
instead of numbers. In this case, or whenever ITEM clauses are not supplied in a
structure definition, the item designation is equivalent to the member number, i.e.
sequential from zero. Full-ISAM file access is provided by supplying an item number,
therefore a structure to be used for accessing such files must define the items in the
order that they exist in the file.
To provide an even greater degree of database-style flexibility, the Map Record #
statement can be used to align a defined structure with an open file. Most applications
would be wise to use this statement upon opening all Full-ISAM files to "marry" the
current file definition to the expected structure. In this way, changes to the order of
fields, or the addition of new fields, will have minimal impact on existing application
code.

Def Struct DRCR
 Member 3%, Debit : ITEM "Debit" ! By Field Name
 Member 3%, Credit : ITEM "Credit"
End Def
Def Struct Cust : Item "Customer Record"
 Member Number$[8] : ITEM "Number"
 Member Name$[30] : ITEM "Name"
 Member Addr$[30] : ITEM "Addr"
 Member Balance. As DRCR : ITEM "Balance"
 Member 1%,LastOrderNumb# : ITEM "LastOrDate”
End Def
Dim Customer. As Cust
Open #5, "Customers" As “Full-ISAM"
Map Record #5 As Cust
Search > #5,1;
Read Record #5,-2; Customer. !Read entire structure
Write Record #5,-2; Customer.

Training Note: In the example above, Item names Debit and Credit would be appended
to Item name Balance and then in the case of FoxPro truncated to 10 characters. In
FoxPro, the fieldnames would be BalanceDeb and BalanceCre.
To determine FoxPro file field names you can use the query utility in the tools directory,
for example:
#/usr/lib/dl4/tools/query customers.dbf

When used in conjunction with Full-ISAM and Search, the application performs an
initial Search and reads the current record. Specific sets of records can then be
processed by reading/writing the next or previous record. A loop, such as While or Do
could be used to traverse the file.

The use of Read Record and Write Record on older-style indexed files will still rely on
the paired operations of Search and Read Record or Write Record . A file is traversed
using Search mode 3 or 6 or > or < (next or previous) followed by a Read Record with a
returned record number.

Simple Example

How to do a sequential search

Old Unibasic method :

20 SEARCH #1,3,1;V$,V1,V2

Revision date: 08/23/05 141 Dynamic Concepts Engineering

30 IF V2 GOTO 60

40 READ #1,V1; fields

50 GOTO 20

60 REM etc

New way with DO/LOOP is to position to a location in the file and then do sequential
reads :

Try

 Search > #1,1;

 X = -2

 Do

 Try Read Record #1,X;record. Else Exit Do

 Etc

 X=-1

 Loop

Else

End Try

Space filled fields

Full-ISAM files typically will automatically right space fill defined fields.
An open option, "RTRIM=<boolean>", is available for Full-ISAM drivers. If the option
"RTRIM=TRUE" is used, all trailing spaces are removed when reading fields. The option
is
case insensitive and an argument of "T" is identical to "TRUE".

Example:
 Open #1,"(rtrim=t)test.dbf"

Revision date: 08/23/05 142 Dynamic Concepts Engineering

dL4 BRIDGE DRIVER

 A new driver in the Indexed file class

 Designed to provide developers gradual incorporation of Full-ISAM

 Transparent to applications

 Gives restricted access to a Full-ISAM file as if that file were Indexed

 Simplify the transition into non-proprietary database systems

 No immediate reprogramming – use MS-SQL files with existing code!

 Adapt on a file by file basis rather than program by program

 Develop new Full-ISAM applications over time

 Interface immediately with industry-standard tools

 Ability to map to any underlying Full-ISAM database

Revision date: 08/23/05 143 Dynamic Concepts Engineering

REQUIREMENTS WHEN USING THE BRIDGE DRIVER

 Emulated Indexed File must have a single, fixed record layout

 All indices must be balanced (there is a variation to this)

 Each directory must have one and only one key per record (there is
a variation to this)

 Data fields must be numeric or character

 Other types (packed) not supported

 Can not link or chain records by record number (there is a variation to
this)

 Character fields cannot have significant data past first null

ACCESSING AN EMULATED INDEXED-CONTIGUOUS

 Cannot BUILD a Full-ISAM file using the Bridge driver; A normal
Indexed-contiguous file is always BUILD by default

 File operations on a given channel must be grouped into consecutive
operations on a single record - a Transaction

 Transactions begin with a SEARCH which returns a record number

 Transactions end with either:

All indices balanced and consistent values present between key and
record fields, where applicable.

©

© All keys removed and the associated record deleted.

 All indices balanced and consistent values present between key and
record fields, where applicable

 All keys removed and the associated record deleted
 Record numbers are not physical within the Full-ISAM file, thus the

driver generates a ‘pseudo’ record number which may vary for the same
record

 Record numbers are valid within a single transaction
 Record numbers may vary the next time the same record is accessed

Revision date: 08/23/05 144 Dynamic Concepts Engineering

BRIDGE PROFILE - "DATA DICTIONARY"

 Maps certain Full-ISAM fields to selected byte displacements of an
emulated contiguous file

 Maps certain Full-ISAM fields to selected parts of emulated Index keys

 Dictionary stored in a text "profile" file, termed a Bridge Profile

 Profile is typically stored under the same name as the emulated Indexed
File so that Open statements need not be modified. However the profile
file can have any filename. The Open statement syntax is simply, OPEN
#1,”profile filename”

 Application opens a profile believing it to be an Indexed file (open
statement is simply Open #1,”profile filename”)

 Profile contains the filename, and optional driver, of underlying Full-
ISAM database file

Revision date: 08/23/05 145 Dynamic Concepts Engineering

ISAM Bridge Profile

[FullISAMBridge]

; Presence of [FullISAMBridge] shall be used to trigger driver

; auto-selection

File=sample.dbf

; format for MS-SQL file would be

; File= (user=xxx, pswd=xxx) servername:databasename.tablename

; OpenAs=... may not be necessary, depending on the database in question

OpenAs=FoxPro Full-ISAM

; or OpenAs=Microsoft SQL Server Full-ISAM

; Sample bridge profile for Full-ISAM Bridge driver

; Entries for fields look like:

; Field=<fldnam>,<pos>,<fmt>,<align>,<fill>,<opts>

; <fldnam> Name of field in Full-ISAM file.

; <pos> Byte displacement in emulated idx-ctg record or key.

; <fmt> Character length for strings, precision number for numerics.

; <align>"L" to left-align string data (default).

; "R" to right-align string data.

; <fill> fill character to use if string field sizes
mismatch,

; default is " ".

; <opts> various option keywords separated by "+". Current options
are:

; "strip" Strip trailing spaces from string fields after
reading them
; from the Full-ISAM file.

[Record]

Field=NAME,0,25

Field=ADDRESS1,25,25

Field=ADDRESS2,50,25

Revision date: 08/23/05 146 Dynamic Concepts Engineering

Field=CITY,75,15

Field=STATE,90,2

Field=ZIPCODE,92,5

Field=BALANCE,98,4%

Field=CREDTLIMIT,106,4%

Field=ORDER,114,6

Field=INVOICE,120,6

; Entries for keyparts look like:

; KeyPart=<fldnam>,<pos>,<fmt>,<prefix>,<charset>,<opts>

; <fldnam> Name of field in Full-ISAM file.

; <pos> Byte displacement in emulated idx-ctg record or key.

; <fmt> Character length for strings, precision number for

; numerics.

; <prefix> prefix character strings to use to generate random

; unique key fields when a new record is allocated.

; <charset> character set to use to generate random unique key

; fields when a new record is allocated.

; e.g "0123456789" will generate numeric values.

; <opts> Various option keywords separated by "+". Current

; options are:"strip" - Strip trailing spaces from

; string fields after reading them from the file.

[Index1]

Name=BYORDER

KeyPart=ORDER,0,6,"zz","abcdefghij"

[Index2]

Name=BYSTATE

KeyPart=STATE,0,2,"","0123456789"

KeyPart=ORDER,2,6,"zz","abcdefghij"

Revision date: 08/23/05 147 Dynamic Concepts Engineering

[Index3]

Name=BYINVOICE

KeyPart=INVOICE,0,6,"zz","abcdefghij"

Training note :
Explanation of <prefix> and <charset>. Sometimes the bridge driver needs to create a
temporary key in the FULL-ISAM file until all the fields are written to the file. These
parameters are used to help create a temporary key that will be unique (not duplicating
a possible existing key). In example above, Index 1 will create a unique temporary key
beginning with ‘zz’ and the remaining 4 characters will be generated with the letters a
through j.

Sample Record Layout

File: Cust.Master
Type: Indexed, Record Length: 140 bytes
Directory 1: Key Length 6-characters “Customer Number”

 Fieldname Name$ Address1 Address2 City State Zip Phone Date Ytd
Sale
s

Last
Yrsales

Custnum

Offset 0 25 50 61 86 89 94 109 116 120 128
Variable
Type

T$
[24]
String

T1$
[24]
String

T2$
[10]
String

T3$
[24]
Strin
g

T4$
[2]
Strin
g

T5
2%

T6$
[14]
String

 T7$
 [6]
String

T8
2%

T9
4%

T`10$
[6]
String

Sample Bridge Profile

[FullISAMBridge]

File=custmasterfi.dbf

OpenAs=FoxPro Full-ISAM

[Record]

Field=NAME,0,24

Field=ADDRESS1,25,24

Field=ADDRESS2,50,10

Field=CITY,61,24

Field=STATE,86,2

Revision date: 08/23/05 148 Dynamic Concepts Engineering

Field=ZIP,89,2%

Field=PHONE,94,14

Field=DATE,109,6

Field=YTDSALES,116,2%

Field=LASTYRSALE, 120, 4%

Field=CUSTNUM, 128, 6

[Index1]

Name=BYCUSTNUM

KeyPart=CUSTNUM,0,6,"","0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

o A new option has been added to the Full-ISAM Bridge driver profile
to support unbalanced indexes by allowing such indexes to be placed in
separate Indexed-Contiguous or Full-ISAM files outside the main Full-
ISAM file. For example, if index 3 of an Indexed-Contiguous file is
used as a scratch index with entries for only some of the file records
(and is thus unbalanced), that index could not be emulated by the Bridge
driver within the main Full-ISAM file because Full-ISAM files do not
support unbalanced indexes. Using the new option, the index can be
emulated by declaring an external index in the bridge profile. For
example:

 [Index3]
 File=filename
 Index=1
 KeyPart=name,0,10

 This example directs the bridge driver to perform all SEARCH
operations on index 3 by applying the SEARCH operations to index 1 of
the Indexed Contiguous file "filename". The bridge profile would also
have to use the "RealRecordNumbers" option described below so that the
record numbers in the keys of index 3 could be used to reference records
in the main Full-ISAM file. External indexes can have multiple keys for
the same record or use multiple key formats. The data in the key is
completely controlled by the application and does not need to be present
in any of the fields of the main Full-ISAM file. An external index
definition can only have one "KeyPart" entry and, if the external index
file is indexed contiguous, the field name is ignored (but it must be
specified).

 External index files can either be Indexed Contiguous files or Full-
ISAM files. If an Indexed-Contiguous file is used, the bridge driver
will only access the index portion of the file. To use a Full-ISAM file
as an external index file, the following format must be used in the
bridge profile:

 [Index3]
 File=filename
 Name=indexname

Revision date: 08/23/05 149 Dynamic Concepts Engineering

 KeyPart=keyfieldname,0,10,,,Strip
 RecPart=recnbrfieldname

where "filename" is the name of the external Full-ISAM file, "indexname"
is the name of the index within the Full-ISAM file, "keyfieldname" is
the name of the Full-ISAM field used for the key (this must be a
character field), and "recnbrfieldname" is the name of the Full-ISAM
field used for the record number (this must be a numeric field).
External index definitions can include "Filename", "Protection",
"Options", "OpenAs", and "OpenInProfileDirectory" entries using the same
format and function as such entries in the main bridge profile section.
If the file protection option is not specified, the protection options
used to open the main Full-ISAM file will be applied when opening the
external index file.

o A new option has been added to the Full-ISAM Bridge driver profile
to support programs reading records by record number. When set to TRUE,
the option "RealRecordNumbers" causes the driver to return the actual
Full-ISAM file record number when performing SEARCH statements that
return a record number. The record numbers returned by SEARCH can
then be used to perform random reads from the file. The option can
only be used with Full-ISAM drivers and files that support searching
index 0 for equal record numbers. Example:

 [FullISAMBridge]
 File=filename
 OpenAs=FoxPro Full-ISAM
 RealRecordNumbers=True

o The Full-ISAM Bridge driver has been enhanced to support keys that
contain the current record number when the Bridge driver is used with
the MySQL Full-ISAM driver or the Microsoft Full-ISAM driver. In the
Bridge profile, a record number segment of a key must reference the
IDENTITY column of the Full-ISAM table and use the NTOC(), STR(),
NTVNTOC(), or NTVSTR() functions to convert the IDENTITY column value to
a character format. To use this feature, the option "RealRecordNumbers"
must be enabled.

 o The Full-ISAM Bridge driver has been enhanced with two new
conversion functions: STR() and NTVSTR(). These functions are similar
to NTOC() and NTVNTOC(), but they use a simpler mask consisting only of
spaces and a single "#" character. The "#" character is replaced with a
default conversion of the number and any spaces are copied. The purpose
of the STR() and NTVSTR() functions is to duplicate fields that are
created by simple assignment or concatenation of numeric values:

 TheKey$ = "Name", RecNo

 Bridge profile example:

 KeyPart=IDCOL,5,7,"","0123456789",STR("#")
 o A new option has been added to the Full-ISAM Bridge driver profile
to support programs that accidentally span a record boundary when
reading string values. When set to TRUE, the option "TruncateSpanning"
disables the normal "Illegal item number" (error 53) error that is
reported when a program reads a character variable whose length extends
beyond the end of the record. The driver will treat such reads as if
the read ended exactly at the end of the record. Example:

 [FullISAMBridge]
 File=filename
 OpenAs=FoxPro Full-ISAM
 TruncateSpanning=True

Revision date: 08/23/05 150 Dynamic Concepts Engineering

o The Full-ISAM Bridge driver has been extended to support Full-ISAM
date fields and translation of field types. A date field is used
by specifying a translation function in the field definition that
defines how to translate a date value to or from a character or
numeric field. Translation functions also support converting Full-ISAM
numeric fields to Indexed-Contiguous character key fields.
Additional functions support subscripted character fields for key
fields or case-insensitive key fields. The translation functions are:

DTOC(mask) Convert the Full-ISAM date field to a character string in
the record image using "mask". All dates use local date/time. When the
DTOC() function is used in an index definition, the "mask" must define a
sortable date. For example, "YYMMDD" is a legal index mask, but
"MMDDYY" is not because it would not sort correctly. "mask" is a quoted
string in which the following substrings have special meaning:

 YYYY Four digit year
 YY Two digit year with the century set so
 it is within 50 years of the current
 date.
 AA Two digit year in which years after 1999
 are specified as "A0" through "E9".
 MM Zero filled month, 1 - 12
 DD Zero filled day of month, 1 - 31
 DDD Zero filled day of year, 1 - 366
 DDDDD Zero filled day relative to base year
 1968. January 1, 1968 is "00001".
 Six or more "D"s can be also be used.
 HH Zero filled hour of day
 MM Zero filled minute of hour
 SS Zero filled second of minute

DTON(mask) Convert Full-ISAM date field to a decimal numbe in the
record image using "mask". All dates use local date/time. "mask" is a
quoted string defining the decimal digits of the number. The following
substrings in the mask have special meanings:

 YYYY Four digit year
 YY Two digit year with the century set so
 it is within 50 years of the current
 date.
 MM Month, 1 - 12
 DD Day of month, 1 - 31
 DDD Day of year, 1 - 366 or 0 - 365
 DDDDD Day relative to base year 1968.
 January 1, 1968 is 1. Six or more
 "D"s can be also be used.
 HH Hour of day
 MM Minute of hour
 SS Second of minute

NTOC(mask) Convert Full-ISAM numeric field to a character string
according to the USING mask "mask". The mask must use a period (".")
for any decimal point and comma as any grouping separator.

