
6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 1 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Unibasic
From Dynamic Concepts Wiki

Contents
1 UniBasic
2 About this Guide

2.1 Conventions
3 Installation & Configuration

3.1 Configuring Unix for UniBasic
3.1.1 Number of Processes
3.1.2 Number of Open Files
3.1.3 Number of Open i-nodes
3.1.4 Number of Locks
3.1.5 Message Queues

3.2 Unix Accounting & Protection System
3.3 Creating a Unix Account for UniBasic
3.4 UniBasic Security & Licensing

3.4.1 Software Licensing
3.4.2 Hardware Licensing

3.5 Loading the Installation File
3.5.1 Loading the UniBasic Installation File
3.5.2 Loading the UniBasic Development File

3.6 ubinstall - Installing UniBasic Packages
3.6.1 Errors During Installation

3.7 Configuring a UniBasic Environment
3.7.1 Directories and Paths
3.7.2 Filenames and Pathnames
3.7.3 Organizing Logical Units and Packnames
3.7.4 Environment Variables
3.7.5 Setting up .profile for Multiple Users

3.8 Command Line Interpreter
3.9 Launching UniBasic From Unix
3.10 Terminating a UniBasic Process
3.11 Licensing a New Installation
3.12 Changing the SSN Activation Key
3.13 Launching UniBasic Ports at Startup
3.14 Configuring Printer Drivers
3.15 Configuring Serial Printers
3.16 Configuring Terminal Drivers
3.17 Creating a Customized Installation Media

4 Introduction To UniBasic
4.1 Data

4.1.1 Numeric Data
4.1.1.1 Numeric Precision
4.1.1.2 Special Notes on %3 and %6 Numerics

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 2 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

4.1.1.3 Integers Stored in Floating-Point Variables
4.1.2 String Data and Literals - "str.lit"
4.1.3 CRT Mnemonics and Expressions - crt.expr

4.2 Statements, Statement Numbers & Labels
4.2.1 Immediate Mode
4.2.2 Statement Numbering
4.2.3 Multiple-Statement Lines
4.2.4 Inserting, Changing & Deleting Statements

4.3 Variables
4.3.1 Variable Naming Conventions
4.3.2 Subscripted Variables
4.3.3 Arrays and Matrices

4.4 Numeric, Array and Matrix Variables
4.4.1 Automatic Dimensioning Numeric Variables
4.4.2 Re-Dimensioning Numeric Variables

4.5 String Variables
4.5.1 Subscripted Strings
4.5.2 String Arrays
4.5.3 Dimensioning String Variables
4.5.4 Re-Dimensioning String Variables

4.6 Expressions
4.6.1 Operator Precedence
4.6.2 Operator Precedence Table
4.6.3 Predefined BASIC Functions

4.7 Operators Used in Expressions
4.7.1 Unary Operators + -
4.7.2 Arithmetic Operators ^ * / % + -
4.7.3 Concatenation Operators + ,
4.7.4 Relational Operators = <> > >= < <=
4.7.5 Boolean Operators AND OR
4.7.6 String Operator USING

4.7.6.1 Field Descriptors
4.7.6.2 Leading Characters
4.7.6.3 Floating Characters
4.7.6.4 Numeric Characters
4.7.6.5 Commas
4.7.6.6 Decimal Points
4.7.6.7 Post Signs
4.7.6.8 Numeric Split

4.7.7 String Operator TO
4.8 Numeric Expressions
4.9 String Expressions
4.10 Rules Governing String Processing
4.11 String Assignment

5 UniBasic Files
5.1 Introduction to Files
5.2 Filenames and Pathnames
5.3 File Attributes, Protection and Permissions

5.3.1 Using IRIS Protections
5.3.2 Using Unix Permissions Directly

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 3 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

5.3.3 BITS Attributes
5.3.4 Supplemental Protection Attributes

5.4 Accessing Data Files Through a Channel
5.4.1 Channel Expression - chn.expr

5.5 Record Locking
5.6 Text Files

5.6.1 Creating Text Files
5.6.2 Accessing Text Files

5.7 Saved BASIC Program Files
5.8 Contiguous Data Files

5.8.1 Creating Contiguous Files
5.8.2 Accessing Contiguous Files

5.9 Tree-Structured Data Files
5.9.1 Creating Tree-Structured Files
5.9.2 Accessing Tree-Structured Files

5.10 Formatted (Item) Data Files
5.10.1 Creating Formatted ITEM Files
5.10.2 Accessing Formatted ITEM Files

5.11 Indexed Data Files
5.12 Indexed File Creation

5.12.1 Accessing an Indexed Data File
5.12.1.1 Mode 0 - Index Definition
5.12.1.2 Mode 1—Miscellaneous Index Information
5.12.1.3 Mode 2—Search for a Specific Key
5.12.1.4 Mode 3—Search for the Next Highest Key
5.12.1.5 Mode 4—Insert a New Key into an Index
5.12.1.6 Mode 5—Delete an Existing Key from an Index
5.12.1.7 Mode 6—Search for a Previous Lower Key
5.12.1.8 Mode 7—Reorganize Index
5.12.1.9 Mode 8—Specify B-Tree Insertion Algorithm
5.12.1.10 Mode 12-Determined encryption status

5.12.2 Indexed File Errors & Recovery
5.13 Accessing non-UniBasic Files and Devices
5.14 IRIS BCD Data and Key Files

5.14.1 Creating IRIS BCD Data Files
5.14.2 Accessing IRIS BCD Data Files

5.15 Universal Data Files
5.15.1 Creating Universal Data Files
5.15.2 Accessing Universal Data Files

5.16 Encrypted Data Files
5.16.1 Creating Encrypted Data Files
5.16.2 Accessing Encrypted Data Files

5.17 Special UniBasic Files
5.17.1 Error Message File: errmessage
5.17.2 $TERM Files: term.xxxx

6 Device Input and Output
6.1 Port Numbering
6.2 Phantom Ports
6.3 Accessing Drivers ($LPT) and Pipes
6.4 Printer Drivers

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 4 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

6.5 Mail Drivers
6.6 Terminal Translation File $TERM Files

6.6.1 $TERM Flags and Switches
6.7 Defining $TERM Mnemonics

6.7.1 Mnemonics Translated for Output
6.7.2 CRT Mnemonics

6.7.2.1 Mnemonics for Keyboard and Auxport
6.7.2.2 Mnemonics to Clear & Reset the Terminal
6.7.2.3 Mnemonics Applied to the Cursor Position
6.7.2.4 Mnemonics to Control Attributes
6.7.2.5 Mnemonics to Control Color
6.7.2.6 Mnemonics to Transmit Data
6.7.2.7 Miscellaneous Mnemonics
6.7.2.8 Special Mnemonics for I/O Control
6.7.2.9 IRIS Mnemonics Not Supported

6.7.3 $TERM Extended Graphic Mnemonics
6.7.3.1 Table of Extended Graphics Octal Codes

6.8 $TERM Input Character Processing
6.9 Cursor Tracking Mode
6.10 Using Dynamic Windows

6.10.1 Using Protected Characters & PC Monitors
6.10.2 Mnemonics Simulated During Window Tracking

7 UniBasic Commands
7.1 Starting & Ending Statement Numbers
7.2 Processing in Command Mode
7.3 ! Command
7.4 / Command (BITS only)
7.5 AUTO
7.6 BASIC (IRIS only)
7.7 BAUD
7.8 BYE
7.9 CD
7.10 CHAIN "SAVE. . ." (IRIS only)
7.11 CHANGE (BITS only)
7.12 CHECK (IRIS only)
7.13 CLU (IRIS only)
7.14 CONTINUE
7.15 DEL (BITS only)
7.16 DELETE (IRIS only)
7.17 DUMP
7.18 EDIT
7.19 ERASE (BITS only)
7.20 EXEC (IRIS only)
7.21 EXIT (IRIS only)
7.22 FILE
7.23 (Filename)
7.24 FIND
7.25 GET (BITS only)
7.26 GO (IRIS only)
7.27 HALT

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 5 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

7.28 HELP
7.29 LEVEL
7.30 LIST
7.31 LOAD (IRIS only)
7.32 MERGE (BITS only)
7.33 MSG
7.34 NEW
7.35 OEM
7.36 PACK (BITS only)
7.37 PROTECT
7.38 PSAVE
7.39 RENUMB
7.40 RSAVE (BITS only)
7.41 RUN
7.42 SAVE
7.43 SHOW
7.44 SIZE
7.45 STATUS (IRIS only)
7.46 TIME
7.47 UNASSIGN
7.48 USERS
7.49 VARIABLE
7.50 VERIFY
7.51 VSAVE (BITS only)

8 UniBasic Statements
8.1 Program Debugging Aids

8.1.1 Single-Step Program Execution
8.1.2 Trace Mode
8.1.3 Program Breakpoints

8.2 Statement Documentation Format
8.3 BUILD #
8.4 CALL
8.5 CHAIN
8.6 CHAIN READ
8.7 CHAIN WRITE
8.8 CLEAR #
8.9 CLOSE #
8.10 COM
8.11 CONV
8.12 CREATE #
8.13 DATA
8.14 DEF FN
8.15 DIM
8.16 DUPLICATE
8.17 EDIT
8.18 END
8.19 ENTER
8.20 EOFCLR
8.21 EOFSET
8.22 EOPEN

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 6 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

8.23 ERRCLR
8.24 ERRSET
8.25 ERRSTM
8.26 ESCCLR
8.27 ESCSET
8.28 ESCDIS
8.29 ESCSTM
8.30 EXECUTE
8.31 FOR
8.32 GOSUB
8.33 GOTO
8.34 IF
8.35 IF ERR
8.36 INDEX #

8.36.1 Summary of INDEX Modes
8.36.2 Detailed Table of INDEX Modes

8.36.2.1 Table of INDEX status return values
8.37 INPUT
8.38 INTCLR
8.39 INTSET
8.40 JUMP
8.41 KILL
8.42 LET
8.43 LIB
8.44 MAT =
8.45 MAT +
8.46 MAT *
8.47 MAT CON
8.48 MAT IDN
8.49 MAT INV
8.50 MAT TRN
8.51 MAT ZER
8.52 MAT INPUT
8.53 MAT PRINT
8.54 MAT RDLOCK #
8.55 MAT READ
8.56 MAT READ #
8.57 MAT WRITE #
8.58 MAT WRLOCK #
8.59 MODIFY
8.60 NEXT
8.61 ON
8.62 OPEN #
8.63 PAUSE
8.64 PORT

8.64.1 Mode 0—Attach Selected Port
8.64.2 Mode 1—Place an Attached Port in Command Mode
8.64.3 Mode 2—Transmit Command String to Attached Port
8.64.4 Mode 3—Return Attached Port’s Operational Status

8.65 PRINT

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 7 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

8.66 RANDOM
8.67 RDLOCK #
8.68 RDREL #
8.69 READ
8.70 READ #
8.71 RECV
8.72 REM
8.73 RESTOR
8.74 RETURN
8.75 REWIND #
8.76 ROPEN #
8.77 SEARCH
8.78 SEARCH #

8.78.1 Summary of SEARCH # Modes
8.78.2 Detailed Table of SEARCH # Modes

8.78.2.1 Table of SEARCH # status return values
8.79 SEND
8.80 SETFP #
8.81 SIGNAL

8.81.1 Mode 1 - Transmit a message to another port
8.81.2 Mode 2 - Receive messages sent to your port
8.81.3 Mode 3 - Pause Program Operation
8.81.4 Mode 5 - Receive System Signal
8.81.5 Mode 6 - Clear all outstanding signals

8.82 SPAWN
8.83 STOP
8.84 SUSPEND
8.85 SWAP
8.86 SYSTEM
8.87 TRACE
8.88 UNIT
8.89 UNLOCK #
8.90 WINDOW
8.91 WRITE #
8.92 WRLOCK #
8.93 WRREL #

9 User CALLS
9.1 CALL $ATOE
9.2 CALL $AVPORT
9.3 CALL $CALLSTAT
9.4 CALL $CKSUM
9.5 CALL $CLU
9.6 CALL $DATE
9.7 CALL $ECHO
9.8 CALL $ENV
9.9 CALL $ETOA
9.10 CALL $FINDF
9.11 CALL $INPBUF
9.12 CALL $LOCK
9.13 CALL $LOGIC

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 8 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

9.14 CALL $NCRC32
9.15 CALL $RDFHD
9.16 CALL $RENAME
9.17 CALL $STRING
9.18 CALL $SWAPF
9.19 CALL $TIME
9.20 CALL $TRXCO
9.21 CALL $VOLLINK
9.22 CALL 15
9.23 CALL 18/19
9.24 CALL 20/21
9.25 CALL 22/23
9.26 CALL 24
9.27 CALL 25
9.28 CALL 27
9.29 CALL 28
9.30 CALL 29
9.31 CALL 40
9.32 CALL 43
9.33 CALL 44
9.34 CALL 45/46
9.35 CALL 47
9.36 CALL 48/49
9.37 CALL 53
9.38 CALL 56
9.39 CALL 59
9.40 CALL 60
9.41 CALL 65
9.42 CALL 72/73
9.43 CALL 126
9.44 CALL 127

10 Supplied Utilities
10.1 BATCH
10.2 BUILDXF
10.3 CHANGE
10.4 COPY
10.5 DIR
10.6 FORMAT
10.7 KEYMAINT
10.8 KILL
10.9 LIBR
10.10 loadlu
10.11 lptfilter
10.12 MAKE
10.13 MAKECMND
10.14 MAKEHUGE
10.15 MAKEIN
10.16 MAKEKEY
10.17 makeosn
10.18 makesp

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 9 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

10.19 MFDEL
10.20 PORT
10.21 QUERY
10.22 SCAN
10.23 TERM
10.24 ubcompress
10.25 ubconvertfiles
10.26 ubrebuild
10.27 ubterm
10.28 ubtestlock
10.29 WHO

11 Appendix A - ASCII CODES
12 Appendix B - CRT Mnemonics
13 Appendix C - Error Numbers

13.1 IRIS Error Numbers
13.2 System Error Numbers

14 Appendix D - Port as Device

UniBasic

uniBasic Reference Guide

Revision 9.3

This document is intended for users of UniBasic IRIS or UniBasic BITS.
Information in this document is subject to change without notice and does not represent a commitment on the
part of Dynamic Concepts Inc. (DCI). Every attempt was made to present this document in a complete and
accurate form. DCI shall not be responsible for any damages (including, but not limited to consequential)
caused by the use of or reliance upon the product(s) described herein.
The software described in this document is furnished under a license agreement or nondisclosure agreement.
The purchaser may use and/or copy the software only in accordance with the terms of the agreement. No part of
this guide may be reproduced in any way, shape or form, for any purpose, without the express written consent of
DCI.
© Copyright 2016 Dynamic Concepts Inc. (DCI). All rights reserved.
UniBasic is a trademark of Dynamic Concepts Inc.
dL4 is a trademark of Dynamic Concepts Inc.
Dynamic Windows is a trademark of Dynamic Concepts Inc.
BITS is a trademark of Dynamic Concepts Inc.
IRIS is a trademark of Point 4 Data Corporation.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 10 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

c-tree is a trademark of Faircom.
IQ is a trademark of IQ Software Corporation.
Windows is a trademark of Microsoft Corporation.
AIX is a trademark of International Business Machines Corporation.
SCO is a registered trademark of The Santa Cruz Operation, Inc.

About this Guide
This guide is written for experienced BASIC programmers. It is a reference that includes a brief
introduction to UniBasic and information on files and file handling, UniBasic commands, statements,
calls and utilities. If you need elementary information about programming in BASIC, please refer to one
of the many books available on that subject.
The terms and conventions used for demonstrating commands and BASIC statements in this guide
provide a consistent format.
This guide covers UniBasic version 9 and greater.

Conventions

Literal elements of a UniBasic command, utility, statement, and unix command, utility or shell
Environment Variable are shown in bold type.
Metalinguistic variables are shown in italic type for clarity and to distinguish them from
elements of the language itself.

OPEN # channel expression ; filename string

Mono-spaced type is used to display screen output and keyboard input commands and program
examples.

LIBR [$LPT]

The right and left brace characters ({optional items}) indicate an item that is optional.
LIST {-v}

A series of three periods (...) indicates that the preceding item can be repeated as many times as
desired.

KILL filename {filename...}

Selection of one of a group of items is shown within parenthesis separated by |.
Choose only one; WINDOW ON or WINDOW off. The parenthesis are not part of the

syntactical form.

WINDOW (ON | OFF)

This guide has been grouped into topical sections. Whenever a topic or function of another

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 11 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

section is referenced, that topic is followed by a See also: reference for the section where it may
be found.
For example:

When OPEN is used to access a data file ...
See also: OPEN

In this example, a reference to the UniBasic language element OPEN informs the reader to find
the complete text of OPEN by using the index.
When the information may be found in documentation other than this guide, for example:

To relocate the file, issue the Unix cp command. ...
the sentence includes a descriptor identifying the command and other documentation to
reference. In this example, the user is referred to the Unix documentation.

Installation & Configuration
The installation of UniBasic under Unix is an interactive process. Upon completion, UniBasic and
other supplied C utilities are placed into the directory /usr/bin. A master directory ub is created
with a system logical unit, containing DCI supplied drivers ($LPT) and system processors
(BUILDXF, QUERY, MAKEIN, etc.). Following installation, any user familiar with the IRIS or
BITS systems can operate UniBasic and feel quite comfortable. Before you can convert an
existing end-user, or install a new system, you will require more Unix knowledge than is provided
in this guide.

Configuring Unix for UniBasic
Prior to installation for an end-user, several Unix system parameters may require re-configuration
for multi-user operation. This process varies from system to system. When purchasing from a
UniBasic Distributor, inquire whether these parameters have been pre-configured for your needs.
If changes are required, most systems include a system administrator shell to assist you in
necessary reconfiguration. For specific information, contact your manufacturer or distributor
before changing any system parameters.

The group ID and user ID must be less than 65536.

Number of Processes

Each program or command, including login (getty) or a copy of UniBasic, is called a process.
Unix maintains a table of all active processes on the system. The UniBasic statements SWAP,
SPAWN, and CALL 98 (phantom port operations) initiate additional processes. Opening a printer
may invoke as many as 5 processes temporarily. If the maximum number of system processes is
exceeded, an error message may be reported to the console (such as NO MORE PROCESSES for
SCO-Unix systems), or UniBasic may generate a negative (system) BASIC error to the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 12 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

application.

To accommodate Windows, SWAP, SPAWN and print jobs, set the number of processes no less
than the number of users * 5. Applications that provide linkage to other Unix applications (such
as IQ, Word Processing, etc) may require additional processes per user. The current processes
may be displayed using the Unix ps -ef command.

Number of Open Files

Unix maintains tables for all opened files on the system. Each process requires a minimum of
three (3) channels referred to as: standard input, standard output and standard error. In addition,
a process may require additional channels if other files or devices are opened for access.
UniBasic itself is an example of a process under Unix. For each additional concurrent process,
an additional (3) channels minimum are required.
UniBasic requires a total of 4 channels per user process. These include the standard (3), plus one
for the error message file (ERRMESSAGE). In addition, each device or data file opened
requires one system channel; Indexed files require 2 channels.

See Also: Indexed Data Files

When the configured number of system-wide channels is exceeded, an error message may be
reported to the console (such as NFILE for SCO-Unix systems), or the program may generate a
negative (system) BASIC error.
To compute the approximate number of channels required for your system, multiply the Number
of Processes * 3 to yield the minimum number of channels. Add to that result the average
number of opened channels per-user times the number users. Remember to count each Indexed
file as two channels, and include provisions for other applications, such as IQ.

Example: An 8-port system with 10 open files per user and 50 processes, might require 300
open files.

Number of Open i-nodes

Unix maintains a table of opened inodes (or header blocks). Each unique file or device opened
requires one entry. Ten users accessing the same file typically share the same open i-node.

Number of Locks

Unix maintains a table of read and write locks placed on files by individual processes. Each
locked region requires one entry in this table. A locked UniBasic data file record is an example of
an entry in the lock table. Indexed file key maintenance temporarily requires several locks for the
various levels in the ISAM tree structure. A minimum of 5 locks plus 1 lock per open file per
process should be adequate for most installations.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 13 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Message Queues

For all inter-process communication, UniBasic relies on Unix message queues. Each DCI
product creates a message queue at startup to transmit and receive data between users. Such
messages include:

• SIGNAL 1 & 2 and SEND/RECV data between ports
• CALL 98 and PORT statement commands and status
• PORT ALL MONITOR status requests
• CALL $INPBUF type-ahead data returned to parent process
• MSG command text
• Security communications

On most systems, the Unix command ipcs may be used to display information about message
queues. Each message queue is identified by a unique 32-bit number, usually displayed as an 8-
character hexadecimal value.

DCI products are identified by our own numbering sequence, which when viewed in
hexadecimal, take on an appearance such as DC00pnnn. The digits correspond to:

DC Dynamic Concepts Product
00 Always zero

p DCI Product ID:
0 Passport daemon
1 UniBasic IRIS
4 IQ
5 dL4

nnn UniBasic port number, in hexadecimal, associated with this queue. For
example, port 15 is displayed as "00F".

See also: Terminating a UniBasic process
Message queue requirements for UniBasic are based on the number of concurrent users and
overall message traffic on the system. The default values on many systems are sufficient to
support a few users, but certainly will need to be increased for large installations. If they are not
configured, UniBasic may fail at start-up, possibly with a message such as "Bad system call."

The following 7 parameters affect message queues on most systems. The actual parameter
names may vary:
MSGMNI Maximum number of message queues. Configure based upon the maximum

number of concurrent UniBasic users plus phantom ports plus other DCI
products such as IQ for Unix users plus one for the passport security daemon.

MSGMAX Maximum size of a message in bytes; at least 516.
MSGMNB Maximum number of bytes per message queue. Set to the maximum allowable

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 14 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

value; typically 32768.
MSGTQL Maximum number of outstanding system wide messages. Suggested setting is

at least 256, but may be adjusted if message activity is known to be greater or
smaller.

MSGSSZ Size (in bytes) of a message segment. Memory for message data is divided into
segments of the defined size. A value of 32 is recommended.

MSGSEG Number of message segments within the system. MSGSEG * MSGSSZ
determines the total number of bytes reserved for message data. The
recommended formula is MSGSEG = (MSGTQL * 512)/MSGSSZ. For 256
UniBasic concurrent messages, the value would be: (256 * 512) / 32 = 4096.

MSGMAP Number of entries in the message map table. Each entry represents a
contiguous free area in the message segments. The recommended formula is
MSGMAP = MSGSEG/8 which, using our example, would be 512. If UniBasic
reports "Communication buffer is full" when the actual number of outstanding
messages is < MSGTQL, first increase MSGMAP. If that doesn't correct the
error, increase MSGSEG.

AIX Note: There are no user-configurable message queue parameters on AIX. The
parameters are hard-coded in the kernel, and seem adequate for most
installations.

The following points must considered during configuration:
• Free message space must be available on the system. If the queues become full,

additional users, including phantom ports, cannot be launched into UniBasic or
IQ. In addition, existing users may be prevented from performing SWAP,
SPAWN, CALL 98 and PORT statements, as well as commands such as
PORT ALL MONITOR.

• A processes queue and any waiting messages are deleted if and when the port
exits normally. If a process is killed, it cannot delete its queued messages.

• The configuration guidelines shown above consider only UniBasic
requirements. They do not include requirements of other Unix applications
which rely on message queues.

Unix Accounting & Protection System
Access to Unix files is regulated by file permissions. Permissions are generally read, write, and
execute (other permissions and attributes exist, but are not important for discussion here). These
permissions are applied against three levels: The owner/creator of the file, other users in the same
group as the creator, and other users in different groups. The permissions are either expressed as
letters (rwx) or numbers (4 2 1) added together. When expressed as letters, a nine-character field
represents the three levels; numbers are shown as three digits.

Each user gains access to the system through a login user name which is assigned to a user

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 15 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

number; the user id. Normally, no two users share the same login user name or user id. Each user
id belongs to a group. Group numbers are equated to names in the Unix system file /etc/group,
and user id numbers are equated to login id's in the file /etc/passwd.

Creating a Unix Account for UniBasic

Prior to installation, a master (manager) account must be created to own the UniBasic
distribution files, programs and directories. Most systems supply a menu-driven administration
program to assist with user account management. Please refer to the System Administrator's
Guide included with your operating system. Before proceeding, please ensure that the following
is completed; bracketed information is user-selectable:

• Create a login id, [UniBasic], belonging to a new group, [UniBasic], with its own
home directory, [/usr/ub].

See also: Configuring a UniBasic Environment

UniBasic Security & Licensing

You may select either Hardware or Software licensing (security) for an installation of DCI
software. Both are controlled by the daemon, /etc/passport, which is automatically launched by
UniBasic. Whereas Software licensing is based upon information derived during installation,
Hardware licensing is based upon the external DCI Passport™ device. Passport is not part of
UniBasic and must be installed separately.
In either case, each UniBasic installation is identified by a unique 32-bit license number,
generated by the Passport daemon. This license number, along with a DCI supplied Software
Selection Number (SSN) activates your installation for various DCI products and configurations.
A license number is expressed as an 8-character hexadecimal value, such as 99D04832. The first
two characters represent a specific operating system and/or hardware platform, in this example
99 = SCO Unix, for which the license is granted. Licenses are not transferable to other
platforms.
A special directory, /etc/DCI, is created during installation to maintain security specific
information and files for use by all Dynamic Concepts software products. Typically, the
following text files are recorded within the directory:
• ssn DCI activation key for this installation.
• osn OEM activation keys enabling encrypted application software.
• passport.cmd Command text used to initiate the Passport daemon.
• passport.log Log file maintained by the Passport daemon with security information,

licensing methods and errors.
If the installation utilizes software security, one additional binary file is created:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 16 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

• license License number information for systems installed with Software licensing.

Warning: Modification, deletion, renaming or moving the license file will possibly
deactivate a software license number.

Configuration of licensing is performed during installation of Passport, or by later usage of the
ppconfig utility (refer to the Passport User’s Guide for more information) .

Software Licensing

Software licensing is based upon information derived from the system by the /etc/passport
daemon. When launched for the first time, a license file, /etc/DCI/license is created by the
daemon to record the unique license number for this installation. Although several types of
software licensing methods are supported, the type is fixed by DCI for each specific hardware
and operating system platform. The actual type used on a system is recorded in the Passport Log
file.
The unique 32-bit license may change due to any number of conditions, including, but not
limited to, any of the following:

• Replacement of a disk drive and/or restoration of all data
• Upgrade and/or replacement of the operating system
• Disturbing the /etc/DCI/license file
• Replacement of a CPU board or network interfaces

Should your system lose it's license, a new license number will be generated automatically.
Contact your supplier with your old and new license numbers for a replacement.

Hardware Licensing

Hardware licensing is a older licensing mechanism based upon the connection of a Passport
device to an unused serial RS232 communication channel on the computer. Each Passport device
is pre-programmed with its own unique 32-bit license number and any given SSN for that license
number is perpetual. The Passport device and associated SSN may be installed on another like
platform at any time.

For information concerning physical Passport installation and testing, please refer to the
documentation supplied with the device.

Loading the Installation File

A UniBasic installation file is normally supplied as a compressed cpio archive file. The
installation file can be downloaded from www.unibasic.com or the /dist/pub directory of

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 17 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ftp.unibasic.com.. If an installation file is first downloaded on a PC and then copied to a server,
be certain to perform a binary transfer of the file. The file is named using the format pp-ub-
vvvv.Z or pp-ubdev-vvvv.Z where "pp" is the platform code (such as "99" for SCO OpenServer 5)
and "vvvv" is the version number (such as "8.1").
For example, the AIX installation file for UniBasic 8.1 is named 07_ub_8.1.Z. After signing on
as root and copying the installation file to /tmp, the commands to load this distribution would be:

cd /tmp

uncompress 07_ub_8.1.Z

cpio -iavcdu <07_ub_8.1

On some systems, particularly Linux systems, the cpio options will have to be changed to omit
the "c" option:

cpio -iavdu <6D_ub_8.1

If the command is successful, a list of filenames is displayed as the data is loaded into the /tmp
directory.

Loading the UniBasic Installation File

Verify that you are signed on as root and defaulted to the /tmp directory. Issue the following
commands to load the installation file:

uncompress filename.Z (if the filename ends with a ".Z")

cpio -iavcdu < filename (i.e. 99_ub_8.1, 6D_ub_8.1.4, etc.)

A list of filenames similar to the following should be printed:

ub ub/sys/buildxf ub/irislist
ub/loadlu ub/sys/copy ub/license.txt
ub/makesp ub/sys/dokey ub/email.mail
ub/sys/batch ub/sys/keymaint ub/email.sendmail
ub/sys/clk ub/sys/lpt.bits ub/sys/change
ub/sys/dir1 ub/sys/make ub/sys/dir
ub/sys/format ub/sys/makeitem ub/sys/dsp
ub/sys/libr ub/sys/pdp ub/sys/kill
ub/sys/lpt.sample ub/sys/query ub/sys/lpt.iris
ub/sys/makein ub/sys/term.ansi ub/sys/makecmnd
ub/sys/port ub/sys/term.wyse60 ub/sys/mfdel
ub/sys/term ub/ubconvert ub/sys/pdphelp
ub/sys/term.wyse50 ub/ubconvertfiles ub/sys/scan
ub/ubcompress ub/ubterm ub/sys/term.tvi925

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 18 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ub/ubrebuild ub/ubtestlock ub/sys/who
ubinstall ub/errmessage ub/ubkill
ub/README ub/sys ub/unibasic
ub/lptfilter ub/sys/attr ub/sys/term.linux

Loading the UniBasic Development File

Verify that you are signed on as root and defaulted to the /tmp directory. Issue the following
commands to load the installation file:

uncompress filename.Z (if the filename ends with a “.Z”)

cpio -iavcdu < filename (i.e. 99_ubdev_8.1, 6D_ubdev_8.1.4, etc.)

A list of filenames similar to the following should be printed:

license.txt ubdev/unibasic.o ubinstall
ubdev ubdev/var.h ubdev/Release.h
ubdev/call1.c ubdev/Makefile ubdev/call105.c
ubdev/call11.c ubdev/call10.c ubdev/call120.c
ubdev/call121.c ubdev/call114.c ubdev/call123.c
ubdev/call126.c ubdev/call122.c ubdev/call18.c
ubdev/call19.c ubdev/call15.c ubdev/call20.c
ubdev/call21.c ubdev/call2.c ubdev/call23.c
ubdev/call24.c ubdev/call22.c ubdev/call27.c
ubdev/call28.c ubdev/call25.c ubdev/call3.c
ubdev/call30.c ubdev/call29.c ubdev/call44.c
ubdev/call45.c ubdev/call43.c ubdev/call47.c
ubdev/call48.c ubdev/call46.c ubdev/call5.c
ubdev/call51.c ubdev/call49.c ubdev/call56.c
ubdev/call57.c ubdev/call53.c ubdev/call60.c
ubdev/call65.c ubdev/call59.c ubdev/call7.c
ubdev/call72.c ubdev/call68.c ubdev/call76.c
ubdev/call77.c ubdev/call73.c ubdev/call81.c
ubdev/call82.c ubdev/call78.c ubdev/call96.c
ubdev/call97.c ubdev/call88.c ubdev/callavport.c
ubdev/callcimi.c ubdev/call99.c ubdev/calldate.c
ubdev/callenv.c ubdev/callclu.c ubdev/calldev.c
ubdev/callhelp.c ubdev/callinpbuf.c ubdev/callmemcmp.c
ubdev/callphil.c ubdev/callrpcs.c ubdev/callswapf.c
ubdev/calltrack.c ubdev/callwindow.c ubdev/callwlock.c

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 19 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ubdev/comm ubdev/comm/comm.h ubdev/crt.h
ubdev/ctree ubdev/comm/libcomm.a ubdev/ctree/ctport.h
ubdev/decode.h ubdev/ctree/ctifil.h ubdev/extern.h
ubdev/dl4.h ubdev/eval.h ubdev/misc.h
ubdev/files.h ubdev/math.h ubdev/runtime.h
ubdev/pcode.h ubdev/read_me ubdev/term101.h
ubdev/pdn.c ubdev/term0.c ubdev/ubdef1.h
ubdev/str.h ubdev/ubdef.h ubdev/ubport.o
ubdev/timer.h ubdev/ubdefs.h ubdev/usercalls.c
ubdev/ubdef2.h ubdev/unix.h

ubinstall - Installing UniBasic Packages

ubinstall is a shell-script designed to run under the borne shell only. If the command does not
execute immediately, enter the command: chmod 500 ubinstall and try starting ./ubinstall
again. If ubinstall still fails to begin operation, verify that you are running under the borne shell
(usually the file /bin/sh). You can usually start a borne shell by typing /bin/sh.
If a license has not already been installed, Passport should be installed on the system before
installing UniBasic. Passport is not included in the UniBasic installation. Please see the Passport
User’s Guide for information on installing Passport.
After the desired distribution media is loaded, enter the command:

./ubinstall

ubinstall will display the following:
Installation for "UniBasic" BITS/IRIS Business BASIC emulation

All Rights Reserved. Copyright (C) 1987 - 2015 by:

Dynamic Concepts Inc. Irvine, California USA

Installing the following packages:

ubinstall will locate all packages loaded for installation. Your display should include one or
more of the following packages:

UniBasic BITS/IRIS Business BASIC emulator

UniBasic Development

Do you wish to continue? (Yes or No, default = Yes)

If this is a re-installation, ubinstall checks the revision of UniBasic currently installed in
/usr/bin:

Checking old UniBasic... Level = 7.2

Checking new UniBasic... Level = 8.1

"/usr/bin/unibasic" already exists. If you install this version, the current version

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 20 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

will be renamed and saved as "/usr/bin/ub7.2".

Do you wish to continue? (Yes or No, default = Yes)

A response of NO terminates the installation process. /tmp will still contain the installation files.
All existing UniBasic files and data are unchanged. You may initiate the ubinstall operation at a
later time without reloading the media. Many systems, however, remove the files in the /tmp
directory whenever the system is shutdown and subsequently restarted.
The next phase assumes you have previously created an account to own the UniBasic
distribution files. This master account is the group manager of the UniBasic group, and the
owner of the HOME directory and sys directories (Logical Unit 0) inclusive of all files.
Additional utilities placed into the /usr/bin directory are also owned by UniBasic.
Part II) Accounting Information

UniBasic is distributed with a set of system utilities, an error message file, sample

terminal drivers, printer scripts, etc. These files have permissions making them

generally accessible to all users, but are installed into the user and group you

select.

Enter the user name to receive the distribution files: (default = "unibasic")

Enter the user name previously created as the UniBasic group manager.
Part III) System directory

The system directory is where the distribution files are placed and where the .profile

for UniBasic is created or modified. It is normally placed in your account's HOME

directory. Other logical units required by your application are best placed in HOME

also, unless they should be elsewhere for security or space reasons. The default HOME

for new installations is "/usr/ub".

However, the choice of "/usr/ub" is only a default; any directory name on any file

system can contain UniBasic logical units, subject to access permissions.

Enter directory to contain system files: (default = "/usr/ub")

If this is a re-installation to the same HOME directory (/usr/ub in this case), a warning similar
to the following is printed to avoid overwriting any files or programs normally supplied by DCI
that may have been customized by you:

Note: "/usr/ub/sys" already exists.

Installing will overwrite the following files:

attr dokey lpt.bits mfdel term.tvi925
batch dsp lpt.iris pdp term.wyse50
buildxf email.mail lpt.iris.sco pdphlp term.wyse60
change email.sendmail lpt.sample port who
clk format make query
copy keymaint makecmnd scan
dir kill makein term

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 21 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

dir1 libr makeitem term.ansi

If you have made custom modifications to any of these files, you may want to abort the

installation at this point and make copies. Otherwise, you can continue and update

them to the latest revision.

Do you wish to continue? (Yes or No, default = Yes)

A response of NO terminates the installation process. /tmp will still contain the installation files.
All existing UniBasic files and data are unchanged. You may initiate the ubinstall operation at a
later time without reloading the media. Many systems, however, remove the files in the /tmp
directory whenever the system is shutdown and subsequently restarted.
Part IV) Run-time options

Several options in UniBasic are configurable through use of "environment variables".

These are generally set up in the file ".profile" in your HOME directory, and are also

changeable on-demand from the Unix shell. None are required to be set up; defaults are

used if not specified.

Variable Description

BASICMODE Specifies the operating environment for UniBasic. I=IRIS, B=BITS.

(default = IRIS).

Select the default emulation mode for users. IRIS mode provides for complete
emulation of IRIS commands, syntax and visual operation. CTRL+C, Scope
mode and Basic modes are enabled. Selecting BITS mode still permits execution
and programming of IRIS applications, however command formats are BITS
style.

SPC5 Value to be returned by SPC 5 (account number): (default = 65535)

Choose the value to be returned to your programs for this user whenever SPC 5
function is performed. Since the Unix group, user and protection scheme is
numerically different, you are permitted to specify this value rather than have to
create a special Unix account number to return your desired value. When
different users require different SPC 5 values, the system is easily changed to test
who signed on, and set a different value.

DATESEP Character used to separate MM/DD/YY strings: (default = "/")

Choose the normal date separator used by your applications.
CURRENCY Character used to replace $ in PRINT USING statements:(default = "$")

Select an alternate currency character to be replaced when $ is used in USING
formats.

WINDOWS Maximum numbers of windows open per user. (default = "20")

If your application uses Dynamic Windows, enter the maximum number of
opened windows permitted for each user.

EUROPEAN Mode for date verification calls (CALL 24, 27, 28). 0 = MM/DD/YY, 1 =

DD/MM/YY. (default = "0")

For European dates: 31/12/88, choose option 1

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 22 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

You may tailor these Environment Variables as well as a number of other configuration options
by later editing the file HOME/.profile. For further information on configuration parameters,
refer to Configuring a UniBasic Environment.
Do you wish to automatically run UniBasic after login? (y/n) (default = "n") y

This configures an automatic launching of UniBasic whenever signing onto an account that
executes this standard HOME/.profile. You can also specify a BASIC program to start by
editing the last line of the .profile script.
See also:: Launching UniBasic from Unix.
Installation started: Mon Mar 5 17:42:08 PST 1990

 Creating directory "/usr/ub/sys"...Done

 Installing configuration options in "/usr/ub/.profile"...Done

DCI strongly encourages usage of BCD file types for future file

compatibility and portability. Please refer to UB Reference Guide

for details on PREALLOCATE environment variable values.

Note: If this is a new installation, the environment variable PREALLOCATE is set to
32 by the ubinstall program.