NTVNTOC(mask) Convert Full-ISAM numeric field to a character string
according to the USING mask "mask" and using locale information to
determine the decimal point character. The mask must use a period (".")
for any decimal point and comma as any grouping separator.

LEFT(len) Use the first "len" characters of the field. This function

Revision date: 08/23/05 151 Dynamic Concepts Engineering

can only be used in index definitions and the field must also be used in
the "[Record]" section.

UCASE(len) Use the first "len" characters of the field converted to
uppercase. This function can only be used in index definitions and the
field must also be used in the "[Record]" section.

LCASE(len) Use the first "len" characters of the field converted to
lowercase. This function can only be used in index definitions and the
field must also be used in the "[Record]" section.

 Examples:

 Field=LASTPAYMNT,114,2%,,,DTON("YYDDD")

 KeyPart=DATE1,0,10,"","0123456789",DTOC("YYYYMMDD")

 KeyPart=NUM2,5,7,"","0123456789",NTOC("####.##")

o The Full-ISAM Bridge driver profile has been extended to support two
conversion functions, IFNULL and IFERR, that convert SQL NULL or invalid
values to and from the values needed in the emulated indexed contiguous
file record. The IFNULL function takes a single string argument which
defines a string or number that is stored into the converted field
whenever a NULL is read. When a record is written, the same value will
be converted to a NULL. Examples:

 Field=COUNT,28,4%,,,IFNULL("-1")
 Field=ACCTID,16,12,,,NTOC("-------#.##"),IFNULL("N/A"),Strip

In order to read or write NULLs, the SQL driver options in the bridge
profile must be set to enable reading and writing nulls.

The IFERR function is similar to the IFNULL function, but it is applied
to invalid numeric or date values. In this release of dL4, the only
possible invalid value is the special MySQL date value of "0000-00-00".
If no IFERR function is specified, an invalid value results in an error.
In the following example, MySQL "0000-00-00" dates are converted to -1
while actual dates are converted to decimal numbers in the form
"YYYYMMDD":

 Field=DATE1N,60,3%,,,DTON("YYYYMMDD"),IFERR("-1")

In this example, "0000-00-00" dates in a key part are converted to the
string "00000000" while actual dates are converted to strings in the
format "YYYYMMDD":

 KeyPart=DATE1,0,8,"","0123",DTOC("YYYYMMDD"),IFERR("00000000")

Both IFNULL and IFERR functions can be used in the same field or key
part definition.

o The Full-ISAM Bridge driver profile has been extended to support
filler fields. A filler field is any record field with a field name
beginning with an asterisk. Filler fields are not read from the Full-
ISAM file, but they are initialized to the fill character or zeroed if
the fill character is not defined. The filler name is treated as a

Revision date: 08/23/05 152 Dynamic Concepts Engineering

comment.

 Example:

 Field=*fillerwithnulls*,54,5
 Field=*fillerwithblanks*,59,5,," "

o The numeric precision syntax in Full-ISAM Bridge profile files has
been extended to specify the number of decimal places needed. The new,
optional format is "p.d%" where "p" is the dL4 numeric precision (1-4)
and "d" is the number of decimal places. Thus "3.2%" would specify a 10
digit floating point format with two decimal places. The decimal place
information is used by the tools/ic2fi utility to create Full-ISAM files
when the Full-ISAM driver supports only fixed point, rather than
floating point, numbers. Example:

 Field=COST,80,3.2%

o A new option has been added to the Full-ISAM Bridge driver profile
to disable use of temporary record values when inserting or modifying
records. The temporary values are normally used to reserve key values
after SEARCH mode 4 insert statements and thus prevent other programs
from inserting the same key. If the new "ProtectKeys=False" option is
specified in the initial section of a bridge profile, SEARCH mode 4
statements will check for the current existence of a key value, but the
Full-ISAM file will not be modified until all keys have been inserted
for the record. This option improves Bridge driver performance and
allows use of foreign key constraints in SQL tables. If the option is
used, duplicate key errors may occur after a successful SEARCH mode 4
insertion of the key. Bridge profile example:

 [FullISAMBridge]
 File=filename
 OpenAs=FoxPro Full-ISAM
 ProtectKeys=False

Revision date: 08/23/05 153 Dynamic Concepts Engineering

Microsoft SQL Server Full-ISAM

 Available only on dL4 for Windows product
 A Full-ISAM interface to SQL Server Tables
 A SQL Server Table appears as a Full-ISAM file to a Basic program
 Can use the Bridge Driver to access the server because it is a Full-ISAM interface
 Can add, change and delete records in a SQL table
 Do not use identity fields in tables. dL4 cannot write to identity fields
 A table must have at least one index with unique key
 The table to be opened must allow NULL values in all fields that are not used

in keys

 Cannot change database or table definitions. Must be done within SQL
administration

 Cannot open database views
 Cannot issue SQL statements
 Cannot use auto selection
 Does not support record number, record size and file size channel functions (CHF)

Example

Here is an example program which reads a text file, creates a dL4 Foxpro file and then
compares the Foxpro file to a MS-SQL file and updates the SQL file with any changes.

! "DEMOSQL" === Program to create dl4 file of open orders and update SQL table
!
! *Declare dL4 Intrinsic Subs & Functions
Declare Intrinsic Sub ProgramDump
Declare Intrinsic Function FindChannel
!
! *Define file structures Def Structs
!
! dl4 file to be built from existing Unibasic files
! foxpro fieldnames limited to 10 characters!
Def Struct dl4orders :Item "Orders"
 Member Orderstatus$[16] :Item "OrderID"
 Member PMOrder$[10] :Item "PMOrder"
 Member PMOrderline$[10] :Item "PMLine"
 Member PMAccount$[10] :Item "PMAcct"
 Member %3,Orderdate# :Item "OrderDate"
 Member Productcode$[10] :Item "Product"
 Member CustomerPO$[15] :Item "CustPO"
 Member QtyOrdered$[10] :Item "QtyOrdered"
 Member QtyShipped$[10] :Item "QtyShipped"

End Def
!
Def Struct dl4ordersK1 :KEY "OrderID"
 Member Orderstatus$[16] :KEY "OrderID"
End Def
!
! SQL file to update from dl4 file

Revision date: 08/23/05 154 Dynamic Concepts Engineering

Def Struct sqlorders :Item "Orders"
 Member Orderstatus$[16] :Item "Order Status ID"
 Member PMOrder$[10] :Item "PM Order Number"
 Member PMOrderline$[10] :Item "PM Order Line Number"
 Member PMAccount$[10] :Item "PM Account Number"
 Member %3,Orderdate# :Item "Order Date"
 Member Productcode$[10] :Item "Product Code Number"
 Member CustomerPO$[15] :Item "Customer PO Number"
 Member QtyOrdered$[10] :Item "Quantity Ordered"
 Member QtyShipped$[10] :Item "Quantity Shipped"

End Def
!
Def Struct sqlordersK1
 Member Orderstatus$[16]
End Def
!
! *Define Subs & Functions
!
!
!
! Name:
! BuildFile() - Build dl4 file
!
! Synopsis:
! BuildFile(dl4File$)
! dl4File$ = filename to build
! Builds dl4 file for current order status
!
! Returns:
! >0: Channel #
! -1: Error
!
External Function BuildFile(dl4File$)

 Dim %1,C0,S,%3
 Dim dl4orders. As dl4orders !dl4 orders file
 Dim dl4ordersK1. As dl4ordersK1 !dl4 KEY 1

 C0=FindChannel()
 Build #C0,dl4File$ As "Full-ISAM"
 Define Record #C0;dl4orders.
 Add Index #C0,1;dl4ordersK1.
 Close #C0
 Open #C0,dl4File$ As "Full-ISAM"
End Function C0 !BuildFile
!
!
! Name:
! ReadUnibasic() - Read Unibasic text file and write dl4 file
!
! Synopsis:
! ReadUnibasic(C0)
! C0=dl4 file channel #
!

Revision date: 08/23/05 155 Dynamic Concepts Engineering

! Returns:
! T=# of records created
!
External Sub ReadUnibasic(C0,T)

 Dim %1,C1,C2,C3,S,%3
 Dim Stri$[300],Tmp$[300]
 Dim dl4orders. As dl4orders !dl4 orders file
 Dim dl4ordersK1. As dl4ordersK1 !dl4 KEY 1

 C1=FindChannel()

 ROpen #C1,”ordertextfile”

 Print "Creating new open orders file"
 Do
 Read #C1;Stri$
 If Stri$="" Then Exit Do

Let tmp$=Stri$ To "|" : Spos
Let dl4orders.PMOrder$=tmp$
Let tmp$=Stri$[Spos+1] To "|" : Spos
Let dl4orders.PMOrderline$=tmp$
Let tmp$=Stri$[Spos+1] To "|" : Spos
Let dl4orders.PMAccount$=tmp$
Let tmp$=Stri$[Spos+1] To "|" : Spos
Let dl4orders.OrderDate#=tmp$
Let tmp$=Stri$[Spos+1] To "|" : Spos
Let dl4orders.Productcode$=tmp$
Let tmp$=Stri$[Spos+1] To "|" : Spos
Let dl4orders.CustomerPO$=tmp$
Let tmp$=Stri$[Spos+1] To "|" : Spos
Let dl4orders.QtyOrdered$=tmp$
Let tmp$=Stri$[Spos+1] To "|" : Spos
Let dl4orders.QtyShipped$=tmp$
Let dl4orders.orderstatus$=dl4orders.PMOrder$,dl4orders.PMOrderline$

 Add Record #C0;dl4orders.
 T=T+1 !count # of records to processed
 Loop

End Sub !ReadUnibasic
!
!
!
! Name:
! DeleteSQL() - Read sql records and delete if no matching dl4 record
!
! Synopsis:
! DeleteSQL(C0,C9)
! C0=dl4 file channel #
! C9=sql file channel #
!
! Returns:
! D=# of records deleted

Revision date: 08/23/05 156 Dynamic Concepts Engineering

!
External Sub DeleteSQL(C0,C9,D)
 !
 Dim dl4orders. As dl4orders !dl4 orders file
 Dim dl4ordersK1. As dl4ordersK1 !dl4 KEY 1
 Dim sqlorders. As sqlorders !sql orders file
 Dim %1,c9seq,%3
 !
 Print "Deleting closed orders in SQL"
 c9seq=-2 !read first rcd
 Try
 Search > #C9,1; !position to first key of index 1 in sqlorders
file

 Do
 Try Read Record #C9,c9seq;sqlorders. Else Exit Do !loop thru sql file
 dl4ordersK1.Orderstatus$ = sqlorders.Orderstatus$
 Try
 Search = #C0,1;dl4ordersK1. !look for match in dl4
 Else !if no match delete from Sql
 Delete Record #C9 !delete old order
 D=D+1 !count of deleted
 End Try

 c9seq=-1 !read next rcd
 Loop

 Else
 End Try

End Sub !DeleteSQL
!
!
! Name:
! UpdateSQL() - Read dl4 records and change/add sql records
!
! Synopsis:
! UpdateSQL(C0,C9)
! C0=dl4 file channel #
! C9=sql file channel #
!
! Returns:
! A=# of records added, C=# of records changed
!
External Sub UpdateSQL(C0,C9,A,C)
 !
 Dim dl4orders. As dl4orders !dl4 orders file
 Dim dl4ordersK1. As dl4ordersK1 !dl4 KEY 1
 Dim sqlorders. As sqlorders !sql orders file
 Dim sqlordersK1. As sqlordersK1 !sql orders key 1
 Dim %1,c0seq,%3
 Dim tmp$[10]
 !
 Print "Adding/Changing Orders in SQL"
 c0seq=-2 !read first rcd

Revision date: 08/23/05 157 Dynamic Concepts Engineering

 Try
 Search > #C0,1; !position to first key of index 1 in dl4orders

 Do
 Try Read Record #C0,c0seq;dl4orders. Else Exit Do !loop thru dl4 file
 sqlordersK1.Orderstatus$ = dl4orders.Orderstatus$

 Try
 Search = #C9,1;sqlordersK1. !look for match in Sql
 Read Record #C9,-2;sqlorders.

 ! Check for any changes
 If hex$(sqlorders.) <> hex$(dl4orders.)
 sqlorders. = dl4orders.