 Installing UniBasic in "/usr/bin"...Done

 Installing distribution files in "/usr/ub/sys"...Done

 Creating directory "/usr/ub/ubdev"...Done

 Installing development source files in "/usr/ub/ubdev"...Done

Installation completed: Mon May 5 17:42:23 PST 1998

To run UniBasic, logout ("exit" or "^D") and login to "unibasic". Then type "unibasic".
Finally, the /tmp directory is cleared. If an error occurs while removing the directory, the
following message is printed:
There has been an error removing the distribution directory. Type <CR> to continue, or

Q to quit.

The installation process has successfully performed the following procedures:
1) Placed the required files in /usr/bin: UniBasic, ubcompress, ubconfig, ubkill,

ubrebuild, ubterm, lptfilter, and makesp.
2) Placed into $HOME: errmessage - UniBasic error message file.
3) Placed into $HOME/sys: All system commands, LPT scripts, drivers and terminal

control files (term.tvi925, term.ansi, etc).
4) Created the full $HOME/.profile environment and startup file.
5) Optionally created the directory ubdev under $HOME if UniBasic Development

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 23 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

files were installed.

Errors During Installation

If, for some reason, you did not load the files into the /tmp directory, an error message is printed
and you are asked for the actual directory where you loaded the installation file:

Distribution files not found in "/tmp/ub". Make sure you have loaded all files

into the /tmp/ub directory.

If you are not logged in from root and attempt to run ubinstall, an error message notifying the
user is printed and the installation procedure is aborted.

"ubinstall" must be run from the super-user (root) account.

Installation procedure aborted.

If you have not created the account to own the UniBasic files, an error is generated and the
installation procedure is aborted.

You must create an account under which UniBasic can be installed. Refer to the

System Administrator Guide for your system. Most systems have a menu driven

program to assist with account management referred to as the System Administrator

Shell. This program is known on some systems as "sysadmsh", "sysadm", "adm",

"va", etc. and must be run as super-user (root).

Installation procedure aborted.

If the installation was successful, sign off root, and sign on using the UniBasic master login id.
Running from root level while performing conversions or building files may render those files
protected and inaccessible from other accounts.

Configuring a UniBasic Environment
When you login to Unix, the system typically executes two shell program files. The first is
/etc/profile, owned by root, followed by any optional user .profile (dot profile) in the user's
HOME directory.

The root /etc/profile usually includes a definition for PATH; the directory search path for
commands entered at the shell (The system Command Line Processor). It may also contain
commands to print a banner, news of the day or mail.

The user's HOME/.profile contains definitions of environment variables, and special commands
unique to the particular user signing on to the system. This may include changing the default
working directory, and/or automatically launching an application environment such as UniBasic.
During ubinstall, the .profile is modified within the HOME directory defining only the required
configuration environment variables. The following sections describe configuration options, using
Environment Variables, for UniBasic.

All users created with an identical HOME directory automatically run the same .profile at login.
When creating multiple user accounts, you may default all users to the same HOME directory, or

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 24 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

copy the supplied default .profile to each of the users newly established HOME directories. Once
copied, modify the environment variables (such as LUST or SPC5) specific to that user
accordingly.

During installation, the directory HOME/sys is created to contain the sys logical unit (0). Other
logical units may be created under HOME, or in another file system entirely.

Directories and Paths

A Unix file system directory is tree-structured beginning at the level known as root. Files are
accessed by supplying a pathname in the form dir1/.../filename through the tree. Since IRIS and
BITS applications have been designed for a single level directory, UniBasic provides a Logical
Unit Search mechanism to facilitate single to multi-level directory organization. An Environment
Variable may be defined specifying the Unix directories to search for Logical Units and/or
Packnames. The environment variable named LUST (Logical Unit Search Table) in the .profile is
used to define the paths to the final level directories with unit numbers (or packnames).

Filenames and Pathnames

Filenames are converted to a series of pathnames, appended one at a time to the entries defined by
the Environment Variable LUST (Logical Unit Search Table) until a match is found. Standard
BITS or IRIS filenames are converted to lower case characters; the Unix standard. Filenames
beginning with / are assumed to be full Unix names, and no conversion or logical unit search list
is performed. The form pack:file is converted into pack/file. Account branch characters (%&#,
etc) and account [grp-usr] suffixes are discarded. Filenames in the form 0/filename are converted
into sys/filename; other files in the form lu/filename remain as is except leading zeros are dropped
from the lu number.

Note: An ISAM file is made up of (2) separate files; the lower-case filename holds the
data portion and an uppercase filename is created to hold the ISAM portion. (In
the case of Universal files the ISAM portion is the filename with a .idx extension.)
Filenames that do not contain at least one letter cannot be used for ISAM data
files. See Indexed Data Files.

Organizing Logical Units and Packnames

The following illustration shows various ways to organize directories. You simply list all of the
paths in the LUST variable to your final logical unit or packname directories. A null path
(leading or trailing colon) is replaced by your current default working directory.

 /(root) /(root)

usr acct usr acct

ub progs files ub 2 3 4

sys 1 2 ar ap ar ap sys 1

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 25 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

1 1 2 2

The rightmost example shows the simplest structure. Logical Unit zero (sys) and 1 (containing
application programs) are under the path /usr/ub. Data files are on units 2, 3 and 4 under a
separate file system (or disk drive) referenced (mounted) as /acct. The search path for this
configuration would be:
LUST=:/usr/ub:/acct:/usr/ub/sys

In the leftmost example, the sys or LU 0 directory as well as Logical Units 1 and 2 are under
/usr/ub. Both Programs and Files are separated into their own directories (progs and files) with
duplicate logical units 1 and 2 underneath. Assuming all files are accessed as "lu/filename", the
appropriate search path for this configuration would be:
LUST=:/usr/ub:/acct/progs/ar:/acct/progs/ap:/acct/files/ar:/acct/files/ap:/usr/ub/sys

In both cases, you may specify paths to a specific directory if your applications do not specify a
hard-coded LU. The entry /usr/ub/sys is normally included as the last entry in LUST to force a
search of LU 0 when a command is entered; such as LIBR or DIR.
Other default units can be selected as well, but it is recommended that they be at the end of the
LUST to minimize searches. Always construct the search paths in a way that minimizes the
total number of searches done for each CHAIN, OPEN, etc.

Environment Variables

This section discusses the user-configurable UniBasic Environment Variables. Definitions are
added to, and exported from, a user's .profile when the default value is insufficient. It is
unnecessary to include definitions when a variable's default value is adequate.
ALTCALL Defines the set of BASIC CALL numbers used within your application

that have equivalents as a different number. For example, your application
uses CALL 64 to verify date inputs. UniBasic includes a CALL 24
functionally compatible for your requirements. Setting alternate 64=24
invokes a CALL 24 whenever the application requests CALL 64. Multiple
CALLs can be defined separated by colons, i.e.: ALTCALL 64=24:62=22
See CALL.

AVAILREC Defines the numeric value to be returned whenever an INDEX / SEARCH
Mode 1 requests the number of available records in an ISAM file. If
AVAILREC is defined, its value is always returned. When undefined, the
number of available records is computed by subtracting the number of
active records from the created or current file size. See also: Indexed Data
Files.

BASEYEAR Defines the system Base Year to be returned for the function SPC 20. It is
also used to compute the hours counter returned for the TIM 2 function.
The default for BASEYEAR is 1980 unless specified in the environment.
Because Unix systems maintain clock values beginning in 1970, you may
set BASEYEAR to any value from 1970 to the present year. Setting this
value outside this range will result in very large (or negative) values for
these functions.

BASICMODE Selects the desired operating environment. The default is IRIS emulation
with separate SCOPE and BASIC Program command modes. By setting

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 26 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

BASICMODE=BITS, you operate in a BITS environment, that is both
commands and BASIC statements are performed at a single command
prompt.
The NEW command defaults to IRIS or BITS syntax based upon the
BASICMODE selected. The NEWI or NEWB commands override the
default BASICMODE for creation of new programs. Either
BASICMODE runs both types of programs.
Program Files are flagged for IRIS or BITS execution automatically. Text
files accessed using LOAD or MERGE take on the type of the current
mode. The BITS GET or GETI commands allow you to choose the
encoding and runtime format for the text files you access.

BCDVARS If defined and non-zero, all BASIC variables are stored in memory using
IRIS BCD format. BCDVARS is required when special CALLs
indiscriminately copy data between numeric and string variables by
straight memory copy. Do Not set this environment definition without
specific instructions from your Distributor or Dynamic Concepts Inc. See
also: IRIS BCD Files.

BITSPROMPT Change the default prompt * displayed in BITS mode. Format is:
BITSPROMPT='replacement string'

CURRENCY Define a single character to be output by USING whenever the $ operator
is used. Format is: CURRENCY=replacement character.

DATESEP Define a single character other than '/' to separate MM/DD/YY or
DD/MM/YY strings. Format is: DATESEP=replacement character.

DXTDSIZ Specifies the number of records to extend an Indexed file when the data
portion is full. The default is 1 record. During creation of an indexed file,
this value (or default) is read and stored in the file header. Later expansion
of the data portion is based upon this size. Once created, this parameter
cannot be changed for a file. Depending on your application, changing this
value and IXTDSIZ can have some effect on performance.
See also: IXTDSIZ, and Indexed Data Files.

EURINPUT Selects the programming mode used for USING. The default (or zero)
mode requires programs to use comma and period in the form: #,###.##
When set to one, programs use the international form: #.###,##.
See also: USING and EUROUTPUT

EUROPEAN Mode for date input/output formats; 0 for USA Format: MM/DD/YY, 1 for
the international format: DD/MM/YY.

EUROUTPUT Selects the output mode for USING. Periods and commas are reversed at
output. The default (or zero) mode outputs in the format: 1,234.56. When
set to one, commas/periods are reversed; output is represented by the form:
1.234,56.
See also: USING and EURINPUT.

GOSUBNEST Selects the maximum number of GOSUB and RETURN nesting levels in
any program. Default is 8 levels deep.

FORNEXTNEST Select the maximum number of FOR and NEXT nesting levels in any

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 27 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

program. Default is 8 levels deep.
IBITSFLAG Set to 1 to eliminate the standard IRIS errors: Channel Already Opened (on

OPEN Statement), and Selected Channel is not OPEN (CLOSE
Statement). An OPEN issued to an already open channel performs an
implied CLOSE of the channel first.

INPUTSIZE Size in bytes of the input buffer. This size limits the length of a BASIC
statement, LOAD, GET and other operations, such as Long CHAIN, that
require the Input buffer.

ISAMBUFS Number of buffers allocated for shared memory ISAM files. This
parameter is unused at the time of this writing. DO NOT USE THIS
VARIABLE.

ISAMFILES Maximum number of opened Indexed file directories. This variable is not
needed in UniBasic 9.3 or later. For each file opened, one entry is required
for each Directory (index) plus 1 for the data file. In older releases of
UniBasic, the default value of 40 supports 8 indexed files open with an
average of (4) directories (indices) each. If this value is too small, the error
"Illegal Channel (or ISAMFILES value too small)" is printed.

ISAMMAXSECT Determines the maximum C-tree node size that can be read. The node size
is given by ISAMMAXSECT *128. Default ISAMMAXSECT is 8
supporting up to 1024-byte nodes such as those used by dL4.

ISAMOFFSET Define the displacement within ISAM records for maintenance of a system
Deleted Record Flag and Delete Link List pointers. Change this offset
(Default 0) when your applications write data within the first 5 bytes of a
record following deletion. This offset is not used with Universal Data files.
See also: Indexed Data Files and Universal Data Files.

ISAMSECT Determines the C-tree node size. The node size is given by ISAMSECT *
128. The default ISAMSECT is 4 resulting in 512-byte nodes. If large
keys or a large number of keys are needed, then setting ISAMSECT to 8 is
recommended.

Note: Following deletion of a record in a Non-Universal Data file, DO NOT WRITE
(clear) the entire record or the delete list will be corrupted.

IXTDSIZ Specifies the size in bytes to expand a file's Index portion when the index is
full. The default is 512 bytes. During creation of an indexed file, this value
is read and stored in the file header. All further access and expansion to the
file's index portion is based upon this size. Once a file is created, this
parameter cannot be changed for that file unless the file is rebuilt using a
new IXTDSIZ value. Depending on your application, changing this value
along with DXTDSIZ (and then rebuilding a file) can have a great effect
on performance.
See also: DXTDSIZ

LOCKRETRY Record lock retry counter. A value of zero (default) provides for unlimited

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 28 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

record lock return (aka IRIS Revision 7). Any other positive value selects
the number of retries (in 5 second intervals) attempted prior to issuing a
Record Lock error to the application.
See also: Record Locking

LONGVARS Change the default (0) setting to provide for the global use of long variable
names. When set to 1, long variable names are allowed globally; setting 0
disables long names. The variable command may be used to override this
default at any time.

LUST Logical Unit Search Table. Defines the entire series of Unix paths to search
for program and filenames in the form filename, lu/filename or
pack:filename. If this parameter is not defined, only the current working
directory is searched. Filenames beginning with / are assumed to specify
the entire path to the file and the LUST definition is not used. The
following table illustrates the search paths used for a simple filename and
lu/filename.

LUST=:/usr/ub:/ub/sys:/usr/ub/1:/usr/acct:/usr/acct/2

filename pack:file or lu/file

filename lu/filename

/usr/ub/filename /usr/ub/lu/filename

/usr/ub/sys/filename /usr/ub/sys/lu/filename

/usr/ub/1/filename /usr/ub/1/lu/filename

/usr/acct/filename /usr/acct/lu/filename

/usr/acct/2/filename /usr/acct/2/lu/filename

LUST should be constructed to minimize number of searches required to
locate programs and files. If an application under IRIS or BITS defaults to
a specific logical unit containing programs or data, set the current working
directory to that same location. This is accomplished by including a cd
pathname command within the .profile.

Note: The maximum number of entries in the LUST is 24.

If all file and program access is in the form lu/filename, or pack:filename,
define LUST to provide the path to the directory containing the actual
numbered (or named) logical units only.
If you rely on the IRIS or BITS LU Search for other Logical units, then
you must include full paths directly to each directory.
To ensure the fastest access to programs and files, determine whether your

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 29 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

application performs more OPEN or CHAIN statements. List your entries
in LUST accordingly. If most filenames include a Logical Unit or
packname, list entries terminating at the directory containing the lu, and
finally list direct paths to each named or numbered directory.

MAXACCSLEEP Define accuracy vs. performance of the Unix sleep timers utilized by
PAUSE, SIGNAL 3, INPUT TIM, record locking, etc. Since some older
Unix systems provide timer accuracy only to the nearest second, UniBasic
employs the following software method to ensure accurate tenth-second
timers:
First, the specified delay is rounded down to the nearest whole second. If at
least one-second of delay is warranted, the process sleeps, allowing other
processes to run, for that number of seconds. Following the sleep period,
UniBasic 'spins', i.e. wastes CPU time, by watching the clock for the
remaining partial second.
Most applications are not timing critical. Substantial system wide
performance is realized by configuring delays to round up to the nearest
whole second. That is, a delay of 5 tenth-seconds is rounded to a full
second.
MAXACCSLEEP defines the delay value, below which, exact accuracy is
required. Delays at or above this value always round to the next whole
second. A value of zero, the default, provides the highest accuracy at the
expense of additional system overhead. A value of one always rounds, etc.
To ensure accuracy on all delays below two seconds, set the value to 20.
Most systems support highly accurate timers without the requirement to
waste CPU time, including Linux, AIX, SCO Unix, NCR Tower 7xx/8xx,
MIPS and Motorola 88000. These systems default, automatically, to 65535
which enables the system specific timer. On systems that do not support
accurate timers, the value defaults to zero.

MAXPORT Change the default automatic port number assignment to a value other than
999. The maximum port number is 2048. Used for automatic port number
assignment by the SPAWN statement, and during sign on when PORT
and/or PORTS are undefined. Set to 99 to prevent automatic assignment of
3-digit port numbers.
See also: PORT, PORTS and Port Numbering and Phantom Ports.

MAXVARS Control the maximum number of variable names that can be used within a
program. By default, 348 unique variable names may be used within each
program. Setting MAXVARS to a number limits the number of variable
names to that number. This value is only checked when a program
statement is entered adding a new variable to a program. Setting
MAXVARS to 93 ensures backwards compatibility to IRIS or BITS.
Setting MAXVARS to the string "extended" increases the normal limit
from 348 to 1113. The increased limit is only effective for programs that
are newly created while MAXVARS is set to "extended". MAXVARS
does not need to be set in order to load, run, or modify a program created
with the extended variable table.

MSC7 Define the numeric value to be returned by the MSC(7) function. If MSC7

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 30 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

is not defined (or defined as 65535), your UNIX group number * 256 plus
the user number is returned. MSC(7) will yield unpredictable results when
the group or user numbers are greater than 255.

PFCHAR Define a single replacement character for any @ character terminating a
filename. Format is: PFCHAR= replacement character. When PFCHAR is
not defined, the trailing @ character is ignored and terminates a filename.
Therefore, the filenames DATA and DATA@ both select the same filename.
This default operation is recommended as a method of preventing @
characters from becoming part of a Unix filename. @ is not a portable
filename character, and its use may interfere with some Unix shell
commands.
On some IRIS systems, users may have nearly identical files, such as
DATA and DATA@. Defining this option removes the requirement to
modify applications and filenames.
To define this option, choose a single character to replace @, such as
PFCHAR='-'. In this example, any attempt to BUILD or OPEN a
filename such as DATA@, results in an operation to DATA-.

Note: This option should only be utilized on systems where a blind conversion is being
performed. It will safeguard against conversion errors when an IRIS system has
nearly identical data and poly filenames. Resellers converting known systems are
advised to rename or delete conflicting filenames. Most often, duplications are the
result of an older Indexed file (itself no longer in use) being recreated as a
Polyfile.
Once files have been built with this substitution in effect, the option must remain
set, or all program occurrences of the @ must be changed to the specified
replacement character.

See also: Setting up .profile for Multiple Users.
PORT Force the current session to operate as a specific PORT number, i.e.

PORT=23. The value of PORT can also be set to the string “any” in order
to ignore the terminal name and use the first available port number
(starting down from the maximum port number). The maximum Port
number is typically 1023 unless your system is licensed for a greater
number of users. The value “any” is sometimes used within a profile script
to prevent telnet pseudo-devices from conflicting with users logging in on
serial lines.

PORTS Define a specific port numbering order. The format of this definition is:
PORTS=tty00:tty1b:#7:tty1c . . .
In this example, Port 0 is tty00, Port 1 is tty1b; starting at Port 7 is tty1c
leaving ports 2-6 unused. When neither PORT or PORTS is defined in the
environment, port numbers are assigned based upon the tty name (tty23 is
port 23). If a name conflicts with an existing port (or a port already in use
), a number is assigned backwards starting at MAXPORT. To prevent

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 31 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

automatic assignment, all system tty device names not in the form ttynnn
(where 'nnn' are digits) should be listed. Ports conforming to the normal
numbering conventions need not be defined.
See also: Port Numbering and Phantom Ports.

PREALLOCATE This variable contains several flags which, when added together, define
options for processing data files.
Options fall into two categories, runtime and permanent. Permanent
options are indicated by •. Runtime options affect current file operations
when enabled. Permanent options affect all future access to files created
when that option was enabled. Permanent options are stored within the
file's header and typically define file limits or data storage formats.

1 Preallocate all blocks for contiguous files and initialize to zero bytes. You
might set this value on a new system to force files to occupy physically
contiguous space on the disk. Note: Indexed files store keys in a separate
file, and may be built too large using older style IRIS or BITS creation
algorithms. If this flag is set, modify your file creation sizing algorithms.
<u?Runtime option</u>.