 Write Record #C9,-2;sqlorders.
 C=C+1 !count of rcds changed
 End If
 Else !if no match add to Sql
 sqlorders.=dl4orders. !set rcd

 Add Record #C9;sqlorders. !add new order

A=A+1 !count of rcds added
 End Try
 c0seq=-1 !read next rcd
 Loop

 Else
 End Try

End Sub !UpdateSQL

!
! **Main Program
!
Dim SQLFile$[50],dl4File$[50],auditfile$[50]
!
!
! Build audit file
C8=FindChannel()
auditfile$="audit",TIM(8) USING "&&",TIM(9) USING "&&",TIM(10) USING "&&",TIM(11)
USING "&&",TIM(12) USING "&&",".txt!"
BUILD #C8,+auditfile$
CLOSE #C8
OPEN #C8,auditfile$
PRINT auditfile$;" audit file built"
PRINT #C8;USING "&&";"Process started ";TIM(9);"/";TIM(10);"/";TIM(8);"
";TIM(11);":";TIM(12)
PRINT USING "&&";"Process started ";TIM(9);"/";TIM(10);"/";TIM(8);"
";TIM(11);":";TIM(12)

! Build new dl4 file
dl4File$="dl4orders!"
C0=BuildFile(dl4File$) !Build new dl4 file
! Open SQL file

Revision date: 08/23/05 158 Dynamic Concepts Engineering

C9=FindChannel()
SQLFile$="(user=sa, pswd=) ''server1:Finance.Order'"
Open #C9,SQLFile$ As "Microsoft SQL Server Full-ISAM"
!
! Read Unibasic files and build new dl4 file
Call ReadUnibasic(C0,T)
Print #C8;"Total # of orders ";T USING "####,###"
Print "Total # of orders ";T USING "####,###"

! Search thru sql file, if not in dl4 file delete sql record
Call DeleteSQL(C0,C9,D)
Print #C8;"# of orders deleted ";D USING "####,###"
Print "# of orders deleted ";D USING "####,###"

! Search thru dl4 file, match to sql file, if not found add, if different change
Call UpdateSQL(C0,C9,A,C)
Print #C8;"# of orders added ";A USING "####,###"
Print #C8;"# of orders changed ";C USING "####,###"
Print "# of orders added ";A USING "####,###"
Print "# of orders changed ";C USING "####,###"
!
Print #C8;USING "&&";"Finished ";TIM(9);"/";TIM(10);"/";TIM(8);" ";TIM(11);":";TIM(12)
Print USING "&&";"Finished ";TIM(9);"/";TIM(10);"/";TIM(8);" ";TIM(11);":";TIM(12)
End

Revision date: 08/23/05 159 Dynamic Concepts Engineering

MySQL Server Full-ISAM

 Available on dL4 for Unix or Windows product
 A Full-ISAM interface to MySQL Server Tables
 Creates, reads, writes to InnoDB type MySQL Tables
 A table must have at least one index with unique key
 A SQL Server Table appears as a Full-ISAM file to a Basic program
 Can use the Bridge Driver to access the server because it is a Full-ISAM interface
 Can add, change and delete records in a SQL table
 Can create a new MySQL table within dL4
 Cannot change database or table definitions. Must be done within MySQL

administration
 Can issue SQL statements with separate SQL driver
 Does not support record number, record size and file size channel functions (CHF)

MySQL licensing

 Refer to www.mysql.com for licensing information. Requirements indicate a
commercial license is required if the MySQL drivers are used in an application,
meaning Dynamic must license any for-sale dL4/MySQL distributions.

MySQL comments

Why MySQL?
 It’s fast, easy to use, widely used, and inexpensive.

To install MySQL go to www.mysql.com/downloads It will be a tarball file for Unix or a
.zip file for Windows.

FYI, with Microsoft Access there is an option to use something other than it’s Jet
engine. You can configure a Windows machine so that MySQL serves an stores the
information that is viewable through Access.

MySQL basic commands

Before you do anything with MySQL, you need to start the server. Run the following
from the /bin directory:
 ./mysqld_safe &

To interact with the server you can use the MySQL command-line client in the /bin or
/usr/bin directory.
Type ./mysql –u root to start. The –u root flag identifies you as the root user of
MySQL.

MySQL stores each separate database as a separate directory, for most in the
/usr/local/mysql/var directory.
All information for tables within a database is stored in files in the database directory.

Revision date: 08/23/05 160 Dynamic Concepts Engineering

.frm files contain file descriptions, .MYI files contain table indexes, and .MYD files
contain table data. InnoDB table types create different types of files with different
extentions.

To create a database use the command :

mysql> CREATE DATABASE dbname;

To use a database use the command :
 Mysql> USE dbname;

To create a table you can use BUILDFI utility in dL4, use the BUILD statement in dL4,
use the ic2fi utility with a bridge profile or use the CREATE TABLE command in
MySQL.
You will have the most control on field types by using the MySQL interface. Always
specify TYPE=InnoDB

Sampling of column types (this is not a complete list) :
 Text column types
 char(length) fixed-length column type, maximum of 255 characters.
 text maximum length of 65,535 characters.

(varlen option would be used in a structure definition)
 Numeric column types
 int(display size) [unsigned] [zerofill]
 decimal(M[,D])] [zerofill]
 Date column types
 date

Viewing Commands :

mysql> SHOW DATABASES;
mysql> USE dbname;
mysql> SHOW TABLES;
mysql> SHOW COLUMNS FROM tablename;
mysql> SHOW INDEX FROM tablename;

Altering Commands :

Changing a table name:
mysql> ALTER TABLE tablename RENAME newtablename;

Adding columns:
mysql> ALTER TABLE tablename ADD COLUMN columnname column attributes

Dropping columns:
mysql> ALTER TABLE tablename DROP COLUMN columnname

Adding indexes:
mysql> ALTER TABLE ADD INDEX definition

Dropping indexes:
mysql> ALTER TABLE tablename DROP INDEX indexname

Changing column definitions (to leave column name the same use the same
name for oldcolumn and newcolumn):

Revision date: 08/23/05 161 Dynamic Concepts Engineering

mysql> ALTER TABLE tablename CHANGE oldcolumnname newcolumnname
newattributes;

MySQL GUI Interfaces

mySQLfront tool is a Windows based MySQL GUI interface available at

http://www.tucows.com/business/preview/223002.html

Many others are available, links can be found at mysql.com

DL4MYSQLISAM

New environment variable DL4MYSQLISAM can be used to set the default server,
database, user and password instead of specifying within the OPEN statement.

Example :
DL4MYSQLISAM=”server=servername,database=dbname,user=username,pswd=passwor
d”
export DL4MYSQLISAM

OPEN #1,”tablename” As “mysql full-isam”

MySQL Auto Increment

o The MySQL Full-ISAM driver has been extended to support a SEARCH-equal
 operation on index 0 using a record number as the key value. Such searches can be
 performed only on tables that contain an AUTO_INCREMENT column and a unique
 index based only on that column. The value of the AUTO_INCREMENT column is
 treated as the record number of the row.

 Example:

 SEARCH = #5,0;R

o The MySQL Full-ISAM driver has been enhanced to support tables whose only
unique
 index contains an AUTO_INCREMENT column.

o The MySQL Full-ISAM driver has been enhanced to support the creation
 of tables with numeric IDENTITY (AUTO_INCREMENT) columns. A table can
 contain only one IDENTITY column which must be an integer type (such as
 1%, 7%, %1, or %2). Creating a table with an IDENTITY column will
 automatically create a unique index based on that column (the primary
 key). Example:

 Def Struct REC
 Member S$: Item "LABEL"
 Member %2,Id : Item "IDCOL" : Identity

Revision date: 08/23/05 162 Dynamic Concepts Engineering

 End Def
 Dim Rec. As REC
 Build #2,"test.table" As "MySQL Full-ISAM"
 Define Record #2;Rec.
 Close #2

MySQL NULL & Date fields

o The new MySQL Full-ISAM driver has an open option, "nulls=true", to
 support read and writing NULL values to table columns. When a table
 is opened with the "nulls=true" option, NULL values in numeric, date,
 or character columns are converted to special values when they are read.
 When adding new records or modifying existing records, NULL values can
 be written by writing the same special values. Currently, the special
 values are -1E62 for numeric values, "January 1, 0001" for date values,
 and "\xffff\" for strings. Programs should not test for or set these
 values directly. Instead, new intrinsic functions have been provided
 to test for NULL values and to set NULL values. The intrinsic function
 IsSQLNull() returns 1 when its argument is a NULL value and 0 for all
 other values. The intrinsic functions SQLNull(), SQLNull#(), and
 SQLNull$() return special NULL values for numbers, dates, and strings.
 NULL values cannot be read into or written from integer numeric variables
 or 1% date variables. NULL values are not supported for binary variables
 ("B?"). NULL values can be used in keys and index columns, but it is not
 recommended.

 Example:

 Declare Intrinsic Function IsSQLNull,SQLNull,SQLNull#,SQLNull$
 Open #1,"(nulls=true)server:database.table" As "MySQL Full-ISAM"
 ! Display table with possible NULL values
 Do
 Try Read Record #1;R. Else Exit Do
 Print "Name = ";R.CustomerName$
 Print "Appointment = ";
 If IsSQLNull(R.AppointmentDate#)
 Print "none"
 Else
 Print R.AppointmentDate#
 End If
 Loop
 ! Add new record with NULL value
 R.CustomerName$ = "John Quinn"
 R.AppointmentDate# = SQLNull#()
 Add Record #1;R.

o The MySQL Full-ISAM driver supports the special MySQL date value of
 0000-00-00. Such date values can now be read into date variables and
 will set the date variable to be "Not-A-Date". The special value of
 0000-00-00 can be written by writing a date value of "Not-A-Date". A
 date variable can be set to "Not-A-Date" by the CLEAR statement
 ("CLEAR D#"). An error 15 will occur if a "Not-A-Date" value is used
 in a date function or date expression.

Revision date: 08/23/05 163 Dynamic Concepts Engineering

MySQL SQL Driver

o A new driver, "MySQL SQL", has been implemented so that applications
 can use SQL statements to issue commands and queries to a MySQL server.
 The driver allows an application to access the full capabilities of
 MySQL including both standard SQL syntax and MySQL specific features.
 Due to MySQL licensing requirements, the driver cannot be used without
 a special SSN product option. Please contact the Dynamic Concepts Sales
 department for information on obtaining the required SSN.

 The OPEN statement uses a special filename syntax with two formats:
 "server:database" and "database". Rather than opening a specific table,
 the OPEN statement creates a connection to a MySQL server and sets the
 default database to be used by SQL statements. If the server name is not
 specified, the system on which the program is running will be used as the
 server (unless a default server is specified in the DL4MYSQL runtime
 parameter, see below). The OPEN statement also supports four comma
 separated options: "user=name", "password=string", "pswd=string", and
 "rtrim=boolean". These options supply server login identification and, in
 the case of "rtrim", control whether character fields are returned space
 filled (default) or with trailing spaces removed ("rtrim=true").

 Examples:
 OPEN #1,"mysystem:accounting" AS "MySQL SQL"
 OPEN #5,"(user=bill,pswd=secret)testdb" AS "MySQL SQL"

 The server name and login information can be specified in the
 environment variable "DL4MYSQL" which supports the comma separated
 options "server=name", "user=name", "password="name", and "pswd=name".
 Example for a Unix command line shell:

 $DL4MYSQL="server=myserver,user=anonymous"
 $export DL4MYSQL
 $scope

 SQL statements are executed by using SEARCH statements. Each SEARCH
 statement specifies a channel open to a MySQL server and an SQL
 statement as a character string. Examples:

 SEARCH #1;"select * from testtable"

 SEARCH #5;"update acctgtbl set balance=123.45 where account=19765"

 SEARCH #5;"drop table testtable"

 If the statement fails, an error will occur. Syntax errors in SQL
 statements are reported as error 274, "SQL syntax error".

 After an SQL SELECT statement is successfully executed, the number of
 rows in the result set can be determined by using the CHF(channel)
 function. The result set itself is read by using normal READ and
 READ RECORD statements. An error 52, "record not found", will be
 reported by any statement attempting to read beyond the end of the

Revision date: 08/23/05 164 Dynamic Concepts Engineering

 result set. Example:

 Search #7;"select account, balance from acctgtbl"
 Print Chf(7);"rows returned by query"
 Do
 Try Read #7;Account,Balance Else Exit Do
 Print "Account =";Account;" ";Balance =";Balance
 Loop

 Note: the result set of the current SQL SELECT statement is copied into
 memory by the dL4 SEARCH statement. SELECT statements should be written
 so as to limit the size of the result set to a reasonable value. An SQL
 LIMIT clause can be used in the SQL SELECT statement to restrict the
 maximum size of the set.

 The MAP RECORD statement can be used to map structure variable members
 according to their item names to the columns returned by a query. In
 the following example, the SQL select statement returns a two column
 result "account, balance" which is mapped into a structure variable
 that uses the opposite ordering:

 Def Struct RSET
 Member 3%,Balance : Item "balance"
 Member 3%,Acct : Item "account"
 End Def
 Dim R. As RSET
 Search #7;"Select account, balance from acctgtbl"
 Print Chf(7);"rows returned by query"
 Map Record #7 As RSET
 Do
 Try Read Record #7;R. Else Exit Do
 Print "Account =";R.Acct;" ";Balance =";R.Balance
 Loop

 NULL values in numeric, date, or character columns are converted to
 special values when they are read. When adding new rows or modifying
 existing rows, NULL values can be written by using the same special
 values. In this version of dL4, the special values are -1E62 for
 numeric values, "January 1, 0001" for date values, and "\xffff\" for
 strings. Programs should not test for or set these values directly.
 Instead, new intrinsic functions have been provided to test for NULL
 values and to set NULL values. The intrinsic function IsSQLNull()
 returns 1 when its argument is a NULL value and 0 for all other values.

 The intrinsic functions SQLNull(), SQLNull#(), and SQLNull$() return

 the special NULL values for numbers, dates, and strings. NULL values
 cannot be read into or written from integer numeric variables or 1% date
 variables. NULL values are not supported for binary variables ("B?").

 Three new intrinsic functions, SQLV$(), SQLN$(), and SQLNV$() are

Revision date: 08/23/05 165 Dynamic Concepts Engineering

 provided to make it easier to construct SQL statements. The SQLV$()
 function takes one or more arguments of any non-array type and returns
 a string containing the argument values encoded for use by an SQL
 driver. The SQL driver detects such encoded values in the SEARCH
 statement string and formats the values as required by the SQL server.
 This formatting guarantees proper quoting of character string values and
 places commas between each value. If the argument is a structure
 variable, each member of structure is encoded. The SQLN$() function
 takes a single structure variable argument and returns a string
 containing the member item names encoded for the SQL driver with commas
 separating each name. The SQLNV$() function takes a single structure
 variable argument and returns a string containing the member names and
 values encoded for the SQL driver with equals signs ("=") and commas.

 Examples:

 Search #1;"Insert test (count,label) Values ("+SQLV$(C,L$)+")"

 Search #1;"Insert test ("+SQLN$(R.)+") Values ("+SQLV$(R.)+")"

 Search #1;"Update test Set "+SQLNV$(R.)+" where count=19"

MySQL SQL Driver Example

!samples of sql commands
!
Def Struct orders
 Member Order$[10]:Item "Order"
 Member Account$[10]:Item "Account"
End Def
!
Dim orders. as orders
!
open #1,"cochrane:test" as "MySQL SQL"
!
Sub showorders()
Search #1;"select * from orders"
Print Chf(1);" rows returned"
Do
Try Read #1;orders. else exit do
 Print orders.order$,orders.account$
Loop
End Sub !showorders()
!
Call showorders()
!
Search #1;"update orders set `Order`=55555 where Account=''DCI''"
!
Call showorders()

Revision date: 08/23/05 166 Dynamic Concepts Engineering

ic2fi Utility

The ic2fi utility is available to easily convert Indexed-Contiguous files to Full-ISAM files.

Is included with dL4 in the tools directory with a name of ic2fi.dl4

Replaces the previous release of ictofi.

Is based on a bridge profile file definition, which can then be used to access the new file
with your existing application.

ic2fi menu:

The options should be run sequentially.

Option 01 Allows you to create a new bridge profile file. Basically it copies the
ic2fi.prf template file and then allows you to begin editing. The profile is identical
to the bridge profile definition with an optional section to specify the default source
filename. Post conversion the profile can be used as the bridge file without
modification.
Items must be listed in byte displacement sequence.

A [conversion] section can be specified in the profile file, with a default
sourcefilename specified.

Option 02 Allows you to view and edit an existing bridge profile.

Revision date: 08/23/05 167 Dynamic Concepts Engineering

Option 03 Allows you to build a new destination Full-ISAM file. It will not overwrite an
existing file. This mechanism can be used to simply build new Full-ISAM files instead
of using the buildfi utility.

Option 04 The guts of the utility.
This option will copy to an existing destination, but will warn you that the file exists. If
the file exists, the utility will only add records to the destination file if the record can be
added. It will not modify or delete records in the destination file, thus it is not a
replication utility.

This option will ask if you want to run in interactive or silent mode. Silent mode will not
require any user intervention during a potentially lengthy verification/copy process and
will assume defaults on prompts.

This option will first do a quick verification of the profile definition and it will warn you
if there are any gaps found between fields. This is a warning only, you can continue the
process if you are confident your profile is as you desire.

The option will then go through several quick verification routines to confirm that your
profile definition coincides with the actual data in the file.
It will warn you of any field size discrepancies and it will also compare the first 3 and
last 3 indexes to confirm they match the profile definition of the indexes. These are
warnings only, you can continue the process if you are confident your profile is as you
desire.

You will then have an option to have the utility search through entire selected indexes
to verify the integrity of the indexes. It will compare the index values to the associated
records and confirm balanced indexes. You have the option to skip this process as a
time-saving measure. In silent mode this option is skipped.

You will be prompted to enter a log filename which will record any errors encountered
during index verification or copying.

Finally, you will be prompted to select a primary index number. This will be the source
file index to search when copying the records.

When verification is complete, the utility will proceed to copy the data.

Option 05 Allows you to view the log file for warnings or errors.

Option 06 This option renames the existing Indexed Contiguous files to have an ic.
prefix and then moves or renames the bridge profile file to the source filename. Your
applications would then function without code modification, now using the bridge file to
communicate to the Full-ISAM file.

ic2fi Call program interface

Options of the ic2fi can be access from a command line interface to automate the
process of building Full-ISAM or copying Indexed-Contiguous to Full-ISAM files.

You must pass the option number, bridge profile filename and the mode (silent or
interactive) as parameters.

Revision date: 08/23/05 168 Dynamic Concepts Engineering

Optionally you can provide a status field (0=OK, 1=warnings, 2=errors) and a log
filename to overwrite the default.

Revision date: 08/23/05 169 Dynamic Concepts Engineering

dL4
Product Training

SECTION 6

Other Drivers

Revision date: 08/23/05 170 Dynamic Concepts Engineering

TCP/IP Socket Driver

o A TCP/IP socket driver is available to communicate to other systems through a port
using
 the TCP/IP protocol. A connection can be created using an OPEN statement similar
to:

 OPEN #c,"system:port" As "Socket"

 where "system" is a network system name or IP address (xx.xx.xx.xx)
 and "port" is a service name or port number. Character and binary
 data can be read or written. The following example program reads
 the current date and time from the host system:

 10 Dim L$[100]
 20 Open #1,"localhost:daytime" As "Socket"
 30 Read #1;L$
 40 Close #1
 50 Print L$

o The socket driver supports a "partial=<boolean>"
 option to control whether a read terminates as soon as at least one
 character has been read (default behavior) or waits until the
 destination variable has been filled ("partial=true" behavior).
 This option is specified in the option field when opening a socket.
 Example:

 Open #1,"(partial=true)server:servicename" As "Socket"

Revision date: 08/23/05 171 Dynamic Concepts Engineering

EXAMPLE OF USING SOCKET DRIVER FOR DATA MINING

Take Advantage of the web

Enhance your application for e-business with Dynamic Internet Technologies and
Professional Services.
Integrate information from the web directly into your application using the dL4 socket
driver.

Bring the power of the web into your application and bring a world of information
to your clients!

Add Data Mining capabilities to your application to automatically pull valuable
information from the web directly to your Unibasic or dL4 application. Utilizing the dL4
TCP/IP Socket Driver included in dL4, your application can connect to internet sites
across the globe to query and import information into your application's database. The
database can be Microsoft SQL, Foxpro Full-ISAM or dL4/Unibasic Universal files.

You can query UPS, FedX and U.S.P.S. sites to obtain shipping costs and package
tracking information.
You can query your supplier's sites for updated pricing or stock availability. Give your
client a competitive edge. Think of the possibilities! Quickly upgrade your application
today and bring the power of the web into your world.

As XML proliferates the internet as the standard mechanism for B:B (business to
business) communication, you'll be ready to meet your client's needs with the TCP/IP
Socket Driver.

Note to Unibasic users:
Data Mining requires a dL4 license to utilize the TCP/IP Socket Driver. However, you do
not have to migrate your entire application to dL4 immediately to take advantage of the
technology today. A dL4 license can reside on the same machine as an existing
Unibasic licensed application. dL4 programs can run as background CRON jobs or
Unibasic programs can Call dL4 programs to run to update the Unibasic data files.

Open Socket Syntax :

Open #1,"(partial=true) server:servicename" As "Socket"
By default read statements on the socket channel terminate as soon as at least one
character has been read.
The (partial=<boolean>) is optional to control whether a read terminates as soon as one
character is read or waits until the destination variable has been filled (partial=true
behavior).

Check out the example below.

Revision date: 08/23/05 172 Dynamic Concepts Engineering

Yahoo Stock Quote demo - Socket access using dL4 socket driver :
If Err 0 Gosub L8990
! yahoo.bas - example program of using Socket Driver to receive information from
Yahoo Stock Quotes Web Site
! Rev 1.0 6/14/00
!
! All rights reserved. (C) Copyright 2000 by:
! Dynamic Concepts Inc. Aliso Viejo, California USA
!
! This file should be loaded and saved as "yahoo.dl4"
!
!
! As always Dimension the variables used in the program
Dim l$[2000],L1$[2000],l2$[6000],l3$[30],z$[20]
Dim i$[20]
Dim ticker$[10],name$[20],time$[10],3%,price,volume,tmp$[256]
!
! Open the Web site to attach to as a socket using the TCP/IP socket driver
! Open statement format is OPEN #c,"system:port" As "Socket"
! (finance.yahoo.com is the Yahoo Stock Quotes site)
! (The standard port # for HTTP requests is 80)
Print 'CS';"Real-time Stock Quote"
Print
Print "This is a demo of a dL4 Application accessing Yahoo's Stock Prices through an"
Print "HTML Socket using dL4's TCP/IP Socket Driver."
Print
Print "Enter a Stock Symbol to display it's current price."
another: Print
Input "Enter a Stock Symbol (i.e. ARBA) (enter 0 to exit) : "i$
If i$ = "0" Goto L9000
i$ = UCase$(i$)
Print
Print "Please wait. . .Retrieving price"
! Prepare to request information by defining the string to send through the socket
! GET is HTTP protocol to request /d/quoutes.csv is the file to request at the site
Open #1,"finance.yahoo.com:80" As "Socket"
l$ = "GET /d/quotes.csv"
!
! Characters following ? are CGI parameters the Site Page expects
l$ = l$,"?s=",i$,"+~~~&f=snlv&e=.csv"
!
! The following ends the HTTP request
l$ = l$," HTTP/1.0\12\\12\"
! Send the request
Print #1;l$;
!
! Wait for response, use DO LOOP to receive back full string
Clear l2$
Do
 Try !Dl4 Try statement
 Read #1;L1$!receive some characters
 Else
 Pause 30 !if nothing to read,pause & try again
 Retry
 End Try

Revision date: 08/23/05 173 Dynamic Concepts Engineering

 l2$ = l2$ + L1$!contactenate to make one string
 l3$ = "~~~" !this string indicates end of message
 x = Pos(l2$, = l3$) !new Dl4 function POS looks in string L2$ for match to L3$
 and returns string location if found
 If x Exit Do !if end of message, quit reading
Loop
! !Now parse the stock price out
l3$ = "''",i$,"''" !this string indicates where Stock Info is returned, ticker symbol
x = Pos(l2$, = l3$)
Let ticker$ = l2$[x] To "," : Spos
Let name$ = l2$[Spos + 1] To "," : Spos
name$ = LTrim$(RTrim$(name$[2,Len(name$) - 1]))
Let tmp$ = l2$[Spos + 1] To "," : Spos
ypos = Pos(tmp$, = "N/A")
xpos = Pos(tmp$, = "")
If ypos Print \ Print "Invalid Ticker Symbol entered!" \ Print \ Goto done
price = Val(tmp$[xpos + 3])
time$ = LTrim$(RTrim$(tmp$[2] To "-"))
volume = Val(l2$[Spos + 1])
Print
Print i$;" - ";name$;" price is ";price Using "$$$,$$$.##";" at ";time$;
Print " volume of ";volume Using "###,###,###"
Print
done: Close
Goto another
L8990: If Spc(8) = 99 Goto L9000
Stop
L9000: Rem END
Close
End

Revision date: 08/23/05 174 Dynamic Concepts Engineering

EXAMPLE OF USING SOCKET DRIVER FOR RECEIVING EMAIL

Receive text email demo - Socket access using dL4 socket driver :
! dL4 / Sample program to receive POP3 mail
! "rcvemail.bas" 1.1 11/27/01 09:35:18
!
! All rights reserved. (C) Copyright 2001 by:
! Dynamic Concepts Inc. Aliso Viejo, California USA
!
! This sample program demonstrates the usage of the dL4 socket driver to
! receive POP3 mail. It implements a simple, interactive e-mail reader.
!
! POP3 is discussed in RFC 1939 which may be downloaded from
! http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1939.html
External Function GetLine$(ChannelNo,Buf$)
 !
 Dim LineBuf$[65535]
 Dim %2,StreamSize,P
 !
 If (P := Pos(Buf$, = 'CR LF')) = 0
 Then
 StreamSize = 0
 LineBuf$ = Buf$
 Do
 Read #ChannelNo,-1,-1,1800;Buf$[StreamSize + 1]
 !reads in 1 character at a time and adds to Buf$ until <cr><lf> reached
 StreamSize = Len(Buf$)
 P = Pos(Buf$, = 'CR LF')
 Loop Until P > 0
 End If
 LineBuf$[Len(LineBuf$) + 1] = Buf$[1,P + 1]
 Buf$[1,P + 1] = ""
End Function LineBuf$

External Function GetMultiLine$(ChannelNo, Buf$)
 !
 Dim MultiLine$[65535]
 Dim %2,P
 !
 Do
 P = Len(MultiLine$) + 1
 MultiLine$[P] = GetLine$(ChannelNo,Buf$)
 !reads in 1 line at a time and adds to MultiLine$ until .<cr><lf> reached
 Loop Until MultiLine$[P] = "." + 'CR LF'
End Function MultiLine$

External Function GetHeader$(Buf$,Tag$)
 !
 Dim Header$[1000]
 Dim %1,P
 !
 If P := Pos(Buf$, = Tag$)

Revision date: 08/23/05 175 Dynamic Concepts Engineering

 Then
 Header$ = Buf$[P]
 If P := Pos(Header$, = 'CR LF')
 Then
 Header$ = Header$[1,P - 1]
 End If
 End If
End Function Header$

External Sub GetPOP3Mail(ChannelNo, User$, PassWord$)
 !
 Dim Buf$[65535],Response$[65535]
 Dim %1,NumberOfMessages,MessageNumber,P
 !
 Try
 !
 ! Should receive:
 ! +OK SCO POP3 server (version 2.1.4-R3) at POP3_server_name starting.
 !
 Response$ = GetLine$(ChannelNo,Buf$)
 If Not(Pos(Response$, = "+OK"))
 Then
 Print "Sorry, no POP3 server not responding"
 Exit Sub
 End If
 Print #ChannelNo;"USER " + User$ + 'CR LF'
 !
 ! Should receive:
 ! +OK Password required for user_name.
 !
 Response$ = GetLine$(ChannelNo,Buf$)
 If Not(Pos(Response$, = "+OK"))
 Then
 Print "Sorry, Incorrect Account"
 Exit Sub
 End If
 Print #ChannelNo;"PASS " + PassWord$ + 'CR LF'
 !
 ! Should receive something like this:
 ! +OK user_name has 20 message(s) (20790 octets).
 !
 Response$ = GetLine$(ChannelNo,Buf$)
 If Not(Pos(Response$, = "+OK"))
 Then
 Print "Sorry, Incorrect Password"
 Exit Sub
 End If
 Print #ChannelNo;"STAT " + 'CR LF'
 !
 ! +OK number_of_messages size_of_maildrop
 !
 Response$ = GetLine$(ChannelNo,Buf$)
 If Not(Pos(Response$, = "+OK"))
 Then
 Print "Sorry, STAT failed"

Revision date: 08/23/05 176 Dynamic Concepts Engineering

 Exit Sub
 End If
 Response$ = Response$[5] ! skip over +OK
 NumberOfMessages = Val(Response$[1,Pos(Response$, = " ") - 1])
 For MessageNumber = 1 To NumberOfMessages
 ! Get 10 lines for this particular messagenumber
 Print #ChannelNo;"TOP " + Str$(MessageNumber) + " 1" + 'CR LF'
 Response$ = GetLine$(ChannelNo,Buf$)
 If Pos(Response$, = "+OK")
 Then
 Response$ = GetMultiLine$(ChannelNo,Buf$)
 ! Extract mail header information
 Print MessageNumber;GetHeader$(Response$,"From"),
 Print GetHeader$(Response$,"Date"),
 Print GetHeader$(Response$,"Subject")
 End If
 Next MessageNumber
 If NumberOfMessages > 0
 Then
 ! Retrieve message number 1
 Print #ChannelNo;"RETR 1" + 'CR LF'
 Response$ = GetLine$(ChannelNo,Buf$)
 If Pos(Response$, = "+OK")
 Then
 Response$ = GetMultiLine$(ChannelNo, Buf$)
 If P := Pos(Response$, = "." + 'CR LF', -1)
 Then
 Print Response$[1,P - 1];
 Else
 Print Response$;
 End If
 End If
 ! Delete message number 1
 Input "Delete Message Number 1? [N/Y] "; Response$
 If Response$ = "Y"
 Then
 Print #ChannelNo;"DELE 1" + 'CR LF' !Deletes email
 Response$ = GetLine$(ChannelNo, Buf$)
 End If
 Else
 Print "No mail"
 End If
 Else
 Print Msc$(2) + " at " + Str$(Spc(10))
 End Try
 Print #ChannelNo;"QUIT" + 'CR LF' ! sign off
End Sub

! Main program
Dim POP3Server$[100], PortNum$[3]
Dim User$[100], PassWord$[20]
Dim %1,ChannelNo
!
Declare Intrinsic Function FindChannel

Revision date: 08/23/05 177 Dynamic Concepts Engineering

!
Input "Please Enter POP3 server name: "POP3Server$
Print
Input "Please Enter POP3 server's port number [110] "PortNum$
If Not(PortNum$)
Then
 PortNum$ = "110"
End If
While Not(User$)
 Print
 Input "Please Enter User's POP3 account: "User$
Wend
Print 'IOEE'
Input "User's password: ";PassWord$
Print 'IOBE'
Try
 ChannelNo = FindChannel() ! get unused channel number
 ! Make a socket connection to the POP3 server
 Open #ChannelNo, "(partial=true, opentime=1800)" + POP3Server$ + ":" +
PortNum$ As "Socket"
 Call GetPOP3Mail(ChannelNo, User$, PassWord$)
Else
 Print Msc$(2) + " at " + Str$(Spc(8))
End Try
Try Close #ChannelNo Else Rem

Revision date: 08/23/05 178 Dynamic Concepts Engineering

Listening Socket

o A driver, "TCP Listen Socket" is available. The "Listen"
 driver allows a dL4 program to be a server for socket requests. For
 example, dL4 program S running on ServerA might use the "Listen"
 driver to open a listening socket on port 9631 of ServerA.
 Programs on other systems could then open sockets to port 9631 of
 ServerA to exchange data with program S.