2 Do not allow writing past the original created size of a contiguous file (no
expansion). Runtime option.

4 When expanding a contiguous file, do not fill in all records between current
end of file and new record to write. ** Runtime option.
See also: Contiguous Files.

8 Check Formatted files and return a Record Not Written error if a record has
never been written or contains only null (zero) bytes. Runtime option.

16 When expanding a Formatted file, do not fill in all records between current
end of file and new record to write. ** Runtime option.
See also: Formatted Files.

• 32 Always BUILD and CREATE new files in IRIS style BCD record format.
This flag may be required if: a) data files were converted from IRIS and b)
your application indiscriminately copies entire records from one file to
another using variables other than the actual field specification. For
example, a MAT READ of a string or 1% array. Setting this flag for new
installations forces creation of potentially transportable data records for
future relocation to other hardware platforms. Permanent option for files
created while enabled.
See also: IRIS BCD Files.

Note: DO NOT set this mode during IRIS or BITS conversions.

• 64 Always BUILD and CREATE indexed files in IRIS/BITS 8-bit key
format. Forces keys to be stored in exact IRIS/BITS format. This flag is
required when applications utilize binary information in the keys. DO NOT

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 32 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

set this mode during conversion of files from IRIS or BITS. Permanent
option for files created while enabled.
See also: IRIS BCD Files and Indexed Data Files.

Note: DO NOT set this mode during IRIS or BITS conversions.

128 Restrict Indexed files from dynamic expansion. When built, the number of
records specified to BUILD or CREATE is retained in the file header as
the maximum number of records for the file. The status E=3 is returned
from SEARCH # and INDEX# when the file dynamically expands to this
record number. Runtime option.
See also: Indexed Data Files.

256 During Indexed File Record Deletion, check for record already deleted.
When deleting records and adding them to the delete chain, this runtime
flag forces an initial check of the delete flag prior to deletion. If the record
is already flagged as deleted, an exception status (E=1) is returned, and the
record is not added to the deleted record list. This flag may be required if
your applications arbitrarily delete records not currently in use. Runtime
option.

512 Permit writing past the record boundary of an Indexed file in a single
operation. Normally, error 144 is generated whenever a single write
operation will cross a record boundary. This option should only be used
when the application is certain that all records to be written are previously
allocated, otherwise the file's deleted record list might be corrupted. This
option is runtime in nature, affecting all open Indexed files. Runtime
option.

• 1024 Always BUILD and CREATE new files in IMS style BCD record format.
This flag may be required if: a) data files were converted from IMS and b)
your application indiscriminately copies entire records from one file to
another using variables other than the actual field specification. Permanent
option.

Note: DO NOT set this mode during conversion of files from IRIS or BITS.

See also: IMS BCD Files.
2048 Reserved for future use. DO NOT enable this option within your

application.
4096 Prevent all write operations to deleted

records within Indexed files. Prior to
each write operation, the record's
delete flag is checked. If the record is

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 33 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

flagged as deleted, set ERR(8) c-tree
status to 144 and return BASIC error
123. Runtime option.

Note: Formatted and Contiguous, including Indexed, files are typically created
containing a 512-byte header and no data records. For Contiguous and Indexed
files, the number of records specified to BUILD or CREATE is stored within the
header for use by CHF and runtime-limiting PREALLOCATE options. Only
when PREALLOCATE option 1 is set are records physically allocated at
creation.
Prior to each write operation, the number of records between the current physical
end-of-file and the end of the record being written is computed. Missing
(intervening) records are automatically written to the file. This process may take
several seconds depending upon the number of intervening records that must be
written.
When setting PREALLOCATE to prevent intervening record allocation, only the
record to be written is allocated. Reading any non-existent record results in the
transfer of a null data without error. Although these files are completely valid,
warning messages may be printed by the Unix command fsck (File System
Check) when 'gaps' are detected in the structure. These files are sometimes
referred to as sparse files.
Within Formatted files, PREALLOCATE option 8 is used to interpret null
records as Records not written.

• 8192 Always BUILD and CREATE new files as a Universal type file. The file
will contain IRIS style BCD data. If this flag is set, the 32 and 64 option
flags are ignored. Permanent option.

• 16384 Always BUILD and CREATE new files as a Huge Universal type file.
The file will contain IRIS style BCD data. If this flag is set, the 32 and 64
option flags are ignored. Permanent option.

SCOPEPROMPT Choose an alternate prompt while in SCOPE Command Mode
(BASICMODE=IRIS only). The default prompt # is replaced using the
form: SCOPEPROMPT='replacement characters'.

SPC5 Define the numeric value to be returned whenever the SPC(5) function is
called. If SPC5 is not defined as an environment variable (or set to 65535),
your UNIX group number * 256 plus the user number is returned. The
SPC(5) function will yield unpredictable results when the group or user
numbers are greater than 255.
See also: Setting up .profile for Multiple Users.

SPC7 Define the numeric value to be returned whenever the SPC(7) function is
used. If SPC7 is not defined as an environmental variable, zero (0) is
returned.

STRING Select alternate string processing for BASIC to match HAGEN Business
Basic. To invoke HAGEN String Processing, use the form:
STRING=HAGEN.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 34 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

TABFIELD Change the number of spaces between comma fields in PRINT statements
from 20 to the new numeric value specified.

UBKEYFILE If defined, UBKEYFILE is a path to a key file containing encryption keys
used to create or open encrypted files (see Encrypted Files). The path can
be a LUST relative path or an absolute path. If the key file itself is
encrypted, a SYSTEM 100 statement must be used to define the key
SYS_KEYFILE before opening or creating any encrypted files.

WINDOWS Define the maximum number of Windows that may be opened by this user.
If WINDOWS is defined, the main screen is counted as the first Window.
Each WINDOW requires approximately 64 bytes of storage for the array.
As Windows are created, memory is allocated based upon twice the
number of characters in the Window. The main screen occupies (80 *24
*2) characters of memory for a 80 column, 24 row screen.
See also: Windows and Output Considerations, WINDOW, CALL
$WINDOW, and MSC Functions.

WARNING: THE FOLLOWING UNIX ENVIRONMENT VARIABLES MAY BE
EXAMINED OR CHANGED AS REQUIRED. HOWEVER, CHANGING
THESE VARIABLES WILL LIKELY AFFECT THE OPERATION OF
OTHER UNIX APPLICATIONS.

HOME The home directory of the user, i.e. /usr/ub.
HZ The clock rate used internally by the Unix system. For most systems, this

value is either pre-defined to the compiler or is already in the environment.
This value is used to compute certain TIM and SPC functions; the BYE
command and pause durations less than 1 second. Do not change this
variable unless incorrect times are reported by the above noted functions.
See also: MAXACCSLEEP Environment Variable.

TERM Many applications, including UniBasic, retrieve the value of this variable
to select a terminal driver for screen operations. While many applications
rely on the Unix termcap or terminfo drivers, UniBasic developers have
the flexibility of their own driver system.
See also: Configuring Terminal Drivers

PATH The Logical search path for Unix commands issued to the shell.
PATH=:path:path:path: ... The PATH is only referenced when shell
commands (or Unix commands) are entered while in command mode. To
open pipes without supplying the full pathname (i.e. DUMP $more),
append PATH definitions to LUST, i.e.: LUST=$LUST:$PATH

Note: The following are useful Unix commands that may be of interest to the user. For
more detailed information, consult your Unix documentation.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 35 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

stty Command to reset terminal configuration, Baud rate, parity, backspace and
control characters, xon/xoff protocol, character length, mapping of return
to return-linefeed, etc.
Unix typically assigns the characters BREAK and DELETE for QUIT and
INTERRUPT functions used to abort a process. These functions are reset
upon entry to UniBasic to the characters ^D [EOBC] and ESCAPE.
When a Unix command is performed from UniBasic (Command mode,
SYSTEM statement), the functions are reset to their initial Unix
definitions for the duration of the system command. Some users find it
desirable to use ESC and ^D for both system and UniBasic commands.
The stty command may be executed from within the .profile to change the
default Interrupt and Quit functions.

Note: To ensure proper terminal operation, incoming stty parameters are saved
whenever a UniBasic process is launched. Issuing stty or similar commands,
within UniBasic, have little effect since UniBasic restores and resets these
parameters. Certain changes are permitted, using the ! command, such as
changing the baud rate.

cd $HOME/1 Command within .profile to set the user's default Logical Unit to 1 when
LU 1 directory is below HOME.

umask Set to zero to provide for pass through protections to Unix. Any non-zero
value forces Unix to XOR supplied protection digits with this umask value.
For example, if umask=7, then all lower protection digits are cleared. See
File Attributes, Protection and Permissions for a complete discussion of the
Unix protection system.

ulimit The ulimit command sets the upper limit (in blocks) for files created on the
system. Set this value to the largest allowed value to allow your
applications to control file size. If this value is set too low, a Write Error
will be given when a file reaches this maximum size. This value may be
defined in /etc/profile, as part of the user's account or within the Kernel.
Contact your supplier if this value is too small for your needs.

Setting up .profile for Multiple Users

When multiple users default to the same HOME directory, you may insert statements within
.profile to determine the login name used, and configure environment variables accordingly. The
following statements might be added to HOME/.profile.
To set a different SPC5, MSC7 or LUST (Logical Unit search path) based upon the user signing
on:
case $LOGNAME in

"doug") SPC5=32774;LUST=$LUST:/usr/drive1;;

"laura") SPC5=32896;LUST=$LUST:/usr/drive2;;

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 36 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

"mike") SPC5=32768;LUST=$LUST:/usr/drive3;;

*) SPC5=16384;; #Default other users.

esac
The previous example configures different SPC5 values and alters LUST, appending to its
previously defined value the additional search of drive1, drive2, or drive3 only for doug, laura or
mike. By appending a previous base value, it is unnecessary to redefine the entire LUST
specification for each user. A total re-definition would take the form:

LUST=/usr/ub:/usr/ub/sys:/usr/drive1.

For further information , refer to the Unix manuals on Shell Programming.

Command Line Interpreter

Two separate command line interfaces are provided within a running UniBasic process.
Command Mode is signified by the prompt character # (SCOPEPROMPT) printed at the left
margin. System commands (UniBasic or Unix) and program names may be entered while in
Command Mode.
BASIC Program Mode is entered by the BASIC Command and has no prompt character.
Programming and debugging is performed while in BASIC Program Mode.

#ls Issue Unix Directory command

#LIBR {param} Command Mode example

READ var.list BASIC Program Mode example

It is also possible to configure all commands for operation from a single command mode by
setting BASICMODE=BITS. In this configuration, a single prompt * (BITSPROMPT) is
always displayed at the left margin.

*ls Issue Unix Directory command

*LIBR {param} Command Mode example

*READ var.list BASIC Program Mode example

Launching UniBasic From Unix

SYNOPSIS: Launch a UniBasic Process
unibasic {-ffilename} {-Ffilename} {-Pfilename} {-Xfilename} {-s} {-o} {-t}
{-v}

DESCRIPTION
Start a UniBasic session on your terminal. The current environment is read for all

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 37 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

pertinent variables, a Port Number is established, a Message Queue is created and
the terminal modes are reconfigured. If this is to be an interactive keyboard
session, the terminal is placed into command mode.
filename is an optional name of any BASIC program file. The specified filename
must be in the current working directory, or in one of the supplied pathnames
specified in the environment variable LUST. The filename may also include a lu
identifier, or be a full Unix pathname beginning with '/'.
The -f switch is used to immediately execute the named program file. If the
specified program terminates or an error occurs, the terminal remains within
UniBasic in command mode.
The –F switch is also used to immediately execute the named program file.
However, if the specified program terminates using STOP, BYE, SYSTEM 0,
END, CHAIN "", non-trapped ESC, [EOBC] (CTRL+D) or an abortive error,
the session is terminated, and control returns to the point UniBasic was launched;
see below.
The –P switch is identical to –F except no terminal translation will be used and
the UniBasic startup messages are suppressed.
The –X switch is used by DynamicXport to run UniBasic applications and must
not be used outside of that environment.
The -s switch requests entry of a new Software Selection Number (SSN). The
SSN might be changed when you are installing additional terminals, installing
additional products (such as IQ) or converting a demonstration License into a
paid-up License of UniBasic.
The -o switch requests the entry of a new OEM Selection Number (OSN). The
OSN is used to control execution of one or more dealer-protected software
packages.
The -t switch requests the entry of a new OEM Selection Number (OSN) similar
to the -o switch. This OSN is considered temporary and is not stored into the
system. The -t option is used when the owner of protected software wants to
temporarily grant access to the source code. This access is restricted to the single
terminal issuing the -t switch.
(Release 9.2.2) The -v switch displays the full version text. The -V switch
displays just the version number and then exits.
When a session terminates using BYE, SYSTEM 0 or 1, or an aborting condition
using the -F filename, the process is exited, and all terminal characteristics are
reset to the incoming values. If the UniBasic session was started from the shell,
then the shell is resumed. If launched from the .profile using a UniBasic
{switches} command, the .profile resumes at the following statement. To return
the user to login mode at process termination, place an exec UniBasic {switches}
command as the last line of the .profile.

EXAMPLES
unibasic -f menu

unibasic -s

tee savefile

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 38 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ERRORS
No SSN currently entered

Demonstration system, not for resale

License number from ssn does not match actual license

Cannot allocate sufficient memory

Cannot initialize ISAM. Check ISAMBUFS/ISAMFILES definitions

Cannot open term.xxx file. No CRT translation in effect!

Error loading CRT file term.xxxx. No CRT translation in effect!

Could not open 'errmessage', no error messages available!

Too many users; max = n

Port n is already signed on and in use

See also:
Environment Variables, Entering an SSN, PORT, PORTS, CRT TERM Files,
Program Files, Port Numbering

Terminating a UniBasic Process

Once initiated, an interactive UniBasic process remains active until terminated. Interactive, as
well as Phantom Port, termination is provided for with the SYSTEM 0 and BYE commands.
Non-interactive UniBasic processes, such as those launched using UniBasic -F or SPAWN,
terminate when the specified program stops execution.
All of the above (normal) methods provide for a graceful termination of UniBasic. Open files
and devices are closed, the Message Queue is removed, the terminal driver is reset to the modes
present upon entry and the process terminates.
Abnormal termination, resulting from the following events, may require operator intervention
before other tasks may be performed:

• Memory Fault - core dump
• Hardware failures.
• Receipt of a non-supported signal. UniBasic supports the signals HANGUP(1),

TERMINATE(15), SYSCHILD, SIGPIPE, INT, QUIT, SIGUSR1, SIGUSR2.
Any other signal may cause abnormal termination.

The following functions may be performed manually, from the failing terminal, when an orderly
shutdown did not occur. From a remote location, only the Message Queue must be deleted, after
which you should kill any remaining processes, including the shell, associated with the port.

• Issue the Unix command: stty sane and press CTRL+J or RETURN if the
terminal is misbehaving.

• Issue the Unix command: ipcs to review, and ipcrm to remove the Message
Queue for the offending port.

• Issue the Unix command: ps to determine and kill any remaining suspect

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 39 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

processes under the port's control.
• Sign off and back on to reset all terminal parameters before re-launching another

UniBasic process.
See Also: Message Queues

Licensing a New Installation

If this a new installation, you may be asked to enter an SSN the first time UniBasic is launched:

$ unibasic

UniBasic Level 8.1

All Rights Reserved. Copyright (C) 1987 - 2006 by:

Dynamic Concepts Inc. California USA

No SSN currently entered

Enter Software Selection Number (SSN), RETURN to remain the same

If you do not yet have an SSN, press [RETURN] to invoke a single-user grace period. A special
warning about the grace period is printed periodically until you enter an authorized SSN.
To obtain an authorized SSN for this installation, contact your supplier with the following
information:

• License Number displayed
• Number of ports desired
• Type of system
• End-User name
• Options, other DCI products such as IQ runtime, IQ development or IMT.

SSN entry is space and case insensitive. After entering all characters, press [RETURN]. You
will be prompted to enter the User Name. Enter the name exactly as printed on the SSN License
Agreement. Entry of the name is case and space sensitive. Backspace may be used to correct
input errors.
Following entry of the SSN and User Name, immediately issue a BYE command, and restart
UniBasic. If the SSN was accepted, the command mode prompt is displayed. If you are again
asked to enter an SSN, either an error occurred during entry, or the License Number does not
match the supplied SSN Report.
The SSN contains the licensed configuration for the specific License Number. Currently, an SSN
includes Demonstration options (Permits operation for up to 90 days), the number of concurrent
Ports that may run UniBasic, and additional information to enable IMT and IQ.

Note: When using Software Licensing, the license number is keyed to your specific
system. Prior to updating the operating system (Unix), or replacing or re-

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 40 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

formatting your disk drive, contact your distributor or Dynamic Concepts
concerning the deactivation and replacement policy for your license.

Changing the SSN Activation Key

Prior to changing a system's SSN, verify that you have a copy of the existing SSN number, as
contained within the file /etc/DCI/ssn. Prior to installing a new SSN, you may print this text file,
or use the Unix cp command to make a copy of this file. You will need root permission to access
this special file.
To change an existing SSN, for example to add additional users, enable additional products or
convert a demonstration license into a full license, issue the command:
 ssnmaint
Any existing SSN is displayed.
Enter the new SSN (case and space insensitive) and Customer Name (space and case sensitive).
After pressing return, command mode is entered.
Following entry of the SSN and User Name, restart UniBasic.
A new ssn can also be entered by using the command: unibasic -s
See also: Launching UniBasic from Unix.

Launching UniBasic Ports at Startup

You may provide for turn-key operation whereby Unix automatically launches terminals directly
into UniBasic, and/or your application. Start-up is performed at system initialization (IPL) or
whenever a terminal is evicted or a user signs off.
This feature may be used for interactive or phantom (background) jobs.
The following instructions apply to most Unix based non-server environments.
Make the following changes for each port to be initialized:

1. When starting an interactive terminal, change the getty command inside the
/etc/inittab entry for the terminal to:

login unibasic </dev/ttyxx >/dev/ttyxx 2>&1

where 'xx' is the system tty name.
2. Change the .profile to set the necessary tty options. The PORTS environment

variable should be defined within .profile to ensure the same port number
assignment for each automatic startup.

a. .profile based upon a Login User Id: Create a login 'ubauto' with the same
$HOME directory, group and user id as your 'unibasic' login. Then add a single
line in .profile to handle all automatic startup ports:

[$LOGNAME = ubauto] && stty sane

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 41 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

---or---
b. .profile based upon which tty when ports require different settings:

case `tty` in

*tty01) stty 9600 sane ;;

*tty02) stty 1200 sane ;;

esac

3. When starting a phantom port, change the command to:
PORT=n login unibasic </dev/null >/dev/null 2>&1

where 'n' is the desired port number for the process. No changes are required to
.profile. You may also include PORT=n for interactive ports when the PORTS
environment variable is not defined, or special numbering for each process is
desired.

The 'login unibasic' forces a direct login and execution of the .profile as if the login id 'unibasic'
was entered on a terminal.
The .profile must contain the line exec unibasic as the last line to launch the session. The initial
copyright is printed and the session is waiting input at command mode. You may also force a
starting program using the form:

exec unibasic -f program.