 The "Listen" driver is used by opening a port number using the
 "Listen" driver:

 Open #1,":9631" As "TCP Listen Socket"

 A “REUSE” option can be used to open a socket with a port number that
 is already in use. This option is needed to support certain network protocols
 and to avoid error 76 (“File or device is open elsewhere”) when re-opening a
 previously used TCP port number. Example:

 Open #1,”(reuse):9631” As “TCP Listen Socket”

 The open will return immediately. To accept the next queued
 connection to that port, the program opens a socket using channel 1
 as the parent socket:

 Open #2,{1} As "Socket"

 This open to channel 2 will not return until another program on the
 local or a remote system opens a socket to port 9631 of the local
 system. Once the open returns, channel 2 can be used to perform
 normal socket read and write operations to transfer data from or to
 the client program. When the transaction is finished, the server
 program closes channel 2 and performs another open against parent
 channel 1 to accept the next queued client request.

 The example program below provides a date and time service on port
 9631. While the program is running, any telnet utility can be used
 to connect to port 9631 and receive the current date and time. The
 current date and time will be printed to the client once every ten
 seconds until the client closes the connection.

 Dim I$[100],3%,I
 Open #1,":9631" As "TCP Listen Socket"
 I = 0
 Do
 Open #2,{1} As "Socket"
 I = I + 1
 Do
 Try Print #2;"Session";I;Tim#(0);"\15\\12\"; Else Exit Do
 Try Read #2,-1,-1,100;I$ Else Rem

Revision date: 08/23/05 179 Dynamic Concepts Engineering

 If Spc(8) = 123 Exit Do
 Loop
 Close #2
 Loop

 If multiple clients attempt to open port 9631 at the same time, only
 one request will be accepted at a time. The other clients will be
 queued by the operating system until the current connection on channel
 2 is closed. The client program will receive an error if the total
 number of queued requests exceeds an operating system defined number
 (usually a small number). Client programs should be prepared to
 retry opens if the server is busy.

 Normally, a null server name (":9631") should be used to open a
 listening socket on local system. The server name can be specified
 to open a listening socket on a specific network interface.

 The "opentime" option can be used to specify a maximum number of
 seconds to wait when opening a new queued connection:

 Open #2,{1,"opentime=10"} As "Socket"

 A record locked error (error 123) will be generated if the open
 times out.

 Lists of pre-defined TCP port numbers can be found at many web sites
 include www.iana.org. When writing a "listening" socket program, the
 port number should not conflict with a port number used by a needed or
 common pre-defined service. In general, the port number should be
 greater than 1023.

 Inetd alternative

 Note: on most Unix systems, a "listening" server can be implemented
 more robustly by having the system inetd process listen for requests
 and start dL4 processes as required. For example, adding the line
 below to /etc/inetd.conf will cause inetd to listen on the port "test"
 and start the dL4 program "pgm.dl4" whenever anyone attempts to open a
 socket on the port "test".

 test stream tcp nowait user /usr/bin/run run -t "" /home/user/pgm.dl4

 The dL4 process will run as the user "user". The socket will be open
 on the standard input and output channels and accessible through normal
 INPUT and PRINT statements. The port number "test" must be defined in
 the file /etc/services. The '-t ""' option to run tells run to use the
 default terminal definition. After modifying the file /etc/inetd.conf, the system
 must be rebooted or a SIGHUP signal must be sent to the inetd process.

Revision date: 08/23/05 180 Dynamic Concepts Engineering

 New GET statements

 Two new GET statement operations have been defined for use with TCP
 socket drivers. The following statement will retrieve as a character
 string (usually "nnn.nnn.nnn.nnn") the remote IP address connected to
 the socket open on channel C:

 Get #C,-1598;S$

 This function would typically be used with the "TCP Listen Socket"
 driver to determine the IP address of a client system. The statement
 below will retrieve the local IP address connected to the socket open
 on channel C:

 Get #C,-1599;S$

Revision date: 08/23/05 181 Dynamic Concepts Engineering

Email Driver

o A driver class, "Email", is available to send email.
 The driver requires sending email through an SMTP server such
 as provided by Unix servers or most ISPs. Non-SMTP mechanisms may be
 added in the future and should not require any application changes
 unless SMTP specific options (such as "SERVER=") are used (use the
 DL4EMAILSERVER environment variable instead). After opening the driver,
 a program simply prints text to be emailed to the channel. Files can be
 attached and sent as part of the email by using 'ADD #c;"Filename"'
 statements. If a file consists of multiple files, such as the data and
 index portions of an Indexed Contiguous file, each subfile must be sent
 with a separate ADD statement.

 The path argument to the driver is an email address list. An email
 address list consists of one or more space separated email addresses.
 Email address lists are also used in the options such as "TO=" described
 below. The driver options parameter ("(xxx)") can be used to pass the
 following options:

 "TO=addresses" one or more destination email addresses. May
 be used in addition to placing addresses in the path.
 Addresses should be space separated.

 "BCC=addresses" one or more "BCC" email addresses. These are
 similar to "CC" addresses, but they are not
 included in the email header.

 "CC=addresses" one or more "CC" email addresses.

 "FROM=addresses" one or more sender addresses.

 "REPLYTO=addresses" one or more reply addresses. This option would
 only be used if the reply address was different
 from the sender ("FROM=") address.

 "SUBJECT=text" email title or subject. The text may be placed
 in quotation marks if necessary.

 "CONTENT=name" content type. “HTML” allows HTML formatting commands.
 “TEXT” selects non-HTML text format (the default).

 "SERVER=name" SMTP server name. Defaults to the value defined
 by the DL4EMAILSERVER environment variable or the
 host system.

 "PORT=n" SMTP port number. Defaults to the standard
 SMTP port (25).

Revision date: 08/23/05 182 Dynamic Concepts Engineering

 "PROTOCOL=name" Email protocol name. Only "smtp", the default
 protocol, is supported by this release.

 "ATTACHAS=name" File attachment encoding type. This option must
 be specified if file attachments will be used.
 The value of "name" must be either "mime" or
 "default" (which is "mime" in this release).
 (all attachments are sent as binary)

 "TIMEOUT=n" timeout period in tenth-seconds for communication
 with the SMTP server. This option is used to
 change the default 5 minute timeout period and
 should not be needed.

 A program using the email driver must specify at least one destination
 email address in the path or a "TO=" option. At least one "FROM="
 email address must be provided. The SMTP server name is optional and
 can be defined via the "SERVER=" option or in the DL4EMAILSERVER
 environment variable. If the server name is undefined, the host Unix
 system will be used.

 After all email text has been output and all attachments added, the
 email channel should be CLOSEd to actually send the email. If the
 channel is CLEARed, the driver will attempt to cancel the email.

 Example:

 Open #1,"(From=name@domain,AttachAs=Mime) nobody@dynamic.com" As
"Email"
 Print #1;"Test the email driver"
 ! Append the file "Filename" as an attachment
 Add #1;"Filename"
 Close #1

 Please change the "From=" and destination email addresses to your
 own email address before using this example.

Another example :
! dL4 / Sample program to send e-mail
! "sendemail.bas" 1.1 11/27/01 09:35:02
!
! All rights reserved. (C) Copyright 2001 by:
! Dynamic Concepts Inc. Aliso Viejo, California USA
!
! This sample program demonstrates the usage of the dL4 email driver. It
! uses SMTP protocol to send e-mail to a user supplied recipient's address
! from a user supplied sender's address. It sends a test message and an
! attachment file, sendmail.txt, if it exists. This program assumes that
! the SMTP server is on the current system. If the SMTP server is not on
! the current system, then use the DL4EMAILSERVER environment variable or
! the "server=" open option.

External Sub SendMail(Sender$,Recipient$)
 !

Revision date: 08/23/05 183 Dynamic Concepts Engineering

Dim AttachmentFile$[100]
 Dim %1,ChannelNo,Attachment
 !
Declare Intrinsic Function FindChannel
 Declare Intrinsic Sub FindF
!
 Try
 AttachmentFile$ = "sendmail.txt" ! name of attachment file
 ! Check for attachment file
 Call FindF(AttachmentFile$,Attachment)
 ChannelNo = FindChannel() ! get unused channel number
 !
 Open #ChannelNo,"(From=" + Sender$ + ",Subject=dL4
sendmail,AttachAs=Mime)
 “+ Recipient$ As "Email"
 Print #ChannelNo;"Thank you for participating in our test program."
 Print #ChannelNo;"This e-mail was sent to you using a dL4 program."
 Print #ChannelNo;"Please reply with an acknowledgement to the sender."
 If Attachment ! attachment file found?
 Then
 Add #ChannelNo;AttachmentFile$! yes, send attachment
 End If
 Else
 Print Msc$(2) + " at " + Str$(Spc(8))
 End Try
 Try Close #ChannelNo Else Rem
End Sub

! Main program
Dim Sender$[100],Recipient$[100]
!
Input "Please Enter sender's e-mail address: ";Sender$
Print
Input "Please Enter recipient's e-mail address: ";Recipient$
Call SendMail(Sender$,Recipient$) !call subroutine above

Revision date: 08/23/05 184 Dynamic Concepts Engineering

Serial Device Driver

o A driver, "Serial Terminal", allows programs to
 open serial communication devices to a Window class driver. Using this
 driver, input and output to a serial device will follow the same rules
 as screen and keyboard I/O. By default, end of line characters will
 terminate input, input edit characters such as backspace will be
 processed, and data characters will be echoed. The standard 'IOxx'
 mnemonics can be used to control input characteristics. Similarly,
 cursor positioning can be used on output if mnemonics are defined in a
 terminal definition file.

 The "Serial Terminal" driver accepts the options listed below when
 opened:

 Option Argument Use

 TERM Filename or path Specify terminal definition file
 to be used with device
 SPEED Numeric ("9600") Set device dependent line speed
 DATA String ("8n1", "7e1") Set device dependent data format
 XONFLOW Boolean ("T" or "F") Enable XOFF/XON output flow
 control

 If not specified, all options except TERM use the current system default
 value of the device. If the TERM option is not specified, the driver
 uses a simple default terminal definition in which carriage return is
 recognized as an input terminator.

 Example:

 F$ = "(speed=38400,data=8n1,term=/usr/lib/dl4/term/vt100) /dev/tty1a"
 Open #1,F$ As "Serial Terminal"

 !/dev/tty1a in statement above is the device name to open
 !in Windows it may be COM

Revision date: 08/23/05 185 Dynamic Concepts Engineering

dL4
Product Training

GUI

(Refer to dL4 Version 4.3 GUI Training document)

Revision date: 08/23/05 186 Dynamic Concepts Engineering

dL4
Product Training

Conversion

Revision date: 08/23/05 187 Dynamic Concepts Engineering

Ub2dl4 Conversion tool

The ub2dl4 conversion tool is available for converting Unibasic programs to a dL4
environment on a Unix platform. It also attempts to convert terminal definition files,
printer scripts and UNIX profiles.

The tool is intended for mass conversion of programs and ease of conversion.

The tool is a separate download from ftp.dynamic.com and can be found in the
/dist/pub/FF/ub2dl4 directory.

After downloading, first uncompress the product using uncompress and then extract
the product by running "cpio -imcduv <product" (or on Linux cpio -imduv <product)

1. Set the dL4 environment variable TERMDIR to point to the directory
(usually /usr/lib/dl4/term) of the dL4 terminal definition files.
2. Change (cd) to the ub2dl4 directory.
3. The conversion package must be run from a UniBasic account so that
all UniBasic environment variables, particularly LUST, are set.
4. The main menu screen is displayed by typing the following from a
UNIX shell:
 run ub2dl4.dl4
5. Follow the menu options sequentially, meaning run menu option 1,
then menu option 2, then menu option 3, and so on.

If you are remaining on the same platform, there is no need to convert data files.

If you will be moving data files to a different platform, ie Windows, indexed
contiguous, contiguous and formatted files must be in Universal Data file format
prior to moving the files.
If the files are in IRIS style BCD Data file format and the Key file is NOT IRIS style
keys, the ubconvert program can be used to convert to Universal Data file format.
Ubconvert is a user friendly interface to the ubconvertfiles command line utility.
Both are part of Unibasic version 6 or greater.

To determine if a file is IRIS style BCD and non-IRIS style keys, QUERY the file to
verify the attribute <Q> has been set and the attribute <K> is not set.

If the files are in BITS style format (the <Q> bit is not set), the ctool utility can be
used to convert to Universal Data file format. Ctool is downloadable from the ftp
site.