See also: Setting up .profile For Multiple Users, PORT, PORTS, Port Numbering and
Phantom Ports, Launching UniBasic from Unix, Port Number

Configuring Printer Drivers

Two printer drivers are supplied for use with your applications; lpt.iris and lpt.bits. An
additional file lpt.sample documents various modifications and sample printer drivers.
lpt.iris is designed for applications requiring locked printers. Users attempting access to a
locked device receive an error until it is available.
lpt.bits is designed for multi-user spooling applications. Both drivers are similar and may be
used with either IRIS or BITS applications.
You may examine and change the driver saving copies using the filenames required by the
application, i.e. lpt1, lpt2, etc. A driver must use a lower-case filename and be stored within a
directory listed in the LUST Logical Unit Search Table. Do not place a $ as the first character of
the filename. The $ is a flag recognized by UniBasic as a request to open a pipe to an executable
file.
For a printer driver to operate correctly, it should be owned by the master UniBasic account
with the permissions 555. Before using the driver, issue the Unix command: chmod 555
filename to set the proper permissions. If further modifications are necessary, issue chmod 666
filename, perform editing as required and reset the permissions to 555.
The following is a line by line description of the supplied lpt.iris printer script. It is designed to
run as an executable shell-script under the borne shell only. It operates as a pipe, taking as its
standard input data transmitted by PRINT # statements.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 42 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

#lock LPT - Printer Driver for UniBasic

If the first line begins with '#lock', locking is employed to guarantee single user access to the
device. Typically required for check or form printers.

Note: No tabs, spaces, blank lines or other characters may exist before the '#lock'.

#Module: lpt Level: 1.2 Modified: 7/18/88

Comment indicating revision of supplied lpt script.
trap "" 1 2 3

INODE=`ls -i $0`

INODE=`expr "$INODE" : ' *\([0-9]*\)'`

LOCKFILE=/tmp/lk.$INODE

trap "rm $LOCKFILE" 0

Setup for cancellation, and signals. Determine the filename of the lock file built, and setup to
remove the lock file on script termination.

OPENSTR='\c'

Define the string of characters to be sent to the printer when opened. The \c is a special flag for
the Unix echo command to avoid sending a return and line-feed following the characters.
Enclose within single quotes; characters as themselves, \0nn for octal using 7-bit form, such as
\015 for carriage return; \? special characters such as \n new-line, \r return, \f form-feed. For a
complete list, refer to your Unix documentation on the echo command.

CLOSSTR='\f\c'

Define the string of characters to be sent when all output is complete. The same rules apply as
with OPENSTR.

FILTER='lptfilter BX \010'

Define output filtering. Supplied by Dynamic Concepts, lptfilter provides output translation.
Modify the data between quotes to contain 'lptfilter' and pairs of parameters representing data
sent by the application, and replacement strings. The above example changes all BX mnemonics
(Begin Expanded Print) to the replacement string ASCII character 10 (octal). For additional
information, see also lptfilter. lptfilter prints directions for its use when typed as a command at
command mode, or at the shell.

PTRDEV='/dev/lp00'

Define the device to actually receive the finalized data sent by this script. To send the data
through the spooler, this line would contain the actual spool command within single quotes,
such as lp -s.

PTRBAUD='9600 opost onlcr istrip ixon cs8 -parenb' Define for a serial port the baud rate and
other characteristics required to define the port for the printer. The above options indicate 9600
baud, process post output, change new-line to carriage return, strip high bit, Xon/Xoff protocol,
etc. This string is not required for parallel printers, and it is not used (only defined) in our
example. See also: Configuring Serial Printers below.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 43 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Standard Parallel Operation to device:
(echo "$OPENSTR";cat -;echo "$CLOSSTR") | $FILTER >$PTRDEV

Standard Parallel Operation to a spooler:
(echo "$OPENSTR";cat -;echo "$CLOSSTR") | $FILTER | $PTRDEV

tandard Serial Operation to device:
(stty $PTRBAUD >$PTRDEV <&1; echo "$OPENSTR"; cat -; echo "$CLOSSTR") |

$FILTER > PTRDEV

Create a sub-shell to perform the following processes under the process of the script itself:
1. Invoke echo to transmit the defined opening string.
2. Invoke cat getting its input from standard input (the pipe).
3. Invoke echo to transmit the defined closing string.

All of the output from the sub-shell process is optionally piped again through lptfilter and
finally redirected to the selected device or through the spooler.
If lptfilter is required, add the command | FILTER immediately following the close
parentheses before the >PTRDEV or |PTRDEV respectively. If not, remove the | FILTER
command. This increases the speed of the script, preventing an additional process from starting.
By opening the lpt printer, we have started the process sh (shell) to interpret the script, another
sub-shell to perform items 1-3. The sub-shell will have echo or cat opened and running until the
BASIC program closes the channel. Finally, the optional lptfilter process may be running. If
you have directed output to the spooler, additional processes may also be started.
The entire operation is quite fast, and easily configured. For special applications, you might
write in C a printer driver specifically for your needs.
See also: Pipes, lptfilter, filename

Configuring Serial Printers

In the previous section, each time the printer is opened the Unix stty command is sent to
initialize the device. With some printers, this may cause problems such as overflowing buffers,
or losing flow control when the device is turned off-line or out of paper.
If you experience problems with serial printers, check the following conditions:

1. Is the printer set for Xon/Xoff protocol, and if so, does the PTRBAUD definition
contain the option for ixon?

2. Is the printer set for DTR protocol, and if so, is the wiring correct for the mux,
and does the mux support this protocol ?

3. Is the script properly set for serial operation including the Unix stty command as
the first command within parenthesis?

These conditions should be checked by your installer with a break-out box. You may also have
to check with the manufacturer of the printer, system and mux to verify that your configuration
and use is supported by the hardware and Unix drivers.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 44 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

If you continue to have problems:
1. Modify the PTRDEV definition to specify a temporary file for printer output, i.e.

/tmp/printerdata. Run your report and examine the contents of the file to verify
that the data is being correctly sent by the application through the lpt script.

2. From command mode or shell, use the Unix Commands stty and cat to configure
the port and direct the data to the device:
 (stty options; cat /tmp/printerdata >/dev/...)

3. Once you are able to print data, modify the script using the same parameters
remembering to reset PTRDEV to the desired device name.

If printing works, but the printer occasionally loses data or overflows on multiple jobs, it may be
necessary to remove the Unix stty command from the script. Follow the above example for a
parallel printer. Next, add the following code to the system file /etc/rc or other Unix startup file:

(stty ; while : ; do sleep 40000; done) </dev/... &

Insert the proper parameters following stty, and </dev/... is the name of the physical device
driver, such as /dev/tty23. This must be a background process as indicated by the terminating
'&'.
It should be noted that these changes are only required on systems redirecting data to a physical
device, i.e. PTRDEV, is the actual name of a device driver.
When configuring a printer for use with the spooler, these changes are not required.

Configuring Terminal Drivers

Terminal drivers translate keyboard and display mnemonics between applications and various
brands of terminals. When launching a UniBasic process, the value of the environment variable
TERM selects the terminal translation driver for this session. A filename in the form: term.name
is opened, where name is the value of the TERM variable.
Terminal files, typically stored within the sys directory, must use a lower-case filename and be
within a path of the LUST environment variable. If a matching terminal driver is not located, an
error is printed and no terminal translation functions are available for that session.
A number of terminal driver files are supplied for use with your applications including term.ansi,
term.tvi925, term.wyse50 and term.wyse60. term.ansi is designed specifically for use with ANSI
style terminals and the primary monitor supplied with many systems. The other drivers are for
use with Televideo 925, Wyse 50 and Wyse 60 terminals respectively. These may be duplicated
and modified for use with other TERM definitions. The Unix cp command may be used to make
additional copies of these drivers. For example, to create a Televideo 910 driver, issue the
command:

cp term.tvi925 term.tvi910.

Any standard editor, such as vi may be used to adjust the new driver file accordingly.
For a terminal driver to be properly recognized, it must have read-permission enabled and be
located within the path specified by the environment variable LUST. Once configured, it is
recommended that only read-permission remain enabled to prevent corruption.
The names assigned to the TERM environment variable are usually defined in the /etc/inittab or

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 45 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

/etc/gettydefs files. Refer to your Unix system documentation for additional information relating
to equating TERM names with terminal drivers.

See
also: Terminal Translation Files $TERM files

Creating a Customized Installation Media

You may customize the supplied DCI Installation program, ubinstall, to include provisions to
install your applications, data files, printer and terminal drivers.
To ensure proper operation of DCI supplied products, your customized installation procedure
should be added to the existing ubinstall script. Failure to perform all of the steps contained
therein can lead to problems in an installation.
Within the /tmp directory during installation, the files at the level /tmp/ub are moved into
/usr/bin, except for the system error message file errmessage.
Files at the level /tmp/ub/sys are moved into HOME/sys as defined during installation.
Directories at the level /tmp are not moved. Directories at the level /tmp/ub are moved to
HOME/ub.
Files in ubdev (UniBasic Development) are moved under HOME/ubdev.
To create a custom version:

1. Follow the installation instructions on the various DCI supplied installation files
(omitting the entry of the ubinstall command).

2. Move copies of custom printer drivers, system BASIC programs and any other
sys or LU 0 custom items into /tmp/ub/sys using the Unix cp command.
If you have a complex .profile, such as one containing settings which are not
prompted during ubinstall, place a copy of that .profile into /tmp/ub . It will be
necessary to modify the ubinstall script to accommodate this option. Add code in
the script following the move of the errmessage file to HOME to move your
custom .profile in a similar manner. Be sure that the code is inserted after the
initial creation of a .profile. Properly coded, installation will replace the default
file with your customized .profile.

3. Under /tmp/ub, create any directories that are to be placed under the HOME level
on your customer's systems. Even if these directories are empty, the cpio
command will create them for you during installation.

4. Use the Unix cp command to move copies of program and data files into the
associated installation directories under /tmp/ub. You may use the ln command
(link) instead of cp to reduce disk space requirements.

5. Use the Unix commands ls, chown, chgrp, chmod to verify and set the
permissions, user id, and group id of your directories and files. Verify that your
LPT scripts have the x attribute (i.e. 555). It is recommended to select a default
group and user id, as is the case with DCI supplied programs and files. During
installation, ubinstall changes the group and user id of the supplied DCI files and
directories to the prompted owner/manager of the UniBasic installation.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 46 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

6. Modify the supplied ubinstall script to automatically create and/or move your
directories to the desired location (optional). Also add code to allow for other
directories loaded at the level /tmp to be installed or moved onto another file
system, drive or directory.

7. Your /tmp directory is now ready to be copied onto a master distribution archive
file. Issue the following commands from root:
cd /tmp

find . -print | cpio -ovc >filename

Note: If you prefer to use the Unix tar command, that format is acceptable for your
master media. Change your installation instructions accordingly.

Introduction To UniBasic
UniBasic is a formal language used to communicate with a computer. It is in the family of
computer languages that have been designed using Dartmouth BASIC (Beginner's All-purpose
Symbolic Instruction Code). Unlike the binary language of the computer, however, BASIC is easy
to learn and use. And like any language, UniBasic has a set of rules, syntax, and conventions.
This chapter introduces the rules, syntax, and conventions for UniBasic programming.

UniBasic has two basic modes of operation; Command mode and Program mode. Command
mode is the outer shell of UniBasic, just above the unix operating level. While in the Command
mode you can type BASIC commands that deal with the system and the UniBasic environment.

One of the commands that you can enter while in the Command mode is BASIC.

UniBasic lends itself to a variety of applications. The computer operates as a calculation or
programming device. In immediate mode, the computer works as a calculation device, and
executes instructions directly as they are entered. In BASIC programming mode, instructions are
not executed until the computer is instructed to run them. In this form, the BASIC instructions
comprise a program that can be stored for later use.

A program is a set of computer-recognized instructions that perform a desired series of operations.
For example, a payroll preparation system written in BASIC is a program that a computer can
execute.

Data

Data is the information that is supplied for a program to produce a result. Data may come from
outside the system, or it may be in the computer memory as a result of a previous computation.
An important characteristic of a data element is its type. In UniBasic there are two basic data
types; numeric and string.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 47 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Numeric data is made up of numbers that can be manipulated by arithmetic operators. String
data is comprised of any ASCII character. Although string data may contain numeric characters,
there can be no direct arithmetic manipulation of string data. There is a special type of string
data called CRT mnemonics and expressions. This group of data is used to control video
terminal functions.
Both numeric and string data can have two forms; constants and variables. A constant is data
that is used by a program and does not change. An example of this form of data is the
mathematical constant pi. This is the ratio of the circumference of a circle to its diameter, and is
approximately 3.14159. A variable is a storage area that contains the current value assigned to
the name associated with it.
Example:

PI = 3.14159 variable equals constant

Fed_ID$ = "31-555642" variable equals constant

A = A + 1 variable equals expression

C = A + B variable equals expression

D$ = A$ variable equals variable

Numeric Data

Numeric data is operated and stored in binary integer, Binary-coded-decimal (BCD) or base
10,000 (decimal). The valid range for numbers is approximately 10-64 thru 1063 with 20-digit
precision. All arithmetic calculations are performed to this degree of accuracy, although results
may be truncated depending on the type of variables used and its precision. Numeric values
supplied in statements are referred to as numeric constants.
Very large or small numbers are expressed using floating-point E-notation (scientific notation).
E-notation is used for output whenever a number’s decimal point does not lie among its 16 most
significant digits. Numeric data may be entered using E-notation at any time.
For example, the large value: 13429178952112216

is output as: 1.342917895211222E+16

and is read "One point three four ... times ten to the sixteenth power".
The small value: .00000000000000000034

is output as: 3.4E-19

and read as "3.4 times ten to the negative nineteenth power."

Numeric Precision

Several numeric data representations are supported, with differing representation, accuracy and

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 48 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

performance. The ten numeric pBold textrecisions determine the storage representations and the
valid range of values for all numeric variables.

Prec % Data Type
Bytes
req'd

Significant
Digits

Range of values supported by
precision

1 Integer 2 5 ± 32768
2 Integer 4 10 ± 2,147,483,648
3 Decimal float 6 9-12 ± .999999999999 E±63
4 Decimal float 8 16 ± .9999999999999999 E±63
5 Decimal float 4 6 ± .999999 E±63
6 Decimal float 12 17-20 ± .99999999999999999E±63
7 IRIS BCD 1% 2 4 ± 7999
8 IRIS BCD 2% 4 6 ± .999999 E±63
9 IRIS BCD 3% 6 10 ± .9999999999 E±63
10 IRIS BCD 4% 8 14 ± .99999999999999 E±63
11 IMS BCD 2% 4 6 ±.999999 E±63
12 IMS BCD 3% 6 10 ± .9999999999 E±63
13 IMS BCD 4% 8 14 ± .99999999999999 E±63

The default precision for variables is based upon the type of program running. IRIS programs
default internally to %5 (2-word floating), while BITS programs default to %4. Newly created
BITS programs may specify any of the above precisions in a DIM or COM statement.
IRIS programs may specify one of 4 precisions in the form 1%, 2%, 3% or 4%. These precisions
map to %1, %5, %3, and %4 respectively. When the environment variable BCDVARS is
enabled, the precisions map to %7, %8, %9 and %10 forcing all variables to be processed in
BCD. This option is only required in applications performing unique processing of internal BCD
formats (such as indiscriminate moving of data between numeric and string variables using
CALL 72/73).
During file access, variable precisions are internally changed as data is read or written between
IRIS BCD files and other integer or Base 10000 data files. This process eliminates conversion of
numeric data during READ and WRITE.
See also: IRIS BCD Files
Proper selection of variable precision is required when memory space is limited. For example, a
1,000 element array using Double-precision %4 requires 8,000 bytes of program space (1,000 X
4 words X 2 bytes per word). The same array using one word per element (%1) requires only
2,000 bytes. It is best to choose precisions based upon the worst-case data you expect to place in
the variables. Precision affects the amount of bytes required in data files to hold a given variable
during normal READ and WRITE operations.

Special Notes on %3 and %6 Numerics

The number of significant digits retained by %3 and %6 varies depending upon the number of
integer versus fractional digits being represented. To determine whether the precision can

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 49 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

correctly represent a specific number, locate the required number of integer or fractional digits in
the first column. The second column then gives the maximum number of digits for the other
(fractional or integer).

Accuracy limitations using %3 format:
1 8 7 4
2 8 8 4
3 8 9 0
4 8 10 0
5 4 11 0
6 4 12 0

Accuracy limitations using %6 format:
1 20 11 12
2 20 12 12
3 20 13 8
4 20 14 8
5 16 15 8
6 16 16 8
7 16 17 0
8 16 18 0
9 12 19 0
10 12 20 0

The %6 form is the most speed-efficient of all floating-point representations but also requires the
most memory space.

Integers Stored in Floating-Point Variables

If, when a value is packed into %3, %4, or %6 form, the value is within the double-precision
signed-integer range, word 0 is cleared and the value is instead stored into words 1 and 2 in %2
integer form If two such values are operated upon, integer arithmetic is used, which can be
performed faster than floating-point arithmetic. If the result value is again within the %2 range,
it will be packed as such when stored back into a variable.
Integer arithmetic is not performed if:

Either operand is in floating-point form
or

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 50 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

A divide operation is performed
The adjustment between integer and floating-point arithmetic is totally user-transparent.
However, use of integer arithmetic greatly enhances the net speed of program calculations, many
of which are integer-type operations (A=A+1, etc.).

String Data and Literals - "str.lit"

A string is defined as a sequence of zero or more ASCII characters. Strings range in length from
0 to 65534 bytes (characters). Strings within programs are enclosed in double quotes and
referred to as string constant str.lit. A zero byte is used internally to denote the logical end of a
string.
Each str.lit is governed by the following rules:

1. The str.lit must begin and end with double quotation marks (").
2. Any character may be expressed using its octal ASCII value enclosed within

backslashes, for example "\215\". Non printable and special control characters
that perform an immediate keyboard function (such as backspace) must be
entered in this fashion to be included as data.

3. All printable characters represent themselves except \ (backslash).
4. Each \334\ is replaced with a single backslash.
5. Each pair of single quotes (' ') are replaced by a single double quote (").

See also: ASCII Codes and Input Character Processing

CRT Mnemonics and Expressions - crt.expr

CRT mnemonics and expressions, crt.expr, are used in conjunction with a CRT term file to
provide control of video terminal functions such as clear-screen, reverse-video, etc. CRT
mnemonics appear in one of two forms:

• A set of one or more 2-character codes enclosed in single quotation marks (').
Each code can be preceded by an optional count value.

• A cursor address in the form: @num.expr, num.expr;. Addresses are given in the
form column, row from origin 0,0 home (upper-left of screen).

For example:
'CS' Clear screen

'CS10ML' Clear and move left 10 positions.

@5,5;’CL' Position to column 5, row 5 and clear line

@10,L; Position cursor to column 10, row L.

'BG'"\107\"'EG' Output a graphics sequence.

See also: Using Dynamic Windows, Terminal Translation: CRT CODES $TERM Files for
a complete discussion on defining your terminal for use with Windows,
Mnemonics, Cursor Positioning and Extended Graphics.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 51 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Statements, Statement Numbers & Labels

All BASIC program instructions are called statements. They have the general form:
stn {label:} statement { \ statement }

where: stn is a valid statement number 1 to 99999999.
label: is a valid statement label followed by colon.
statement is any valid BASIC statement.

and {\...} is the separator for multiple statements.

Immediate Mode

Any BASIC statement entered without a stn is executed immediately. This type of operation is
termed immediate mode and provides for interactive debugging, calculator, or single-step
operations. Most statements may be executed in immediate mode; some cannot simply because of
their nature. For example, FOR without a matching NEXT is prohibited. Each statement
documented indicates whether it is available in immediate mode.