Training Note The best way to configure the proper environment is to make a copy
of a .profile that sets up a current Unibasic runtime user. Then modify that
.profile to set TERMDIR and start dL4 scope. Then at the system prompt type
ub2dl4.dl4

Revision date: 08/23/05 188 Dynamic Concepts Engineering

The ub2dl4 menu :

The options should be run sequentially.

Option 01 Allows you to create a Program file list that is to be converted. The
directory containing the Unibasic programs to be converted is entered (programs in
subdirectories will also be converted). Then you can narrow the list by specifying a
filename with wildcards. A text file list of files to be converted will be created.

Option 02 Allows you to view the list that was created by Option 01. You can edit
this list before dumping to text and converting. The list will contain the program
type (BITS or IRIS) and the filename.

Option 03 Will dump all the files in the convert list to text files. The dL4 converter
converts from a text file of a Unibasic program. You will be prompted to select a
directory to dump the text files to. A subdirectory called dumpdir will be created
under your specified directory to dump the program files to.

Option 04 Will create the conversion profile file specific to your Unibasic
environment.
The conversion profile file is basically a text file that contains dL4 conversion rules.

Option 05 Allows you to view and/or edit the conversion profile file.

Option 06 Provides a pre-conversion analysis of the files dumped in Option 03. A
summary or detail report can be displayed or printed to a printer or text file. The
analysis provides details of any conversion issues that will occur so that the profile
or source files can be modified prior to actual conversion.

Revision date: 08/23/05 189 Dynamic Concepts Engineering

Sample Option 06 display:

Option 07 Will do the actual conversion of the Unibasic text files to dL4 and save
as a compiled dL4 program.

Option 08 (optional) This option will look at your Unibasic terminal definition files
and create dL4 Terminal files to match your environment. If dl4 Terminal files
already exist in the destination directory they will be renamed with a .dl4
extension.

Option 09 (optional) This option will look at your Unibasic printer scripts and
create dL4 printer files to match your environment. Any text files with execute
permissions are considered to be printer scripts.

Option 10 (optional) This option will look for .profile and profile files in the
directory specified and then modify and save them with a .ub2dl4 extension to be
used in the dL4 environment. It adds lines to set environment variables like
TERMDIR and DL4LUST.
It also remarks lines to launch Unibasic and replaces them to launch run or scope
appropriately.

Option 11 (optional) Allows you to view the analysis log or any error logs that have
been generated.

Revision date: 08/23/05 190 Dynamic Concepts Engineering

You may need to edit the conversion profile file to perform a more successful
conversion.
Many issues are resolved by having the converter add OPTION statements to each
program.

The following are possible issues post-conversion that are not resolved by the
conversion tool when converting from Unibasic:

The LET TO statement with the optional : numeric variable is limited in dL4 to a
single character lookup and cannot be combined with LET statement
concatenation.
For example:

 LET X$=”TEST:”, Y$ TO “x” : X

Must be changed to :

 LET TMP$=Y$ TO “x” : X
 LET X$=”TEST”:”,TMP$

You cannot have multiple DEF FN’s of the same name in the same program, thus
functions cannot be dynamically defined.

Unibasic only allowed letters, digits, dash and period as valid filename characters.
Unibasic would stop reading the filename when it reached an invalid character,
thus Open #1,”customers@01” would open file named “customers”.
By default, dL4 will try to open file named “customer@01” and fail.
To correct, statements can be changed, files can be renamed or an optional
parameter, unibasic can be specified in parentheses at the beginning of the LUMAP
or DL4LUST parameter string to treat filenames in Unibasic mode. Also the
pfchar=x optional parameter may be used.

Terminal ESCape sequences will work with dL4 but will not be understood by
dL4Term.

Unibasic supports User-defined Graphical Mnemonics defined as G12 through
G28 in the terminal definition file. The octal codes associated with these will not
function in dL4 unless they are first defined in the dL4 terminal definition files.
The mnemonics associated with these definitions are not supported in dL4 as
mnemonic ‘BG’ and ‘EG’ switches are ignored. In Unibasic, these mnemonics,
when appearing between ‘BG’ and ‘EG’ where interpreted differently than their
default meaning.

Revision date: 08/23/05 191 Dynamic Concepts Engineering

ims2dl4 Conversion tool

The ims2dl4 conversion tool is available for converting IMS Basic programs to a
dL4 environment on a Unix platform.

The tool also converts Formatted, Contiguous and Indexed files to Universal Data
files.

The tool is intended for mass conversion of programs and data files.

Included with the tool is imscalls.lib which is a library containing Calls and Functions
specific to IMS. imscalls.bas is the editable source code for miscalls.lib.

The tool is a separate download from ftp.dynamic.com and can be found in the
/dist/pub/FF/ims2dl4 directory.

After downloading, first uncompress the product using uncompress and then extract
the product by running "cpio -imcduv <product" (or on Linux cpio -imduv <product)

The tool is self-documented with a /H or ? option.

1. Set the dL4 environment variable TERMDIR to point to the directory
(usually /usr/lib/dl4/term) of the dL4 terminal definition files.
2. Change (cd) to the ub2dl4 directory.
3. The main menu screen is displayed by typing the following from a
UNIX shell:
 run ims

The following are some common edits that may be needed to the IMS conversion
profile file:
Under [Header] section add :
Line=OPTION STRING REDIM IS LEGAL
Line=OPTION DEFAULT ARGUMENT CHECKING IS WEAK

The following are possible issues post-conversion that are not resolved by the
conversion tool when converting from IMS:

dL4 always creates and opens relative path files with lowercase filenames on Unix
and uppercase filenames on Windows. IMS allowed mixed case filenames. You can
either rename existing files to the proper case or you can the LUMAP and
DL4LUST parameters to specify the mixedcase or case= options.

You may need to set DL4DEFLU environment variable to replicate IMS DEFLU

Terminal ESCape sequences will work with dL4 but will not be understood by
dL4Term.

Revision date: 08/23/05 192 Dynamic Concepts Engineering

The basic mode CONVERT command and scope mode loadsave command are
available for converting individual programs. Loadsave is a command line
interface, saves the file after compiling and has more options implemented than
the CONVERT command.

convert

Synopsis
Convert UniBasic statements from a text file.

Syntax
CONVERT textfilename {,alternate profile}

Parameters
textfilename is the name of any ASCII text file that contains UniBasic program
statements.

The optional alternate profile directs CONVERT to that file for conversion information.
If this profile is not supplied, dL4 assumes that your conversion profile is stored within
the file convert.prf. If the alternate profile is not supplied, you should obtain it from your
installation file or tape.

Remarks
CONVERT is used when you convert your UniBasic statements from text files.

CONVERT is similar to LOAD, except that certain syntax conversions are automatically
performed by CONVERT to assist in migrating programs from UniBasic, IRIS, or BITS
to dL4. The CONVERT command converts a whole file at a time, statement by
statement.

In addition to handling syntactical changes, CONVERT utilizes the file named
convert.prf, or any alternate profile selected to assist in the migration of User Calls.

Difference between CONVERT and LOADSAVE is LOADSAVE is a scope command
which also saves the code compiled and has more options implemented.

CONVERT performs the following functions automatically:

• INDEX #c is changed to SEARCH #c

• % operator is changed to MOD

• CREATE is changed to BUILD

• UniBasic Multi-LET with ‘,’ separators is converted to ‘;’ separator

• Inserts spaces for missing space separators in mnemonic strings – ‘CSBU’ is
converted to ‘CS BU’

• Keyword collisions are corrected by appending ‘_’ to a symbol

• Characters in quoted strings are converted to Unicode characters

• CHN is converted to CHF

• Missing parentheses around function arguments are automatically added

• ERM is converted to ERM$

• MSF is converted to MSF$

• STR is converted to STR$

Revision date: 08/23/05 193 Dynamic Concepts Engineering

• REM is not required to be followed by a space

• RESTORE is changed to RESTOR

 By utilizing the conversion profile, User Calls are remapped from the pre-dL4 forms:

 CALL NN, parameters or CALL $NAME, parameters to the form:

 Call procedure-name (arguments)

 CONVERT inserts the appropriate DECLARE statements.
Examples

CONVERT ar.text arprofile

Revision date: 08/23/05 194 Dynamic Concepts Engineering

loadsave encodes BASIC source code from a text file into BASIC object code which is
saved as an executable dL4 program. loadsave enables you to develop applications
outside the dL4 Command Line-oriented IDE environment.

loadsave

Synopsis
Load and save a BASIC program.

Syntax
loadsave {option switches} source file -o object file

Parameters
option switches are optional command line options to run.

source file is a required text filename containing valid BASIC program code.

object file is the required output filename where the final encoded BASIC object code is
saved.

Remarks
Option switches associated with loadsave are:

-h or -? Output this help.

-e Do not display the program source line of an error.

-l n create an OSN protected program. The value "n" is the number of a
master OSN as listed by the SCOPE OEM command.

-n linenumber to specify the starting line number when using source files without line
numbers. By using a starting line number other than the default of 1, an
open range of line numbers can be left for use by conversion profiles
that insert declarations and other header lines.

-ro Output a run-only program (implies -s).

-s Strip all remarks.

-o outfile Specifies the output file for the compiled program.

-O outfile Specifies the output file for the compiled program, capital O produces
output file even if errors are detected during compilation.

-C outfile Specifies to do a source-to-source conversion, resulting in a converted
program text file. The conversion profile can contain an
"[OutputFormat]" section with lines such
"Indentation=n","LeftMargin=n", and "TabSpacing=n" to control the
formatting of the output lines. The "TabSpacing" value specifies that a
tab character should replace each occurrence of "n" leading spaces.
These values can also be specified on the loadsave command line by
using the "-i n,m" and "-t n" options.

 Note: Source-to-source will not report GOTO/GOSUB errors or
linkage errors.

-c profile If you are converting from other versions of BASIC, you may need to
use this option to convert older programs. `'profile' is the name of a
'conversion profile' used to control the conversion

Revision date: 08/23/05 195 Dynamic Concepts Engineering

-u Check program for undeclared variables (lists any numeric or string
variables not dimensioned)

-v Output the version number of loadsave.

-w enable warning messages, ie string variables without DIM statements

-L convert all line number references to labels

loadsave loads a BASIC program from a text file and saves it as a BASIC program file.

The -ro option creates a Run-only file which cannot be listed.

If the source file contains an error or does not exist, the object file is neither saved nor
created. The object file is created only if the entire encoding process succeeds. If the
object file already exists, it is overwritten.

Examples
loadsave {-s} {-c profile} -o outfile srcfile
loadsave -{vh?}

 source text from a specified file into the program following the
 INCLUDE statement. The environment variable INCSTRING can be used
 to specify a space separated list of directories that should be
 searched when opening an include file. If lines in an include file
 use line numbers, the lines will be inserted at the specified lines
 replacing any previously loaded lines with those line numbers. The
 INCLUDE statement can have both a line number and a label. Example:

 Include "filename"

o A simple include file feature has been added to the LOADSAVE utility.
 The INCLUDE statement is recognized only by LOADSAVE and reads

Revision date: 08/23/05 196 Dynamic Concepts Engineering

Sample of convert.prf file

(can be found in /usr/lib/dl4/tools directory. Convbits.prf is provided as a sample
BITS Oriented Profile.)

; Sample IRIS Oriented Conversion Profile for dL4
;
; A 'conversion profile' is referred to by the dL4 encoder when converting
; programs from uniBasic/BITS/IRIS, e.g. with SCOPE's CONVERT command. Its
; primary purpose is for mapping older user CALL statements into procedure
; calls in dL4.
;
; I. CALLs
;
; The former CALL syntax, i.e.:
;
; CALL ##,args
; or CALL $NAME,args
;
; is illegal under dL4, having been replaced by the single syntax:
;
; Call Name(args)
;
; The "Name" refers to a subprogram procedure which may be either:
;
; 1. External (written in BASIC and saved in another program file).
; 2. Intrinsic (written in C and linked into the interpreter like old
; CALLs).
;
; The converter changes an old CALL statement by parsing the CALL
; specification (number, $name, or even an expression) and searching for
; a matching entry from this file. If not found, a unique call name is
; substituted based on the CALL expression prefaced by "Undef".
;
; All converted CALLs cause appropriate DECLARE and EXTERNAL LIB statements
; to be added to the program, based on the info in this file. Intrinsic
; CALLs cause a line such as:
;
; Declare Intrinsic Sub TrxCo,Logic
;
; to be added. External CALLs cause, e.g.:
;
; Declare External Sub Time,FindF
; External Lib "OLDCALLS.LIB"
;
; both to be added.
;
; II. Program OPTIONs
;
; In most cases where IRIS BASIC and BITS BASIC differed, dL4 uses IRIS
; behavior as the default. For example, the IF (without ELSE) statement is

Revision date: 08/23/05 197 Dynamic Concepts Engineering

; line oriented in both IRIS and dL4, but statement oriented in BITS BASIC.
; This default behavior can be changed by adding the following OPTION
; statement to a program converted from BITS:
;
; OPTION IF BY STATEMENTS
;
; The "[Header]" section of the conversion profile supports the need to add
; OPTION statements by inserting OPTION statements as the program is
; converted.

[Standard]
; These are UniBasic predefined BASIC functions.
ABS=ABS
ASC=ASC
CHN=CHN
Etc………..

 [ExternalLibs]
OLDCALLS.LIB
MISSING.LIB

;add your library(s) here, ie
CUSTOM.LIB

;then add a section to list your calls, ie
[CUSTOM.LIB]
GETPART=$GETPART

[OLDCALLS.LIB]
; These are the legacy CALLs provided in version 1.7
; of "OLDCALLS.BAS".
DynWind=$WINDOW
Monitor=$MONITOR(Port,Status[],Dir$,Term$,Type$,ChanNum[],Fnms$,E),125

[MISSING.LIB]
; These CALLs are not provided by DCI, but are defined so they
; can be automatically converted to a name (i.e. there is no
; such library as MISSING.LIB, but the converter will change the
; names nonetheless).

[Intrinsic]
; These are the legacy CALLs provided in version 5.1
; of the dL4 interpreter.
ASC2EBCDIC=53
AToE=77,$ATOE
AvPort=$AVPORT
Etc……..