Statement Numbering

Each line begins with a statement number (stn) and ends with the [EOL] end of line character.
The stn must be an integer in the range 1 thru 99999999 and is used to indicate where within the
program to insert the line.
Following the stn may be a statement label. The label may be from 1 to 32 characters in length
consisting of letters, digits, and underscore. A label must begin with a letter or underscore and
end with a colon.
Throughout this guide, stn is used to indicate selection of either a statement number or label. If a
label is not explicitly defined for a statement, the stn is considered both the statement number
and label.
A statement is one instruction to be executed by the computer, such as printing a list of values. A
program line is a line consisting of one or more BASIC statements.
Program lines may only be entered while in BASIC program mode. Program lines may be
entered in any order. They are sorted automatically into ascending statement number order. A stn
is always required when entering or changing a statement, even if the statement includes a label.
For example, the following lines assign values to variables. Spacing between keywords and
around variable names is required if LONGVARS or VARIABLE modes are set to accept long
variable names. If long variable names are not enabled, the system will accept statements
without regard to spacing:

5A=0

10 LET A=10

20LETA=10

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 52 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

30 ASSIGN_VALUES: LET ZERO_VALUE=7

Let is assumed if not given, as in example line 5. If long variables is not enabled, line 20 is
identical to line 10. If enabled, the variable name "LETA" is assigned the value of 10. The actual
statement in this case would be "LET LETA=10."
See also: LET statement

Multiple-Statement Lines

Several BASIC statements may appear following a single stn.. Each statement is separated by a \
and termed a sub-statement . Sub-statements are numbered on each line starting with 1 and are
identified as a sub-stn. For example:

100 PRINT TOTAL;J \ GOTO 140

When using multi-statement lines, certain programming effects must be noted. Conditional
branching (GOTO, GOSUB, ON) may only select the first sub-statement of any line. Branching
to sub-statements (other than the first) is only provided by the JUMP statement. Refer to the
following statements for further considerations:

DATA ERRSTM ESCSTM GOSUB
IF ERR JUMP ON GOTO
REM RETURN IF

Inserting, Changing & Deleting Statements

Insertion of new program lines is accomplished by selecting a new stn between two existing
stn's . For example, to insert a new line between 10 and 20 above, select a stn from 11 to 19 such
as:

14 LET Q=16

Fractional stn's are not allowed. The entire program may be renumbered as necessary using the
RENUMBer command.
To replace an existing statement, simply enter the stn to replace followed by the new BASIC
statements. The new line replaces the existing.

30 LET Z=7

30 LET Z=6 replaces LET Z=7

To modify part of an existing line, use the EDIT command. Simple changes, insertions or
deletions are easily performed without re-typing the entire line. In addition, EDIT may be used
to correct a line entered with an error.
To delete an existing program line, type the stn only, and press [EOL] (usually return). This
process deletes one program line at a time:

20

Multiple lines are removed using the DELETE/ERASE commands. To delete all lines of a
program, use the NEW command.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 53 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Examples:
OPEN #0, "$LPT", #3, "PAYROLL"

DIM A$[100],R$[100],3%,DATA_ARRAY[32]

SEARCH #3,3,1;A$,R1,E \ PRINT R1,E

READ #3,R1;R$ \ MAT READ #3,R1,104;DATA_ARRAY

See also: Statements and Calls

Variables
BASIC is an algebraic language, with data values operated upon and stored in storage areas called
variables or vars. In UniBasic there are two types of variables. The first is a numeric variable and
the second is a string variable.

Variable Naming Conventions

In UniBasic there are two types of variable names; a short var and a long var. The default is the
short form: letter or letter+ digit for numeric variables, and letter or letter+ digit +$ for a string
variable. Any variable ending with a dollar sign is automatically recognized as a string variable.
To use the long variable names, the global environment variable LONGVARS is set, or you
may issue the command: VARIABLE +. A long variable is named by a letter followed by up to
31 additional characters which may be letters, digits or underscore.
Lower-case letters are equivalent to their upper-case counterparts. Some examples of variable
names include:

A B0 DATA_VALUE

A$ B0$ PHONE_NUMBER$

By default, up to 348 different variable names may be used within each program. This value
may be restricted or increased through the use of the environment variable MAXVARS, which
defaults to 348. When you enter a program statement that includes a previously unused variable
name, the variable count is compared to MAXVARS. If the definition of this new variable will
exceed the limit, the following error is displayed:

Too many variables defined

Once a variable name is in the internal variable table, it is not removed even if all occurrences of
its use are removed. A program must be dumped to ASCII form and re-loaded (see the
DUMP/LOAD/GET commands) in order to release unused variable names. To increase the
number of variable names beyond 348 (to 1113), the MAXVARS environment variable must be
set to "extended". The number of variables will only be increased in newly created programs. To
increase the number of variables in an existing program beyond 348, the program must be
dumped to text and then reloaded while MAXVARS is set to "extended".
If you exceed the number of variable names allowed, use the VARIABLE command to locate
one or more variables that could be removed from the program. Manually (or using an editor),
remove all occurrences of the deleted variables. Next, DUMP the program to text, perform a
NEW, and finally reload (LOAD or GET) and resave the program.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 54 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Subscripted Variables

Certain variables permit the use of a numeric subscript. In the second example below, subscript
defines the beginning byte of a variable, while subscript2 defines the ending byte of the
subscript. A subscript is given in the form:

[subscript]
or

[subscript1, subscript2]
These subscripts may be any numeric expressions which, following evaluation, are truncated to
integers. Subscripts are allowed on numeric variables, arrays and matrices, and string variables.
An error is generated if a supplied subscript is outside the range of the variable referenced.

Arrays and Matrices

An array is a list of numeric data elements. A matrix is a two-dimensional table. Array and
matrix elements are numbered origin zero for selecting individual elements. Therefore, an array
dimensioned [10] actually contains the 11 elements [0] thru [10].
Matrices also have row and column zero. The 4 X 4 matrix shown above contains the 25
elements:

[0,0] [0,1] . . . [0,4]

•
•
[4,0] [4,1] . . . [4,4]

The example below shows a four element array (list) and a 16 element matrix (4 by 4):
Array[4] Matrix [4,4]
 0 0 0 0 0 0
 1 0 1 2 3 4
 2 0 5 6 7 8
 3 0 9 10 11 12
 4 0 13 14 15 16

Note: Most MAT statements do not operate on row and column zero elements; they use
origin one. So, for the purposes of matrix arithmetic, a 4 X 4 matrix actually has
16 usable elements. The MAT READ and MAT WRITE statements do transfer
row and column zero.

Numeric, Array and Matrix Variables

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 55 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

A numeric variable is one of three types: simple, array, or matrix.
A simple numeric variable var or num.var is one that will store a single numeric value.

For example: A B4 INPUT
An array variable array.var may contain many values, which are operated upon either as a
whole (MAT), or individually by selecting a single element or subscript. The subscript
addresses a single array element by its number (0-n).

For example: A[3] B4[36] INPUT[0]
A matrix variable mat.var may also contain many values, which are operated upon either as a
whole (MAT), or individually by selecting two separate subscripts. The two subscripts together
address a single matrix element by its position, i.e. row and column number (0-x,0-y).

For example: X[9,2] B4[15,28] INPUT[0,10]
All subscripts are origin zero. If an array.var or mat.var is referenced without subscript, each
missing subscript defaults to zero (excepting MAT Statements defined to operate upon the total
variable).

For example: If A is an array, then A = A[0].
If B is a matrix, then B = B[0,0] and B[x] = B[x,0].

In most other contexts, the terms array and matrix are used interchangeably. In this guide, we
will restrict the usage of array to indicate one-dimensional and matrix to indicate two-
dimensional.

Automatic Dimensioning Numeric Variables

A variable’s type and precision are selected when dimensioned, either explicitly (DIM or COM
statements), or implicitly by its initial usage, termed Auto-Dimensioning. All auto-dimensioned
variables take on the default or last specified precision from a DIM or COM statement. A
simple num.var is auto-dimensioned to hold a single value. An array.var is auto-dimensioned to
hold 10 elements, and a mat.var to hold [10,10] elements. All numeric variables are initialized to
zero when dimensioned.

LET A=0

performs an automatic dimension of A to a simple variable at the current precision.
LET A[6]=0

performs an automatic dimension of A[10] at the current precision.
LET A[6,3]=0

performs an automatic dimension of A[10,10] at the current precision.

Re-Dimensioning Numeric Variables

Once any num.var, array.var, or mat.var is defined through explicit DIM or COM, or automatic

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 56 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

dimensioning, its precision cannot be changed. When a matrix variable used in a MAT
statement includes subscripts, the subscript values are interpreted as a new working size for the
selected matrix. This new size can not require more total elements than the original dimension.
For example, a matrix originally dimensioned as [10,10] has 121 elements. Some examples of
legal new working sizes would be:

[50,1] [2,40] [40,2] [20,4] [3,3] [7,6] . . .

The new working space will now remain in effect for the remainder of the program, or until
changed again. A change in working size does not affect variable precision, or file access
statements.
If you attempt to re-dimension a two-dimensional array (matrix), to (-1,-1) a subscript error is
reported.

String Variables

Variables used for string data are denoted by a dollar sign following the variable name.
A$ D5$ X0$ DATA_VALUE$

A string variable str.var must be explicitly dimensioned before it may be referenced in
statements in a program. A str.var can be dimensioned only once, by using a DIM or COM
statement . The dimensioned size represents the maximum size in bytes (characters) allowed for
the variable. A str.var may also be passed from one program to another using CHAIN READ, in
which case it may not be included within a DIM or COM statement.
A str.var is initialized with all zero bytes when dimensioned, and so has a logical length of zero.
See also: LEN function
A str.var may contain any ASCII Characters. Each str.var is terminated by the ASCII character
\000\. The logical length of any str.var is equal to the number of characters from a starting
position up to, but not including the terminator.

Subscripted Strings

String subscripts are used to access certain portions of a string by position. String positions are
numbered starting at 1. String subscripts may be any numeric expressions that, when truncated to
integers specify character positions between and including 1 and the dimensioned length of the
str.var.

A str.var given by its name alone (B$) refers to the entire string, from the first position up to the
first zero byte.

A str.var given with a single subscript (B$[14]) refers to all bytes from the starting position up to
the first zero byte.

A str.var given with two subscripts (B$[14,22]) refers to all bytes between and including the two
positions selected up to the first zero byte. Therefore, two equal subscripts (B$[8,8]) specify a
single byte position within the string.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 57 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

A str.var may also contain binary information including zero-byte terminator characters. Certain
statements are provided for manipulation of binary strings, CALL $STRING, MAT, CONV,
ASC and CHR. These functions and statements may be used to operate upon an entire string or
substring. The LEN function may not be used with binary strings since the first zero byte is
considered a terminator.

String Arrays

String arrays are not directly supported, but can be emulated using formulated subscripts. For
example, if a string array, A$, is to contain N strings of L characters each, the required
dimension is:

DIM A$[N*L]

and any given element E of the array can be accessed by:
A$[E*L+1,E*L+L]

Dimensioning String Variables

String variables must be declared in a DIM or COM, or CHAIN READ statement. Attempting to
use a string variable not previously dimensioned produces an error. No auto-dimensioning of
string variables is supported.

Re-Dimensioning String Variables

Once a str.var is defined, its size may not be changed. Any attempt to dimension the variable to a
smaller or larger size results in an error. A re-dimension of the same size is permitted, without an
error.

Expressions
There are two types of expressions: numeric expressions and string expressions. A numeric
expression num.expr is considered any group of numeric variables, constants, functions, and/or
operators returning a numeric result. A string expression str.expr is considered any group of string
variables, constants, functions, CRT expressions and/or operators to be concatenated (linked
together) returning a string result. Any statement may incorporate the use of string or numeric
expressions as long as the final result matches the format of the statement, or the variable chosen
to store the result.

Operator Precedence

Expressions are evaluated according to the precedence documented in the Operator Precedence
Table. Operators on the same level are evaluated from left to right in the expression, however
parentheses can be used to override this hierarchy.

Operator Precedence Table

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 58 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

(highest) + - and Functions Unary + - and FUNCTIONS evaluated R-L
^ Exponentiation Left-to-Right
* /% Mult, Divide, Modulo Left-to-Right
+ - Add, Subtract Left-to-Right
TO String TO string Left-to-Right
USING number USING string Left-to-Right
, + String concatenation Left-to-Right
< <= > >= <> expr relation expr Left-to-Right
AND relation AND relation Left to Right

(lowest) OR relation OR relation Left to Right
For example:

EXPRESSION EVALUATES AS RESULTS WITH
3+4*5 3+(4*5) 23
(3+4)*5 (3+4)*5 35
14/7*10/2 ((14/7)*10)/2 10
3^2*4 (3^2)*4 36
"3"+"B" 3 concatenate B 3B
'CSBP'+'BU' CS BP BU Clear Screen, begin protect & underline

Functions are evaluated before any arithmetic operations are performed.

Predefined BASIC Functions

Many built-in functions are included which can be used within numeric or string expressions.
Functions produce a result based upon a given value, termed an argument. The result, as well as
the argument can be string or numeric depending on the function in question. A function’s
general form is:

FUNCTION argument
where FUNCTION is the three-letter function name, and argument is the variable or expression
to be operated upon.
Note that the argument may or may not be enclosed within parentheses. Parentheses are only
required when the argument is itself an expression, as functions are evaluated on a higher
precedence than other arithmetic operations.
For example:

100 LET A=ABS X+2

In this case, the ABS function is evaluated before the 2 is added. The statement:
100 LET A=ABS(X+2)

performs the addition before applying the function.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 59 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The function itself can appear within another expression, provided its result is compatible with
the surrounding expression, e.g. a function producing a numeric result is invalid within a string
expression.

B$+INT(X)+C$

is by itself invalid unless the numeric result of the function INT is cast into a string result, for
example:

B$+STR(INT(X))+C$

All pre-defined functions are documented below in alphabetical order. The first column
identifies the function name (ABS, TAN, etc.), the second defines the argument type
(string/numeric), and the third the result type. The function’s operation is then described at the
right.
Name Arg Res Operation
ABS num num Absolute Value of the argument.
ASC str num ASCII value of specified character in string. Characters are

toggled and returned in BITS/IRIS 8-bit format unless
Binary Input mode is enabled by SYSTEM statement or
'IOBI' mnemonic.

ATN num num Arctangent in radians.
CHN num num Same as CHF.
CHF num num Various parameters of an open file or device. The argument

must be the channel number (0-99) of an open channel plus
a constant greater than 100 to select mode. The Channel
Modes are shown in the following table, and 'xx' refers to
the desired channel number.

0xx num Total number of records contained within the file. This value
can be used also as the first record number not contained in a
file. For Contiguous files, this is the larger of the initial
number of records specified in BUILD/CREATE or the
current number of records. If the file has a First Real Data
Record, that value is included in this size.

1xx num Record number of current file position. For an item file,
mode 100 yields the last record number written.

2xx num Byte displacement into record of current file position.
CHF 3xx num Record Length in words for IRIS Applications, or (0)

representing the channel status word for BITS Applications.
4xx num Memory location of UniBasic T_chan structure for this

channel.
5xx num Open File’s record length in bytes.
6xx num unused, returns 0.
7xx num unused, returns 0.
8xx str Filename of file opened on channel.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 60 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CHR num str Supplies the ASCII character selected by the argument value
for BITS applications. The argument is supplied in
IRIS/BITS 8-bit format and toggled to conform to the
internal character representation. If Binary Output is enabled
SYSTEM statement or 'IOBO' mnemonic is in effect, no
toggling is performed.

CHR num num Returns the ‘characteristic’ value for IRIS applications. This
is an integer exponent X such that: 10X-1 <= argument <
10X.

COS num num Cosine in radians.
DET --- num Determinant of the last matrix inverted. See the MAT INV

statement.
ERR num num Various values pertaining to error, ESCape and interrupt

branching. When using this function within IRIS programs,
the argument must be parenthesized to prevent
misinterpretation as an IF ERR statement. The argument
selects:

0 num Last error number in BITS error format
1 num stn of last BASIC error.
2 num stn of last ESCaped statement.
3 num stn of last interrupted statement.
4 num sub.stn of last error, ESC, or interrupt.
5 num sub.stn of last BASIC error.
6 num sub.stn of last ESCaped statement.
7 num sub.stn of last interrupted statement.
8 num Last Index File Structure error identifier.

ERM num str Supplies the selected message from the user message file
currently selected Returns null if no user message file is
selected. See CALL 40.

EXP num num Exponential, the constant e to the power given (eX).

FRA num num Fractional portion of argument. For example: FRA(4.5)
yields 0.5.

INT num num For a num.arg returns the greatest integer less than or equal
to the argument. For example: INT(4.5) yields 4, while
INT(-4.5) yields -5.

INT str num For a str.arg. returns the ASCII value of the first character in
the string. This is functionally identical to the ASC function.

IXR num num Integer radix base 10 of the argument. For example:
IXR(1000) returns 3.

LEN str num Length of string in characters. Length is computed from
optional starting subscript to first zero-byte terminator.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 61 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

LOG num num Logarithm base e of the argument. Logarithm in any base B
can be achieved using the theorem: logBX=logeX/logeB.

MAN num num Decimal mantissa of the argument in base 10.
MEM num num Supplies data from the selected location in main memory;

presently this function returns 0.
MSC num num Miscellaneous numeric functions. The argument selects the

value returned; -1 returned for unimplemented functions:
0 num Your current Port number.
1 num Logical input element last accepted.
2 num UniBasic revision level.
3 num stn of last GOSUB instruction. Value is returned and

removed from the stack.
4 num Reserved for future use.
5 num Current screen tab column counter.
6 num Current unused variable space.
7 num Returns the environment variable MSC7, or the Unix Group

number * 256 + User number if MSC7=65535 or is
undefined.

8-17 Reserved for future use.
18 num The constant PI (3.141592653589793).
19 num The constant e (2.718281828459045).
20 num Maximum channels per user; returns 64.
20-29 Reserved for future use.
30 num stn of current BASIC statement.
31 num sub.stn of current BASIC statement.
32 num crt_type value from current term. file.
33 num Number of columns in the open window.
34 num Number of rows in the open window.
35 num Size of environment variable INPUTSIZE.
36 num Reserved for future use.
37 num Maximum port number supported.
38 num Number of Total Users.
39 num European date flag.
40 num max-x value from current term. file; Number of columns for

your CRT
41 num max_y value from current term. file; Number of rows for

your CRT

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 62 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

42 num Window nesting level. Number of open Windows. On an
ANSI monitor, a default of 1 window is always opened.

MSF num str Miscellaneous string functions. Argument selects the value
returned:

-1 str UniBasic revision 8-character string. 5.8.2.3 returns
05080203, 5.3 returns 05030000.

0 str System date and time in international format: dd mon year
hh:mm:ss

1 str Current working directory path
2 str Text description of last BASIC error.
3 str System date and time in IRIS/US format: mon dd, year

hh:mm:ss
4 str Path and filename of the current BASIC program loaded into

memory. If the returned string does not begin with '/', the
program name is relative to your current working directory.
The full name must be assembled by concatenating MSF(1)
and MSF(4).

5 str Returns the name of the parent BASIC program, when the
current program was invoked by SWAP.

NOT any num Logical NOT. Returns 1 if argument is zero or null, or zero
if not.

RND num num A pseudo-random number X is generated in the range 0 < X
< argument.
See also: RANDOM statement for more on pseudo-random
numbers.