 [Header]
; If IRIS programs to be converted use zero as a string subscript, the
; OPTION header line below should be uncommented by removing the leading
; semicolon and spaces:
;
; Line=OPTION STRING SUBSCRIPTS IRIS

Revision date: 08/23/05 198 Dynamic Concepts Engineering

; If programs to be converted expect HAGEN string behavior (as in
; UniBasic with the HAGEN environment variable set), the header line
; should be uncommented by removing the leading semicolon and spaces:
;
; Line=OPTION DEFAULT STRINGS HAGEN
Line=Option Default Dialect IRIS1

[Settings]
; If the programs to be converted expect the CHF(8xx) function to return
; absolute paths, the line below can be uncommented to converted CHF(8xx)
; CHF$(13xx) which always returns absolute paths.
;
; ConvertCHF800To1300=True
;
; When programs are converted, lines are inserted at the lowest available
; line number to add needed DECLARE, EXTERNAL LIB, or OPTION statements.
; Errors may occur if too many low valued line numbers are already in
; use (for example, a program that has lines 1, 2, 3, . . .). The line
; below can be uncommented to renumber the program to start at line 100
; before the new lines are inserted.
;
; Renumber=100,10
;
; If the programs to be converted contain GOTOs and GOSUBs to non-existent
; line numbers, the line
;
; "ConvertUndefinedLineRefs=True"
;
; automatically converts the line numbers to labels
; ("Unnnn" where "nnnn" is the original line number) and append lines
; ("Unnnn: ERROR 6") to the end of the program to define those labels.
; This permits the program to run without fixing the incorrect GOTO or GOSUB
; statements.
;
; Comment this line to disable this setting.
;
ConvertUndefinedLineRefs=True
ReportUndefinedProcedures=True
;Convert IRIS programs or programs that used UniBasic in IRIS mode
Language=IRIS

[Edit]
; This section defines text edit commands to be performed on each source
; line before it is converted to dL4 syntax. The entries in the "[Edit]"
; section consist of pairs of lines where the first line defines what is
; to be replaced and the second line defines the new text. The lines
;
; OldText=Hello
; New=GoodBye
;
; would replace each occurrence of "Hello" in a source line with "GoodBye"
.
; The keyword in the first line defines how the search will be performed:

Revision date: 08/23/05 199 Dynamic Concepts Engineering

;
; OldText= finds exact matches
; OldTextCI= finds case-insensitive matches
; OldTokens= ignores case, spaces, string values, DATA, and comments
; OldString= searches only in string literals ("abc")
; OldMnemonic= searches only in mnemonic literals ('CS')
; OldData= searches only in DATA statement values
; OldComment= searches only in comment text

Revision date: 08/23/05 200 Dynamic Concepts Engineering

Changes to Profile file

Here is a sampling of typical changes to be made to a .profile file when launching dL4
instead of Unibasic. (Configuration of environment variables could be done using the
ub2dl4 utility or by editing the .profile manually.)

Duplicate LUST variable for LIBSTRING except replace : with space and change directory where dl4
programs instead of ub programs reside, i.e. /progs to /dl4progs and surround entire string with quotes as
follows :
LUST=:$HOME:$HOME/progs:$HOME/files

LIBSTRING="$HOME $HOME/dl4progs $HOME/files"
export LIBSTRING

LUMAP should be as follows to find data files:
LUMAP=”SYS=$HOME/sys FILES=$HOME/files”
export LUMAP

If your application is dependent on searching for the correct data files based on LUST, instead of
configuring LUMAP and LIBSTRING you can define DL4LUST similar to the existing LUST variable
as follows :
LUST=:$HOME:$HOME/progs:$HOME/files
DL4LUST="$HOME $HOME/dl4progs $HOME/files"
export DL4LUST

Optionally, you can leave your LUST setting as is and do the following to replicate for DL4LUST:
DL4LUST=”(uselust)”
export DL4LUST

You might want to add /usr/lib/dl4/tools to your LIBSTRING or DL4LUST to easily locate dL4 utilities.
You might also duplicate DEFLU to DL4DEFLU for a default directory.

add the following to PATH :
PATH=$PATH:/usr/lib/dl4/printers (and copy printer drivers!)

add the TERMDIR environment variable :
TERMDIR=/usr/lib/dl4/term
export TERMDIR

Revision date: 08/23/05 201 Dynamic Concepts Engineering

File search environment variables

LIBSTRING : Like Unibasic LUST or IMS LUPATH, but applies to programs only, not data files.

LUMAP : maps a relative path to an absolute path for both program and data files. Useful for
mapping 5/filename to /usr/accounting/filename. It is NOT a list of search paths.

The map “LPT1=C:\dL4\Printer1.bat” makes it possible to use “$LPT1” as a printer name
even though “LPT1” is a reserved filename under Windows.

DL4LUST : Like Unibasic LUST, and applies to both programs and data files. If LIBSTRING is
defined, LIBSTRING is used first for searching programs. (IMS Basic users, explicitly specify the
current directory as the first directory in DL4LUST to replicate LUPATH functionality.)

DL4DEFLU : Like IMS DEFLU, if defined then a file search will try each of the directories in
DL4LUST first without and then with the value of DL4DEFLU appended. Not recommended
unless porting from IMS Basic.

Assume
 DL4LUST is equal to ". /usr/data test"
 DL4DEFLU is equal to "5"
 the current directory is "/home/fred/"

then the statement
 OPEN #1,"file"

would try to open "file" using the following paths and in the
following order:

 ./file
 ./5/file
 /usr/data/file
 /usr/data/5/file
 /home/fred/test/file
 /home/fred/test/5/file

More information on LIBSTRING, LUMAP, DL4DEFLU and DL4LUST are in the readme.txt for
dL4.

DL4DRIVERS : allows configuration of dL4 driver selections. There are currently two
DL4DRIVERS options, "Universal" and "ANSI Text". Setting DL4DRIVERS to "Universal" causes
dL4 to create Universal Indexed-Contiguous or Formatted files by default.
Setting DL4DRIVERS to "ANSI Text" causes dL4 to create and read text files using the ANSI
(ISO 8859-1) character set instead of the UniBasic character set. Options in the DL4DRIVERS
parameter are case-insensitive and multiple options can be separated by commas.

Examples:
DL4DRIVERS="Universal"
DL4DRIVERS="universal,ansi text"

Revision date: 08/23/05 202 Dynamic Concepts Engineering

dL4
Product Training

Install

(Refer to dL4Term Reference Guide)

(Refer to dL4 Installation & Configuration Guide for Unix)

(Refer to dL4 Installation & Configuration Guide for Windows)

Revision date: 08/23/05 203 Dynamic Concepts Engineering

Revision date: 08/23/05 204 Dynamic Concepts Engineering

Shared Cache

A single memory image of a program or library can be shared between different
processes and users by using a shared program cache. This feature, available only on
Unix systems, can greatly reduce the amount of memory needed to support multiple
users accessing large dL4 programs. Using the cache is largely transparent to both
users and applications. Cached program files are accessed using normal program paths
and obey the normal rules for lookup and access permission. Programs can be modified
and re-SAVEd while the cache is active without disrupting other users. Any users
executing the older version of the program from the cache will continue to execute that
older version while new users will invoke the most current version.

Using the program cache does not require any programming changes in applications.

The program cache is enabled and configured using the new environment variable
DL4CACHE. The value of DL4CACHE is a file specification of the form:

"<access-permissions> [size] name"
where:

"<access-permissions>" is a standard dL4 file access option such as "<644>" or "<W>". If
?[size]? is specified, then the permissions will be treated as BUILD permissions,
otherwise they will be used as OPEN permissions. "<access-permissions>" is an optional
value.

"[size]" specifies the size of the program cache as a number of records and a record
length in bytes similar to that used for contiguous files. For example, "[256:1024]"
specifies a 256 kb cache. Note that a large cache will only consume virtual memory and
does not reserve physical memory. If a "[size]" value is specified, the cache will be
created if it does not exist. If "[size]" is not specified and the cache does not exist, then
no cache will be used.

"name" is the name of the Unix semaphore and shared memory resources used by the
program cache. Any decimal ("nnn"), octal ("0nnn"), or hexadecimal ("0xnnnn") format
name will directly converted to a Unix resource id value (as displayed by the Unix "ipcs"
utility). Any other name will be used as a seed to generate a pseudo-random resource
name. The standard cache name of "0xdddc0500" should be used unless this value
conflicts with other applications or it is desired to maintain several different caches for
different groups of users. "name" is a required value.

Example:

DL4CACHE="<666> [2048:4096] 0xdddc0500" export DL4CACHE

If the value of DL4CACHE is illegal or if the cache cannot be accessed, caching will be
disabled. The status of the cache can be determined by using mode 0 of the
ProgramCache() intrinsic as shown in the "List entries in cache" example shown in the
ProgramCache() description later in this paper.

Revision date: 08/23/05 205 Dynamic Concepts Engineering

In order to use a shared program cache, the operating system must be configured to
support both shared memory and semaphores. On many Unix systems, the default
maximum size for shared memory will need to be increased. Please see your operating
system documentation for instructions on how to configure shared memory and
semaphores.

A program cache is created by the first user that enters dL4 with a DL4CACHE value
that specifies a cache size and specifies a cache name that does not exist. Once created,
a program cache persists until deleted by the ProgramCache() intrinsic (described later
in this paper) or the operating system is reloaded. The program cache can also be
deleted manually by using the Unix "ipcrm" utility to remove the shared memory and
semaphore ids used by the cache.

Each user accesses the program cache in either the dynamic or the static mode. The
cache mode is dynamic if a user has write access to the program cache and static if the
user has read-only access to the program cache. Read and write access is controlled by
the access permissions specified in the DL4CACHE environment variable (see above).
Note that the mode is specific to the user and different users can be setup to use the
cache in different modes.

If the user's cache mode is dynamic, all programs and libraries are entered
automatically into the cache when they are used. If a new program or library is invoked
and the cache is full, programs and libraries that have no current users will be deleted
from the cache until sufficient space is available. If sufficient space cannot be freed, the
new program or library will be loaded into the user's private memory. A typical
DL4CACHE value for dynamic mode use is "<666> [16384:1024] 0xdddc0500". This
provides a 16 megabyte cache with write access permitted to everyone. A larger or
smaller cache can be used depending on the number and size of frequently used
programs.

The cache is used in a static mode whenever a user lacks write access to the cache. In
static mode, the user never enters programs or libraries into the cache. Programs and
libraries are loaded into the user's private memory unless a copy of the program file has
been loaded permanently into the program cache by a user in dynamic mode via the
ProgramCache() intrinsic (described in a later section of this paper). Static mode has
two very important advantages: it avoids thrashing and offers higher security. A cache
used in static mode cannot be corrupted either accidentally or deliberately by a user.

Using a cache in static mode is more secure, but it is also more complex. The cache
must be created and initialized in dynamic mode before the static mode users enter
dL4. For example, suppose a system has two megabytes of frequently used dL4
libraries. At system startup time, a dL4 process would be run with a DL4CACHE value
of "<644> [2500:1024] 0xdddc0500". The process would use the new ProgramCache()
intrinsic (see below) to add each of the frequently used dL4 library programs to the
cache. Other users would then be started in dL4 with a DL4CACHE value of "<W>
0xdddc0500" which provides read-only (static) access.

A standard intrinsic CALL, ProgramCache() is used to read the current shared program
cache status and to manipulate the cache. An error will be generated if improper
arguments or argument values are passed to ProgramCache(). Any error that occurs
while processing the operation will be reported by setting the error code argument to a
non-zero dL4 error code.
BASIC syntax:

Mode 0 - Read next entry in cache.
Call ProgramCache(0, errorcode, position, filename, usagecount)

Revision date: 08/23/05 206 Dynamic Concepts Engineering

Mode 1 - Load program into cache as a permanent entry.
Call ProgramCache(1, errorcode, filename)

Mode 2 - Delete cache when the current process exits.
Call ProgramCache(2, errorcode)

Where:

errorcode - a numeric variable that will be set to 0 if the operation is successful or
to a standard dL4 error code if not. For example, if the cache is not
available, the statement :
 Call ProgramCache(0,e,p,f$,c)
will set the variable "e" to 42 (file not found).

position - a numeric variable that determines which cache entry is read. "position"
should be set to zero to read the first entry. Each mode 0 call will
update the value of "position" so that the next call will read the next
cache entry. The precision of "position" must be such that it can contain
any value between 0 and 2^32-1 without any loss of precision (a 3%
variable is adequate). The caller should only pass "position" values of
zero or those returned by the previous mode 0 call to ProgramCache().

filename - a string variable or expression that will receive a program file path
(mode 0) or supply a program file path (mode 1).

usagecount
-

a numeric variable set to the number of users of the program. A usage
count of -1 indicates that the program has been added to the cache as a
permanent entry.

Example: Adding a program to the cache as a permanent entry

Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode
Call ProgramCache(1, ErrorCode, "MenuLibrary.lib")

Users in static cache mode can only use cached programs and libraries that have been
added as permanent entries. These permanent entries must be created by a user in
dynamic cache mode using mode 1 of ProgramCache(). Once made, permanent entries
cannot be individually deleted because there is no way to determine whether or not a
static mode user is currently executing the program or library. See the program cache
description above for more information on dynamic and static cache modes.

Example: List entries in cache

 Declare Intrinsic Sub ProgramCache

Dim 1%, ErrorCode, 3%, CachePos, File$[200], Usage
CachePos = 0
Do

Call ProgramCache(0, ErrorCode, CachePos, File$, Usage)
If ErrorCode Exit Do
If Usage < 0

Print "Permanent ";
Else

Print Using "######### ";Usage;
End If
Print File$

Loop
If ErrorCode = 73 Print "The program cache is not enabled"

Revision date: 08/23/05 207 Dynamic Concepts Engineering

Note: If a cached program is edited and resaved, then the same program name is listed
multiple times.

Example: Deleting the program cache

Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode
Call ProgramCache(2, ErrorCode)

This example will delete the program cache when the current user exits dL4. The
program cache should be deleted if it is desired to increase the size of the cache or if the
cache has become corrupted. The cache can be deleted only by the owner of the cache
or by the root user. Since the cache cannot be deleted until the user exits, no error is
returned if the caller lacks delete permission. All other users should exit dL4 before the
cache is deleted.

Revision date: 08/23/05 208 Dynamic Concepts Engineering

dL4
Product Training

Tools

Revision date: 08/23/05 209 Dynamic Concepts Engineering

A “tools” directory is installed as part of the standard runtime installation. The default directory is
/usr/lib/dl4/tools.

This directory contains the following utilities :

buildfi - utility to create Full-ISAM files

buildxf - utility to create Indexed-Contiguous files

checksum - utility to calculate 32-bit CRC file checksums

convbits.prf - sample conversion profile for BITS programs

convert.prf - sample conversion profile for IRIS programs

pgmcache - program cache utility

query - utility to display file type and characteristics. New options have been added to
the query utility. The "-p" option enables division of long displays into screen
sized pages. The "-l", "-l=$printer", "-l=path" options direct output to the "$lpt"
printer, "$printer" printer, or the "path" text file respectively.

term - utility to display port status or terminate programs. Enhanced to display user
name and terminal name and if blocked by a record lock wait, it’s state will be
displayed as “Blkd” with the port number that is current;y holding the locked
record in parentheses. Enhanced to display the channels open on each port. The
"F" option ("term all mf") shows each open channel number, the filename open
on the channel, and, if supported, the current record number. The record
number is followed by a letter showing the lock status of the record. The status
letters are "U" (unlocked), "L" (locked), and "B" (blocked waiting for a record
lock). Term has also been enhanced with a "B" option to display only ports that
are blocked waiting for a record lock. For each blocked port, the utility finds
and displays the port number of the program which is currently locking the
desired record. The “P” option will list active ports in screen sized pages.

oldcalls.lib - a dL4 library that implements CALL DYNWIND() and CALL MONITOR().