SGN num num Signum function. Returns the sign of the argument, where:
-1 if argument < 0
0 if argument = 0
1 if argument > 0

SPC num num Special numeric functions used by IRIS applications. The
argument selects the value returned, or a -1 is returned for
unimplemented functions:

SPC 0 num CPU time used this session in tenth-seconds.
1 num Connect time used this session in minutes.
2 num Hours since a base date of 1980. This value is computed

assuming all months have 31 days.
3 num Current tenth-second of the hour.
4 num UniBasic revision level.
5 num Returns the environment variable SPC5 or the Unix Group

number * 256 + User number if SPC5=65535 or is

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 63 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

undefined.

6 num Your current Port number.
7 num Returns the environment variable SPC7.
8 num Last BASIC error number in IRIS format.
9 num Current stn being executed.
10 num stn where last BASIC error occurred.
11 num Current Logical Unit number. The last directory name in the

current working directory is returned as a number.
12 num Logical Unit number of the current program. The last

directory name in the current programs pathname is returned
as a number.

13 num crt_type value from current term. file.
14 num stn of last GOSUB instruction. Value is returned and

removed from the stack.
15 num Return and clear the last BASIC error number in IRIS

format.
16 num stn of last GOSUB statement. Value is returned and left on

the stack; non-destructive read, whereas SPC 14 is
destructive.

17 num Length of last character-limited INPUT.
18 num System base year; always returns 1980.
19 num UniBasic License Number in decimal.
20 num System base year; Returns the default 1980 or the value of

the Environment Variable BASEYEAR.
21 num Length of the input buffer environment variable

INPUTSIZE.
22 num Available program space in words. Returns a large constant

to reflect virtually unlimited space.
23 num Return the current library logical unit number. A -1 is

returned if no current library, or if it is non-numeric.
24 num Statement number stn of last END, STOP or SUSPEND

statement.
SQR num num Square root function. Returns the square root of the

argument. An error is generated if the argument is negative.
STR num str Convert the numeric value into a string result. No leading or

trailing spaces are provided.
TAB num str Return the required number of spaces terminated by a zero

byte to move the terminal to the column specified by the
argument.

TAN num num Tangent of the argument returned in radians.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 64 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

TIM num num Returns various Time functions as numeric values. The
argument specifies the function to perform:

0 num CPU time used this session in seconds.
1 num Connect time used this session in minutes.
2 num System real-time hours since base date. Normally adjusted

using a base year of 1980. To change the value returned, see
the environment variable BASEYEAR.

3 num Current tenth-second of the hour.
4 num Current date in the form: MMDDYY where MM is the

month (1-12), DD is the day of the month (01-31) and YY is
the year such as 89.

5 num Current date in the form YYDDD where DDD is the day of
the year (1-366).

6 num Number of days since 0 January 1968.
7 num Current day of week (0=Sunday, 6=Saturday).
8 num Current year in the form YY, such as 89.
9 num Current month; 1=January, 12=December.
10 num Current day of the month ; 1-31.
11 num Current hour of the day; 0-23.
12 num Current minute of the hour; 0-59.
13 num Current second of the minute; 0-59.9.
14 num Current date in the form: MMDDYYYY where MM is the

month (1-12), DD is the day of the month (01-31) and
YYYY is the year such as 2001.

15 num Current date in the form YYYYDDD where DDD is the day
of the year (1-366) and YYYY is the year such as 2001.

16 num Current year in the form YYYY, such as 2001.
VAL str num Convert the string argument to a numeric value. An error is

generated if the argument is null or does not contain a valid
numeric value.

See also: DEF FNx for information on custom User-Defined functions within a program

Operators Used in Expressions

Several classes of operators are provided for use within expressions. Operators are evaluated
either right to left, or left to right and have a strict evaluation precedence. Parenthesis may be
used to change the precedence of an operation.

Unary operators + -

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 65 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Arithmetic operators ^ * / % + -
Relational operators < <= > >= = <>
Concatenation operators + ,
Boolean operators AND OR
String operators USING TO

Parenthesis may be used to override the default evaluation order of any expression.

Unary Operators + -

The unary operators (+ -) are used to change the sign of an argument. They are evaluated Right-
to-Left and have the highest precedence. The + is a non-operation, and the - changes a negative
value positive or a positive value negative.

Arithmetic Operators ^ * / % + -

Arithmetic operators follow unary operators in the precedence of an expression. The highest
precedence is given to (^) invoking exponentiation, which is essentially repeated multiplication.
A value yx is read, "take the value y raised to the power x." In simpler terms, multiply y by itself x
times. Exponentiation has the highest precedence of all of the arithmetic operators and is
evaluated Left-to-Right.

Next, (* / %) which selects multiplication, division and mod. The mod operator % returns the
remainder of a division of the two operands. This is calculated as (x - INT(x/y)*y). 10%2 yields
0, 10%3 yields 1, etc. These operators are evaluated from Left-to-Right after exponentiation.

Finally, (+ -) addition and subtraction are the lowest precedence of the arithmetic operators. These
are also evaluated from Left-to-Right.

Concatenation Operators + ,

Concatenation operators are used to link string expressions together. The result of concatenating
two string expressions is the combination of both expressions into a single string expression. Each
concatenated string is appended to the end of the current expressions result. "This" +" That"
results in the string: "This That", etc.

The concatenation operator (+) may be used in any expression involving strings, and IRIS
programs may also use the (,) concatenator in LET and IF statements.

Relational Operators = <> > >= < <=

All relational operators are evaluated on an equal precedence and all group Left-to-Right. Their
result is said to be True (one) if the relation is true, and False (zero) if the relation is false.
Relational operators can be used in IF statements or as part of a boolean expression. The format
is: expression relation expression, where relation can be any of the following:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 66 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

= Equal
<> Not Equal
> Greater Than
>= Greater Than or Equal To
< Less Than
<= Less Than or Equal To

When relationals are used for numeric comparisons, it is easy to understand that the
comparisons are strictly based upon the numeric values compared. All comparisons are made
using the same 20-digit significance as printed. No additional hidden digits interfere causing
printed values to differ from internal representation as is typical with systems utilizing binary
instead of decimal floating point operations.
When relationals are used in Boolean expressions, they result in a numeric result of one if the
relation is true, and zero if the relation is false.
String variables and literals are compared using the ASCII code of each character, one character
at a time. If the strings are not subscripted to control their length, then they are evaluated using
the current logical length (from any optional starting position up to the first zero-byte
terminator). Strings are equal only when they are exactly equal in length and contents. When a
shorter string is compared to a longer one, and they are equal up to the length of the shorter
string, the shorter string is said to be less than the longer string. If, during comparison, two
characters do not match, the left string is said to be less than the right string if the ASCII code of
the mismatched character is less than the ASCII code of the right strings character.
See also: Appendix A for a complete list of ASCII codes and their numeric values

Boolean Operators AND OR

The Boolean operators AND/OR are processed Left-to-Right and are used to compare several
relational expressions together. AND has a higher precedence than OR. The format of these
operators is: expression AND expression, or expression OR expression. The result is true (one)
for AND if both expressions are true, or true (one) for OR if either expression is true.

String Operator USING

The USING operator groups Left-to-Right and results in a formatted string result from a
numeric expression. The format of this operator is:

numeric expression USING string expression.
The numeric expression is evaluated first. Next the string expression is evaluated and used to
'format' the numeric expression into a string result.
The format string is scanned, and any characters which are not field descriptors are copied to the
destination until a format field is seen. Characters which can begin a format field are: $ # + - &
*. Other field descriptors (, ! CR DB) are treated as text and are copied until a starting character
is seen. After formatting a result, the remaining characters in the format string (up to the start of
another format field) are copied to the destination.
Each format field is made up of certain characters describing the formatting to be done. These

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 67 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

are called field descriptors. Numeric items are formatted according to the rules governing each
descriptor. If an item cannot be formatted according to the field given, the field is output filled
with asterisks (*). This generally occurs when a number is too large to be expressed with the
number of digits available in the field.

Field Descriptors

Field descriptors for a format field fall into seven categories:
• Leading characters
• Floating characters
• Numeric Characters
• Commas
• Decimal Points
• Post Sign
• Numeric Split

Leading Characters

A field can begin with one or two leading characters. The available leading characters are:
LEADING OUTPUT
 $ $ always
 + + if item >= 0; - if item < 0

 - space if item >=
0; - if item < 0

The $ can be combined with either + or - for a two-character leading group. Note that all three
leading characters are also valid as floating characters. A group of two or more identical
characters is considered a floating character designation. You can change the character output of
the $ leading character by setting the environment variable CURRENCY to any printable
character. You will still use the $ (or its ASCII equivalent) for your programming.

Floating Characters

A field can contain groups of floating characters. This character ‘floats’ and is eventually
executed just before the first digit output. The available floating characters are the same as the
leading characters ($, +, -) and are processed the same.

Note: Numeric formatting outputs a sign (+ or -) only if one is specified within the format
field. If none is given in the format, all items are output as positive, regardless of sign.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 68 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

One extra floating character should be given in the format field in addition to the number given
for the highest digit count desired. One space is required for the execution of the floating
character itself. The remaining floating characters can be occupied by digits. For example, the
format string "$$$$" can accommodate no number larger than 999, as one space is required for
the dollar sign itself.

Numeric Characters

A field can contain groups of numeric characters The available numeric characters are:
SYMBOL CHARACTER
Digit or space if leading zero
& Digit, leading zeroes not suppressed
* Digit or “*” if leading zero

Every numeric character given in a format field can contain a digit. For example:

Format: #### &&&& ***#

 17 0017 **17

247 0247 *247

6140 6140 6140

 0 0000 ***0

Commas

A field can contain one or more commas which are output when significant. For example:
Format: ##,### #,###,### &,&&&,&&&

 768 768 0,000,768

 2,147 2,147 0,002,147

****** 1,034,957 1,034,957

Both the programming and output of commas and decimal points is controlled by the
environment variables: EURINPUT, EUROUTPUT. These parameters let you change the
programming and output style respectively of comma and decimal point fields. You may set
either or both parameters for your desired effect.
See also: the Environment Variable: CURRENCY.
EURINPUT=1 ##.### #.###.### &.&&&.&&&

EUROUTPUT=1 2.147 2.147 2.034.957

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 69 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Decimal Points

A field can contain a period for an item’s fractional portion. The fractional portion will then
follow and be truncated to the number of digits specified. Only numeric descriptors (#&*) can
follow the period, and all are processed as a character. For example:
Format: ##.### ##.# ##.&& **.**

74.000 74.0 74.00 74.00

16.408 16.4 16.40 16.40

Both the programming and output of commas and decimal points is controlled by the
environment variables: EURINPUT, EUROUTPUT. These parameters let you change the
programming and output style respectively of comma and decimal point fields. You may set
either or both parameters for your desired effect.
See also: the Environment Variable: CURRENCY
EURINPUT=1 ##,### ##,# ##,&& **,**

EUROUTPUT=1 16,408 16,4 16,40 16,40

Post Signs

Post signs are only applicable to BITS programs. A field can be terminated with a post sign
designator. The post signs are:

Sign output if item >=0 output if item <0
+ + if item >= 0 - if item < 0
- space if item >= 0 - if item < 0
DB DB if item >= 0 CR if item < 0
DR DR is item >= 0 CR is item < 0

CR two spaces if item >=
0 CR if item < 0

Format: +##.##+ ##.##- ##.##CR ##.##DB

+47.24+ 47.24 47.24 47.24DB

- 6.27- 6.27- 6.27CR 6.27CR

A sign can be output before and after an item. Page numbers using the field ---&- are output as -
#- if the page numbers are made negative. For example, page number can be -7- or -10-.

Numeric Split

Numeric Split is only applicable to BITS programs. A numeric item, such as a part number, date
or government Social Security Number, can be separated automatically (without dividing into

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 70 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

separate numerics). The descriptor ! causes a - to be output when significant. For example:
Format: &&&!&&!&&&& ##!##!## &&&!&&&&&&!&&

130-42-1427 3-21-85 047-000065-24

000-06-1217 12-24-86 050-000036-03

String Operator TO

The TO operator is evaluated Left-to-Right and is used to specify part of a string expression.
The general form is:

string expression TO string expression
The string expression on the left is evaluated first and referred to as the source. Next the right
string expression is evaluated and shall be referred to as the pattern. The resulting string
expression is generated by copying all characters from the source up to and including the pattern
string. If the pattern is not found within the source, then all characters of the source become the
resulting string expression.
For example, if you have a large block of text and wish to find the first sentence, you might use
this operator to find the result of:

str.var TO ". " (Locate first period followed by 2 spaces).

Numeric Expressions

Numeric expressions are performed in either integer or 6-word decimal floating point. Each
argument is unpacked into the floating point register where all operations occur. The final result
is maintained in the highest precision until the full expression is computed. The result is finally
converted into the format requested by the operation. This may include truncation to an integer,
or converted to the precision of a variable for storage of the result. An error can occur if the
destination precision is not large enough to store the final result.
For example:

5 + 4

P * 10

VAL (A$)

String Expressions

A string expression str.expr is considered any group of string variables, literals, functions, CRT
expressions and/or operators to be concatenated (linked together) returning a string result. For
example:

T USING "#####"

A$ + B$

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 71 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

"Processing element: " + A$

All statements may incorporate the use of string or numeric expressions as long as the final
result matches the format of the statement. What this means, is that any statement (not just IF,
PRINT and LET) that previously required a str.lit, or str.var, may now contain any legal string
expression. A variable is required only when a statement returns data into the variable such as
LET, INPUT, READ, etc. Numeric and string conversion is performed across an equal sign of
the LET statement, or through the VAL, STR, ASC and CHR functions.
The exact interpretation of the + operator is determined by the operand that precedes it, so that:

LET B$=A$+A

implies string concatenation, and the num.var A is converted to string automatically.
However, the reverse is not true:

LET B=A+A$

implies addition but is an invalid expression. In this case, the conversion of A$ must be done
explicitly, e.g.:

LET B=A+VAL(A$)

String concatenation converts a numeric operand on the right from numeric to string. Numeric
expressions do not perform automatic conversion of string elements.

Note: The IRIS string concatenator ',' may only be used in IF and LET statements. To
utilize string expressions in all other statements, use the concatenator '+'.

Examples:
100 OPEN #0, P$+F$+"."+STR(SPC(5))

200 ON VAL(A$) GOTO 100,200,300

300 PRINT USING A$+".##"; D, E, F

Rules Governing String Processing

When using string items within a program, that is any str.var, str.lit, crt.expr, functions returning
string values or str.expr, the following rules are applied to operations:
• A string may contain any of the ASCII codes listed in Appendix A.
• A zero ASCII byte is used to terminate any string segment.
• str.lits using the form \xxx\ to represent ASCII characters perform an automatic toggle of

the high-bit to insure compatibility with IRIS and BITS applications externally, and Unix
internally. When Binary Input or Output is enabled, this toggling is disabled for use in
communications and raw binary processing.

• String variables must be DIMensioned, COMmon, or CHAIN READ prior to use. They
may not be re-dimensioned to other than the original declared size.

• String variables may be subscripted to select a starting and ending character position within

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 72 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

a string. A single subscript selects a starting point only. All strings terminate upon the
occurrence of a zero-byte terminator, the second subscript, or the physical dimension of a
string.

• A full string is defined to be any reference to a string variable in which a single or no
subscripts are supplied.

• A sub-string is defined to be any reference to a string variable using 2 subscripts.

String Assignment

When assigning data to a string using LET, the following rules are applied when using full
strings:
• The source is truncated to the size of the supplied destination.
• A zero-byte terminator is inserted in the destination if the source is shorter than the

destination.
• A zero-byte terminator may be placed within a string by specifying a single subscript in the

form: str.var[x] = "".
When assigning data to a string using LET, the following rules are applied when using sub-
strings in IRIS applications:
• When the source is shorter than the destination, the remaining characters within the

subscripts are deleted. Characters following the subscripted portion are shifted down to
immediately follow the shorter source. (IRIS Mode).

• When a zero-byte is overlaid in the destination, it is pushed forward to the first character
position following the length of the source copied. This may cause a zero-byte to be placed
into the first character position beyond the second subscript if the source exactly fills or is
larger than the destination.

When assigning data to a string using LET, the following rules are applied when using sub-
strings in BITS applications:
• When the source is shorter than the destination, the second subscript is ignored. Only the

number of characters supplied in the source are copied to the destination.
• When a zero-byte is overlaid in the destination, it is pushed forward to the first character

position following the length of the source copied if and only if the source string does not
completely fill the destination. No bytes outside the supplied subscripts are altered.

When assigning data to a string using LET, the following rules are applied when using sub-
strings in IRIS applications running with the environment variable STRING=HAGEN set:
• When the source is shorter than the destination, the second subscript is ignored. Only the

number of characters supplied in the source are copied to the destination. No shuffling
down or overlaid zero-byte operations are performed.

Other special string functions are available to the application:
• Concatenated strings are evaluated and treated as a single source string for LET. IRIS

programs concatenate strings in LET or IF statements by placing a comma between each
str.var, str.lit, string function or crt.expr. For BITS applications, the concatenation operator
+ is used. The + operator may also be used for IRIS applications in statements other than

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 73 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

LET or IF.
• A string may be completely filled with a single character (or group of characters) except

zero-byte terminators using the form:
• str.var = str.expr (+|,) str.var, i.e.: A$=" ",A$ to space fill.
• A zero-byte terminator is placed into a str.var by supplying a single subscript for the

destination, and a null str.lit as the source, i.e. str.var = "". To fill a str.var with zero-byte
terminators.
See also: CALL 57 and CALL 60

• Characters beyond the zero-byte terminator may be operated upon by specifying a starting
subscript beyond the zero-byte. Use the LEN function to determine the length of any sub-
string.

• A number of special CALL Statements are available for string processing.
• Numeric data may be converted to string using the LET Statement, or in some cases the

functions STR and CHR.

UniBasic Files

This section documents the types and usage of data files within UniBasic applications.
UniBasic differs from IRIS and BITS in its internal representation of numeric and string data
within variables and files. These differences, once understood, provide the user a totally
compatible platform for moving IRIS and BITS programs and data files without sacrificing the
new features of Unix.
ASCII characters stored internally conform to 7-bit ASCII industry standard. 8-bit ASCII
characters are reserved for graphics, and crt mnemonics.
IRIS and BITS store characters as 8-bit strings in exactly the reverse format. All printable
characters have bit-8 set, and 7-bit codes (less than 2008) are used for printer (or CRT)
functions. A carriage return is represented as \215\ and code \015\ represents CRT function #158.

Character processing is performed as follows:
Characters input from the terminal port are passed exactly as received. Most systems are
configured to strip the parity bit which, in effect returns 7-bit characters to the system. Unless
you are sending/receiving binary data, verify that the port is configured to strip this parity bit.
The Unix command: stty -a command will display istrip if parity is being stripped, or -istrip if
8-bit data is allowed.
Program statements, commands and filename comparisons must be performed using 7-bit
characters for consistent operation.
When a str.lit is entered, printable characters are stored as received. Characters entered using the
\xxx\ octal representation form are high-bit toggled except \0\ and \200\; i.e. \201\ is stored
internally as \001\, and \001\ as \201\. During display (such as LIST), the data is again toggled
for display in the familiar form.
During output, printable characters less than \200\ are displayed directly. CRT translation is
performed on all bytes greater than \200\ sent to the screen. When these characters are

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 74 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

transmitted to a file or device, no translation is performed. Later screen display of this data
performs the CRT translation, or a supplied lptfilter is available to provide translation for device
independence.
Since input characters are stripped and str.lits toggled internally, the application runs
unmodified. Any \215\ in a program is stored and output as a [RETURN], and \015\ is stored as
\215\ invoking CRT function #15.
When obtaining the decimal ASCII code of a character using ASC or CALL $STRING, the
internal value is again toggled to match the IRIS/BITS format. A [RETURN] is the value 14110.
CRT codes are returned as codes less than 128. This facility permits most applications which
check the ASCII range of a character to operate transparently.
When generating ASCII data using the CHR or CALL $STRING functions, your supplied code
is toggled to the new internal format. In this way, the code 141 still generates a [RETURN] for
your application.
This internal toggling is virtually transparent to all Business Application Programs. All normal
comparisons of strings, input and records work as before. String comparison is always
performed in 8-bit format to ensure compatibility when operating upon binary strings.
To facilitate operation with true binary data, the toggling feature for ASC, CHR, and CALL
$STRING is automatically disabled when Binary Input or Binary Output modes are enabled.
Binary Input and Output modes are available using SYSTEM and the IO mnemonics.