New as of version 5.1

UniBasic utilities have been converted to dL4. The user interface and functionality have been
maintained to be identical to that of the original Unibasic utilities.

batch - execute commands on a phantom port

bitsdir - list directory contents (Unix only), same as Unibasic DIR command, which is
like LIBR command, except it is interface compatible to BITS DIR command
and output can be used with makecmnd.

change - change filename or attributes

copy - copy files

dokey - access or modiy Indexed-Contiguous files

format - create formatted files

libr - list directory contents (Unix and Windows compatible)

keymaint - access or modiy Indexed-Contiguous files (same as dokey)

make - create multiple files with same attributes

makecmnd - generate command files for BATCH or EXEC

makehuge - utility to convert files to huge (> 2gb) format

mfdel - delete a list of files

Revision date: 08/23/05 210 Dynamic Concepts Engineering

port - display port status or evict ports (the “term” utility has extended dL4 options)

scan - display file information

verindex - utility to validate the index portions of Portable or Universal Indexed
Contiguous files.

who - displays information about your process

New as of version 5.2

ic2fi - utility to convert indexed-contiguous files to full-isam or SQL files

 (deprecates ictofi) See end of File Drivers section for more info

New as of version 5.3

testlock - utility to test network file system support for record locking. Use the command
“testlock –h” to display usage instructions.

Bitsterm - utility identical in function to the uniBasic TERM utility.

Revision date: 08/23/05 211 Dynamic Concepts Engineering

Example of using BITSDIR, MAKECMND and EXEC to dump a group of programs to text

In dL4 scope :
1. Create a text file directory listing of the programs using the BITSDIR command. Be sure you are in the

/programs directory first.

BITSDIR directoryname of programs /L=filename of list @ /A T=B

BITSDIR /programs /L=progdir! @ /A T=B

 All T=B, type=basic files alphabetically in /programs . List in file called ‘progdir’

2. Use utility MAKECMND to create a text file of commands to dump the programs to text.

MAKECMND file USING DIRfile

MAKECMND dump2text! USING progdir

 BASIC ?
 PRINT “?”
 DUMP ../textdir/?.txt!
 EXIT

3. Execute the command made in step 2 with EXEC command.

EXEC dump2text

This will dump all the programs to text files into /textdir directory, with filenames ending with .txt
(/textdir directory must already exist.)

Revision date: 08/23/05 212 Dynamic Concepts Engineering

dL4
Product Training

New Enhancements

dL4Term,Printers, Install

Revision date: 08/23/05 213 Dynamic Concepts Engineering

New for dL4 Term

o When using dL4Term with dL4 Unix, it is now possible to open a printer on the user's
 PC on a channel. Opening the "Window Terminal Printer" driver opens
 the dL4 for Windows "Selected Page Printer" on the user's PC and allows
 the user to select a printer. The driver supports the same mnemonics
 and open options as the "Selected Page Printer" driver. The OPEN
 statement will return an error if the user cancels the printer
 selection.
 The driver can be opened directly as in the statement:
 OPEN #1,"filler" As "Window Terminal Printer"
 or indirectly using a printer script:
 OPEN #1,"$AUXPRINTER"
 where "AUXPRINTER" is a script file found somewhere in the user's
 PATH on the Unix system. The following is an example of such a
 printer script:

 # dl4opts=openas=Window Terminal Printer,options=landscape=t

 The auxiliary printer mnemonics (such as 'BA' or 'EA') shouldn't be
 used when the "Windows Terminal Printer" driver is open. This
 feature requires using dL4Term 4.3.1.2 or later.

 This is similar to using the $SELECTLP driver in dL4 for Windows

 This provides for same syntax as a Unix OPEN statement. Also the client PC does not
 need to be configured for auxiliary printing.

Revision date: 08/23/05 214 Dynamic Concepts Engineering

New to Printer drivers

o Two printer scripts, dfltlp.bat and selectlp.bat, are now supplied
 and installed with dL4 for Windows. The default Windows printer can be opened
 as "$dfltlp". A user selected Windows printer can be opened as
 "$selectlp" which will cause a printer dialog to be displayed.
 Examples:

 OPEN #2,"$dfltlp"
 OPEN #99,"$selectlp"

o Two new open options have been added to the Windows Page Printer
 driver. The "LPI=n" option selects a default font size such that
 "n" lines per inch will be printed. The "CPI=n" option selects a
 default font size such that "n" characters per inch will be printed.
 The two options can be used together. The following example shows
 a printer script that uses 8 lines per inch, 10 characters per inch,
 with half inch horizontal and vertical margins:

 rem dl4opts=openas=selected page printer,lpi=8,cpi=10,hmargin=36,vmargin=36
 rem
 rem dL4 selected by dialog printer script

o A new printer mnemonic, 'nLANDSCAPE', has been implemented to
 select landscape mode if "n" is 1 and portrait mode if "n" is 0.
 The mnemonic should only be used at the beginning of a page.

o A new mnemonic 'n LPI' has been implemented to set the number of lines
 per inch when printing to the Page Printer driver.

o A new mnemonic 'n CPI' has been implemented to set the number of
 characters (columns) per inch when printing to the Page Printer driver.
 A second form, 'n,d CPI' has been implemented to use the fraction "n/d"
 when setting the number of columns per inch.

o A new mnemonic, 'MARGIN', has been implemented to set horizontal
 ('w MARGIN') and vertical ('w,h MARGIN') margins in the Page Printer
 driver. The arguments to the mnemonic are margins expressed in grid
 coordinate system units. For example, if the current coordinate grid
 is tenth inches ('100GRIDENGLISH'), then a half inch left margin can
 be set by '5MARGIN' or a half inch left margin combined with a one
 inch top/bottom margin can be set by '5,10MARGIN'.

o A new open option, "BINARY=<boolean>", has been added to the Page
 Printer drivers. This option causes all characters printed to a
 printer channel to be sent directly to the printer without any
 processing or translation. All characters sent in this mode must be
 between 1 and 255 decimal. This option is intended for applications
 that need complete printer control. Example:

Revision date: 08/23/05 215 Dynamic Concepts Engineering

 Open #1,{"","binary=true"} As "Default Page Printer"

o A new special output macro can be defined in the "[OutputMacros]"
 section of a terminal or printer definition file. The "Illegal"
 macro can be used to define a single character to be output whenever
 an illegal output character is output. Example:
 [OutputMacros]
 Illegal=?

Revision date: 08/23/05 216 Dynamic Concepts Engineering

New to dL4 runtime parameters

o A UniBasic compatible PORTS runtime parameter has been implemented to
 set a user's port number according to the user's terminal name. By
 default, dL4 for Unix tries to use the numeric portion of the terminal
 name as the port number. For example, a user logged in on /dev/tty14
 will try to use port number 14 if it is available (and assuming the
 PORT runtime variable isn't set to explicitly select the port number).
 The PORTS runtime parameter makes it possible to select which port
 number is used with a terminal name. The PORTS value is a list of
 colon separated terminal names where the first terminal name is port
 0, the second name is port 1, and so on. If the specified terminal
 name contains an asterisk ("*"), a wildcard match will be performed
 and, if a match occurs, the current port number plus any number from
 within the wildcard portion will be the port number. If a name begins
 with a pound sign ("#"), the number following the pound sign is used to
 set the current port number for any subsequent terminal names. A name
 of "#any" will cause subsequent terminal names to use the highest
 available port number.

o The PORT runtime parameter has been extended so that a value of "any"
 will cause the highest available port number to be used regardless
 of the terminal name.

o A new runtime parameter, "MINPORT", has been defined to set the
 minimum port number to be used when automatically generating a port
 number.

o A new runtime parameter, "AVAILREC", can be used to specify the value
 returned by SEARCH as the number the records available in indexed
 contiguous files. If the "AVAILREC" parameter is not set, the SEARCH
 statement will return, as it did in previous dL4 releases, the actual
 number of records available from the file free list or a minimum value
 of one.

o A new runtime parameter, DL4STOPDUMP, has been implemented to control
 whether a program dump should be written when a program exits via a
 STOP statement. If the environment variable DL4STOPDUMP is defined
 as an absolute path, then any program that exits via a STOP will cause
 a program dump file to be written to the path. The path can use the
 macro variables and other features of the DL4PORTDUMP runtime parameter.

o A local and private cache for dL4 programs has been implemented to
 improve program load performance, particularly when programs are
 loaded from remote networked file systems. The feature can be
 enabled by setting the environment variable DL4LOCALCACHE to the
 size of the desired local cache in bytes on the Windows client. The cache resides in
 process memory, is not shared with other users, and may increase
 process size. Programs in the local cache are identified by the
 absolute path of the program file. If a program file is modified
 while it is in the local cache, the old version in the local cache
 will continue to be used until the program is flushed from the
 cache by lack of use or a local SAVE command to the file. To

Revision date: 08/23/05 217 Dynamic Concepts Engineering

 effectively use the local cache, programs should be in the first
 program search directory (for example, the first directory in the
 LIBSTRING environment variable).
 The local cache is controlled with the pgmcache utility and CALL PROGRAMCACHE.

New ability to run dL4 programs as executable scripts

o A new, optional program file format is now available for Unix systems
 to allow direct execution of dL4 programs from a shell command line.
 The new format starts each dL4 program file with the line "#!string"
 where string is a program path. For example, the command:
 save <755> (exec=/usr/bin/run) programname
 would save the current program into the file "programname" as an
 executable script with an initial line of "#!/usr/bin/run". The
 program file could then be executed directly at a shell command
 line by typing "programname". The program file would also be usable
 in dL4 SCOPE, in CALL/CHAIN/SPAWN statements, or in dL4 for Windows.
 The "exec" line can include options RUN such '-t ""'.

 In addition to the "exec=" option, executable Unix scripts can be
 produced by using the "stdexec" or "netexec" options which are
 equivalent to "exec=/usr/bin/run" and "exec=/usr/bin/run -t".

 Program files can be made executable on Windows systems by using a
 unique filename suffix such as ".dl4" and then associating that
 suffix with the required command line.

Revision date: 08/23/05 218 Dynamic Concepts Engineering

dL4

Product Training

OSN’s

Revision date: 08/23/05 219 Dynamic Concepts Engineering

Protect your investment with OSN’s

An OSN (OEM Security Number) based form of program protection is available in dL4.
This protection mechanism is very similar to the SSN (Software Security Number)
mechanism used by DCI and the PSAVE method in UniBasic.

In summary, the process works as such :
1. DCI supplies a Product Description Number, referred to as a PDN, for your product.
 This is issued only once for a product (software package) and should be closely
guarded.
2. When a new installation is configured, a hardware device license # or software license
is
 assigned, along with an SSN number to activate licensed DCI products.
3. The developer creates an OSN number for each license # by running the makeosn
utility
 and entering the PDN and license #. (Running makeosn with a –m option creates
both a
 master and user OSN. A master OSN can list PSAVE’d files on the licensed machine.)
4. The OSN number is placed in the Unix /etc/DCI/osn file or in the Windows Registry
to
 enable programs PSAVE’d with the related PDN.

A program saved with the PSAVE command can be loaded only on systems that have
been authorized with a developer supplied OSN. Any attempt to run protected
programs on an unauthorized system will cause an error 265, "Not licensed to load or
create this program".

PSAVE protected programs can be modified and re-SAVED on any authorized system,
but they can be listed only on systems which have been authorized with a master OSN.
The ProgramDump intrinsic can be used in protected programs and any errors that
occur while attempting to list a source line will be ignored (variables names can always
be
listed).

The dl4 PSAVE mechanism differs from UniBasic in two ways:

1. There is no "-o" startup option to add new OSNs. Instead, OSNs are added by
creating and/or editing the text file /etc/DCI/osn. (Or on Windows platforms, editing
the Software | Dynamic Concepts | Passport | OSN registry entry. The registry entry
name is your product name with the OSN number as the string value (REG_DZ).)

2. There is no "-t" startup option to add a temporary OSN. A temporary OSN is instead
added by using the SCOPE "OEM TEMP" command which will prompt for an OSN that
will be used only by the current SCOPE session.

OSNs are created with the makeosn utility that is supplied as part of Passport version
3.6 or later. A PDN (Product Description Number) is required to use makeosn. Please
contact the Dynamic Concepts Sales department for information on how to obtain a
PDN.

Revision date: 08/23/05 220 Dynamic Concepts Engineering

To support this protection method, two commands are available SCOPE: OEM and
PSAVE.

The OEM command lists the currently authorized OSNs. “M” is shown next products
where a Master OSN is present.
If the TEMP option is used ("OEM TEMP"), the OEM command will first prompt for a
temporary OSN to be used only by the current SCOPE session.
The OEM command can be used in the SCOPE command, BASIC, and debug modes.

The PSAVE command is used to create OSN protected programs. The PSAVE command
is identical to the SAVE command except for an optional OSN number that can precede
the SAVE filename. For example, the command "PSAVE 2,menu" would save the
current program as "menu" after protecting it to require the second OSN listed by the
OEM command.

Protected programs can be created only if the specified OSN is a master OSN.

The PSAVE command is available in the SCOPE command and BASIC modes.
A new option, "-l n", has been added to the SCOPE SAVE command and to the
LOADSAVE utility to create OSN protected programs. The value "n" is the number of a
master OSN as listed by the SCOPE OSN command.

Revision date: 08/23/05 221 Dynamic Concepts Engineering

dL4
Product Training

Unix Source Control

Revision date: 08/23/05 222 Dynamic Concepts Engineering

Development with Source Control

Since dL4 Source programs are saved as standard text files standard source control
utilities can be used. Also ‘Make’ scripts can be written to create a ‘package’ of
programs.

Refer to Unix ‘man’ pages or other Unix reference material to familiarize yourself with
how to utilize utilities such as SCCS, make and m4.

SCCS can be used to maintain source control.

A ‘make’ file can be created to manage an automated compiling of the application
programs. The makefile is then processed by the make utility.

‘m4’ include commands can be used to insert pieces of code into a program before
compiling.

Revision date: 08/23/05 223 Dynamic Concepts Engineering