Note: System or special applications that manipulate binary data using CHR, ASC or
$STRING may yield unpredictable results when Binary Input/Output is not enabled
since the resulting top bits will be toggled.

To pack or unpack binary data when not operating in Binary mode, use the CONV statement. If
this statement is not acceptable, a CALL is provided to toggle data within a string according to
the same rules described above to minimize changes to these special system programs. For
example:

A$ contains a binary string:
CALL 60,3,A$!Toggle the top bits

...proceed as normal, processing the data with ASC/$STRING

A$ contains binary data built from $STRING or CHR function
CALL 60,3,A$!Toggle data into actual binary

Introduction to Files

A file is a pre-selected area of the disk to be considered a single data storage entity. Files allow
data to be stored and retrieved by programs, and retain their data indefinitely. A device is an
external storage medium such as a hardcopy printer, magnetic tape, or terminal screen.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 75 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Maximum file size is limited by the host operating system. Usually, a file may contain a
maximum of 231 bytes. On many operating systems, files can be created as “huge” files to
exceed this limit. Some systems may have a limit set upon the number of blocks a file can
contain. This value is available using the command ulimit. Following installation, verify that
this value is not restrictive for your applications.
All files are logically divided into equal sections called records. Record division allows data to
be accessed via its record number. Each record is made up of a selected number of bytes
(characters), and all records in a given file are of equal length. When a file is created, the creator
specifies this record length in bytes or words (byte-pairs). Data records may be any even length
from 2 to 65534 bytes. All files have a record length, whether accessed by record or not. Saved
BASIC programs, for example, are given an arbitrary record length of 65534 bytes.
Record numbers usually start at zero, meaning a file with five records has record numbers 0, 1,
2, 3, and 4. Individual bytes within each record are also numbered from zero. BASIC statements
allow access to specific bytes within any record by giving a byte displacement.
To access a file, a link is made to the file using a channel number in the range 0 to 99. All
communication is via the channel number linked to the file or device. The link is made using one
of the statements BUILD, CREATE, EOPEN, OPEN, or ROPEN.
Several types of data file structures are supported, each with its own rules governing access and
modification. The types of files available to UniBasic are:

Universal Data Files
Contiguous Data Files
Tree-Structured Data Files
Formatted Item Files
Indexed Keyed Files
Saved BASIC Program Files

UniBasic can also read and write dL4 Portable Indexed Contiguous, Contiguous, or Formatted
files. All other files are assumed to be Text Files and are accessed according to the rules
contained herein.

Filenames and Pathnames
A filename is the name given to a file, and is made up of lower-case letters, digits, dash (-) or
periods (.). Upper-case characters are converted to lower-case automatically. Other characters,
although allowed by Unix are not permitted in standard UniBasic filenames.

A pathname is a series of Unix directory names separated by /, terminated with a filename, such
as: /usr/ub/23/payroll.

Standard filenames are converted to a series of pathnames, appended one at a time to the entries of
the LUST (Logical Unit Search Table) until a match is found.

Filenames beginning with / are assumed to be full pathnames and are passed directly to Unix.
LUST is not used, and no conversion is performed.

The form pack:file is converted into pack/file. Account branch characters (%&#, etc) and account

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 76 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

[grp-usr] suffixes are discarded.

Filenames in the form 0/filename are converted into sys/filename; files in the form lu/filename
remain unchanged excepting the omission of leading zeros in the lu number, i.e. 023/filename
becomes 23/filename.

To replace an existing filename, append an ! character to the filename.

File Attributes, Protection and Permissions

Access to files on the system is controlled by the file attributes or permissions given by the
creator for access to a file by other users on a system. The default attributes under Unix are
made up of 3 octal digits. The first digit affects the owner/creator of the file. The second digit
controls other users in the same group, and the third digit controls access to all other users. The
digits are as follows:

4 Allows reading of a file
2 Allows writing to a file
1 Allows execution of a file (for shell scripts and C programs)

The digits are combined to select the desired protection. A 6, for example permits reading and
writing to a file; 666 allows reading and writing by all levels. The default permission (when
none are specified) is 666 permitting reading and writing by all users. To facilitate a different
default protection (such as IRIS <77> protection against all but owner), change the umask
setting in /usr/ub/.profile. This mask is a 3-digit mask that removes permission digits passed on
CREATE and BUILD. The first digit should be 0 to allow the owner unlimited access to the
file. The second and third digits control masking for other users in the same group and other
users in different groups as follows:

4 Remove read permission.
2 Remove write permission

To simulate IRIS default <77> protection, set umask to 066.

Using IRIS Protections

IRIS protections <pp> are processed as follows. A 6 is selected for the owner/creator, the first
digit is applied to users in other groups, and the second digit is applied to users in the same
group. Note that privilege levels are not supported in Unix; the same group equates to the same
privilege, and other users in other groups applies to users at lower privilege levels.
The IRIS digits are mapped as follows:

4 Remove Read permission
2 Remove Write permission
1 Ignored

A <77> protection results in the Unix protections <600>, <70> maps to <660> and <33> to

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 77 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

<644>.

Using Unix Permissions Directly

A 3-digit permission value may be passed directly to Unix. The BUILD and CREATE
statements as well as the CHANGE utility provide for specifying a full 3-digit protection value.
The permissions are supplied using the format: <ppp> as defined above.
See
also: File Attributes, Protection and Permissions.

BITS Attributes

BITS attributes <PRWEO> may be specified and are converted into the appropriate Unix
permission.

P Set default 666 protection code
R Remove Read permission at all levels except owner
W Remove Write permission at all levels except owner

Other BITS attribute letters, such as: D, S, G, A, and B are accepted and ignored.

Supplemental Protection Attributes

Additional letter attributes are supported and must be placed before any numeric selections
within the <> brackets.

U Build a Universal data file which contains IRIS style BCD data. Unlike other IRIS
BCD files, these data files are the only ones that are platform independent.
See also: Universal Data Files, PREALLOCATE environment variable and IRIS
BCD Data Files.

H Build a “huge” Universal data file. A “huge” file is a Universal data file that supports
data or index parts larger than 2 gigabytes in size. Huge files are not supported on
some older operating systems.

Q Build the file to contain IRIS style BCD data. Valid for data files only. Forces numeric
data to be stored in IRIS Binary-Coded Decimal form. Q is used for files transferred
from IRIS without record conversion.
See also: PREALLOCATE environment variable and IRIS BCD Data Files.

K Build the file to contain 8-Bit IRIS/BITS style binary keys. Data is toggled to 7-Bit
format whenever a key is retrieved into a string variable, and into 8-Bit format when
new keys are inserted. This attribute is required when a file has mixed key values both
above and below \200\. Normal ASCII keys do not require this special attribute.
When converting files from IRIS, options are available to force this condition.
See also: PREALLOCATE environment variable and IRIS BCD Data Files.

F The program is an IRIS BASIC program. This attribute causes the program to obey

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 78 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

IRIS rules for encoding syntax of BASIC Statements and Runtime considerations.
This attribute is set automatically during SAVE commands, and has no effect if set on
data files. IRIS rules are applied for all runtime and file-access statements.

E The program is execute-only and cannot be listed. Valid for saved BASIC programs
only. The program may be executed, but all channels are closed and the program is
erased from the user’s partition when aborted or completed. This attribute is used for
system command programs written in BASIC, such as LIBR.

O The program is an overlay. When an overlay program is executed from command
mode, UniBasic is forked creating a child process to run this command. Upon
termination for any reason, the child process dies, and remaining type-ahead is
returned to the original program. The original program is restored as if the Overlay
program was never called. Specifically, overlay protection is used for BASIC program
processors such as LIBR, QUERY, SCAN, etc.

J Build the file to contain IMS style BCD data. Valid for data files only. Forces numeric
data to be stored in IMS Binary-Coded Decimal form. J is used for files transferred
from IMS without record conversion.

Y Flag the file as an IRIS polyfile. Perform functions in bytes instead of words, and set a
first real data record of zero.

Z Force usage of BITS numeric and string data in a "Huge" file. Warning: files using
BITS data are not portable between platforms.
See also: PREALLOCATE environment variable and IMS BCD Data Files.

Accessing Data Files Through a Channel

Once a channel link is established, file access may be performed. The following statements are
used to control channel links, and transfer data to and from files.

BUILD # Build a new data or Text File.
CLEAR # Clear an open channel (same as CLOSE).
CLOSE # Close an open channel.
CREATE # Create a new data file.
EOPEN # Exclusively open a file for single access.
INDEX # Maintain the index portion of a file.
INPUT # Input ASCII input from a channel; BITS only.
MAT READ # Read {lock} a matrix / binary string.
MAT WRITE # Write {lock} a matrix/binary string.
OPEN # Open an existing file for reading and writing.
PRINT# Redirect normal PRINT format to a channel.
RDLOCK # Read and lock a record.
RDREL # Read a relative 512-byte block from a channel.
READ # Read {lock} data from a channel.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 79 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

REWIND # Reset the channel to the first record and byte.
ROPEN # Open a file for Read-only, ignore locks.
SEARCH # Maintain the index portion of a file.
SETFP # Set the file position for sequential transfers.
UNLOCK # Unlock any locked record on a channel.
WRITE # Write {lock} data to a channel.
WRITE #x;; Unlock any locked record on a channel.
WRLOCK # Write and lock a record.
WRREL # Write a relative 512-byte block to a channel.

Note: Data transfer is governed by the file type for IRIS applications, and by the statement
used for BITS applications. Mixing statement types can have adverse effects on an
application. Before using any class of statement, refer to BASIC Statements and
Appendix D CALLS in this guide for additional information.

Channel Expression - chn.expr

SYNOPSIS:
STATEMENT #channel {,record {,byte displacement {,time-out}}};expr.list
{;}

DESCRIPTION:
STATEMENT specifies any BASIC statement that performs an operation to a
file or device, as described previously.
channel is any num.expr which, after evaluation is truncated to an integer
and used to select one of 100 possible open files. The channel must be in the
range 0 to 99. Special channels are reserved for system use. Channel (-1)
contains the open BASIC program currently loaded. There is no open
channel if this is an unsaved program. Channel (-2) is used for special
operations such as DUMP, LOAD and MERGE.
The channel may be the only parameter if it is followed by a semi-colon, i.e.
#3;. Additional parameters are parsed until the first semi-colon is seen. An
error occurs if more than (4) parameters are supplied and a semi-colon
terminator for the channel expression is not specified.
The optional record is any num.expr which, after evaluation is truncated to
an integer and used to select a starting record number for the transfer. If the
record expression is omitted, transfer will be sequential based upon the file
type, statement and emulation (IRIS/BITS) in force. Sequential access is
always from the last byte transferred for BITS applications.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 80 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

When sequentially accessing records in IRIS applications, the following
rules apply:
RECORD ACTION PERFORMED
omitted The record number used for the last access to this channel is

incremented and used to select the record. This mode reads
sequential records of a file.

-1 Performs identically to 'omitted' except that it serves as a place
holder so that a byte displacement may be specified.

-2 The record is reset to the same record number used during the
last access to this channel. This, in effect re-transfers the same
record.

The optional byte displacement is any num.expr which, after evaluation is
truncated to an integer and used to specify the starting point in the record for
the transfer. If the byte displacement is omitted, transfer begins with byte 0
of the selected record.
The optional time-out expression is any num.var which, after evaluation is
truncated to an integer and used as the maximum time (in tenth-seconds) to
wait for the selected record to become unlocked. If, after the specified time-
out the record is still locked, the error Selected Record is Locked is returned
to the program. If the time-out is (-1) or omitted, default record lock retry is
governed by the environment variable LOCKRETRY. If this value is zero,
retry continues indefinitely. A non-zero value specifies the number of five-
second periods to wait prior to issuing the Selected Record is Locked error.
Any time-out is terminated immediately upon the record becoming available.
The expr.list may contain a list of variables or expressions for the operation.
If the statement is terminated with a semi-colon, and the running program is
an IRIS program, the selected record is unlocked at the termination of the
statement. Otherwise the record remains locked until another operation is
performed unlocking the record.

ERRORS:
Channel is not opened
Channel is already opened
Illegal Channel Number
Selected Record is Locked

See Also:
CHF function, CHN function, Accessing Data Files Through a Channel,
Introduction to Files

Record Locking

Record locking is a feature of the file structure to restrict access of a given record to a single
user. Under Unix, this is accomplished by first checking whether any other user has a lock on

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 81 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

the same record on the same file. If not, the record is locked while the statement performs its
transfers. Upon completion of the transfer, the record is unlocked unless the statement requested
a continuing lock.
Record Locking is essential in applications where two or more users are trying to update the
same information simultaneously. The first user might be performing an inventory receipt, while
the other is taking stock to fill an order. Applications must be written to ensure that all updating
operations are performed using Record Locking. When two or more users attempt access, the
first is given access, and additional users are suspended (or an error is given) until the record is
available.
For example, the first user is updating stock received into inventory. The part number is entered
and its record is locked. The second user entering that part number for an order is suspended.
The first user enters the amount received and the record is updated and unlocked. The second
user continues unaware of the dual access. This assumes of course that the first user didn't leave
the record locked indefinitely.
A deadly embrace may occur when two or more users are attempting to access a record which is
locked by the other. Both users wait indefinitely for the other to unlock the record. For example,
user 1 has locked the ABC Company customer record and is attempting to read the parts file
record for wool carpet. Meanwhile, user 2 has already locked wool carpet and tries to read ABC
Company. Each waits indefinitely for the other. Some Unix systems return a system error
(negative BASIC error) when a deadly embrace is detected.
You can avoid infinite suspension of a program by specifying a time-out or period of time (in
tenth-seconds) to wait for a locked record. If, after that amount of time the record is still locked,
an error is generated to the program. For older applications, set a system-wide time-out default
selected when no individual time-out is specified in the statement.
The Environment Variable LOCKRETRY specifies this delay. If the value is undefined (or
zero), programs wait indefinitely for locked records (IRIS 7 style). A non-zero value indicates
the number of five second intervals to wait before generating an error to the application.
To perform an operation and lock a record in IRIS mode, simply omit the optional ';' at the end
of the statement. To perform the operation and unlock the record, include the trailing ';'. To
unlock any previously locked record on a channel without performing a transfer, issue the
statement: WRITE #channel;;
In BITS mode, the statement controls Record Locking (READ, WRITE, PRINT, INPUT) for
operations without locking, and RDLOCK/WRLOCK for operations requiring locking. To
remove any outstanding locks on a channel, the UNLOCK # statement is used.

Note: Any locked record on a channel is automatically removed on any of the following:
Closing the channel.
Trailing semi-colon on the last operation (IRIS).
Access to the same record without again locking.
Attempted access to any other record.

Only a single record may be locked on any given channel. If you need to lock several
at once, you must open the file on separate channels.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 82 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Text Files
A Text file is a file comprised of ASCII characters terminated by a zero-byte. For purposes
of random access, Text Files are assumed to have a record length of 512 bytes. Data begins
in the first byte of the file and there is no special UniBasic header. Lines of text are
separated by the Unix new-line (\12\) character. When Text Files are created, the data is
stored in Unix 7-bit ASCII format to ensure compatibility with all other Unix text editors,
word processors or other programs.

Creating Text Files

Text files are created using the BUILD statement. Standard Unix files are built using 7-bit
data without any special UniBasic header information. All Text files are accessible to any
Unix text processor or command.

Accessing Text Files

Text files are typically accessed sequentially. When data is written to a Text File, carriage returns
are converted into new-line characters. A column count is maintained for the channel. Printable
characters increment the column; return, new-line or form-feed resets the counter to zero.
When TAB functions are used to the open channel (i.e. writing to a device such as a printer), the
column is kept separately from the column count of the screen. If writing to a file, a zero byte
terminator is always maintained at the end of the file. A zero byte is written and the file pointer
is decremented such that each subsequent write operation overwrites the trailing zero byte, and
appends a new zero-byte at the end-of-file.
When reading data from a Text File, End-of-File is signified by the occurrence of a zero byte,
regardless of whether data exists beyond the zero-byte. BITS programs generate an End of File
error (88), and IRIS applications simply receive a null (empty) string.
When BITS applications read from Text Files, the normal statement used for sequential access is
INPUT. Input terminates on new-line or form-feed. No terminator is placed into the string. An
empty string is simply a blank line in the Text File. Carriage returns are stripped from the file
and ignored.
When IRIS applications READ from Text Files, a null string indicates the end-of-file.
Otherwise, carriage returns are stripped from the file, and new-lines terminate the READ. All
new-lines are converted into the string as \215\ carriage returns. Additional special modes are
available for IRIS applications reading Text Files. The optional record controls the type of
operation to perform:

Record Action Performed
omitted Access the next sequential byte of the file up to the first new-line character or

size of the string (whichever is smaller). Replace the new-line with \215\.
-1 Same as 'omitted'.
-2 Transfer characters up to the DIMensioned size of the string variable. Convert

new-lines to \215\ but do not terminate the transfer until end-of-file or filling the
string.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 83 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Text files may also be accessed using MAT READ and MAT WRITE statements.

Saved BASIC Program Files
A SAVED BASIC program file contains p-code compiled BASIC programs stored by the SAVE
or PSAVE commands. Each program is stored with several flags indicating the type of program
(IRIS or BITS), and encryption status. For further information on application program protection
and encryption, see the PSAVE command.

Newly created programs are of the type IRIS or BITS based upon the default BASICMODE
environment variable or command (NEW, NEWB, or NEWI) issued. This option controls
statement syntax and run-time operation and cannot be changed for the life of the program file.

A program file is converted to a Text File using the DUMP command.

When converting a Text File into a program file, verify that your default program mode (IRIS or
BITS) is set via the BASICMODE environment variable, the proper NEW command, or by
issuing the proper GET command for BITS mode.

Contiguous Data Files
Even though the Unix systems do not support Contiguous files in the traditional internal sense,
compatibility is provided for applications designed to use these files.

Contiguous files utilize a fixed-length record, specified during creation. Each record contains the
identical number of bytes. The total number of records to be within the file is stored within the
file's header during creation.

The value of the PREALLOCATE environment variable is used during file creation and globally
during execution of programs performing Contiguous file access. Refer to this documentation in
order to define the options properly for your applications. PREALLOCATE provides features
including pre-writing all records to null, limiting expansion, and eliminating system file structure
gaps in the file.

A Contiguous file will return as its number of records (CHF/CHN functions), the greater value of
its current physical size, or the size in records specified during creation.

Access to any record within the valid CHF/CHN range with either READ or WRITE statements
is permitted. If the record is beyond the current physical size, the file is extended unless this
feature is restricted using PREALLOCATE. To expand a Contiguous file, simply write to any
record higher than the current size.

During expansion of the file, all intervening records are written (with zero bytes) from the current
physical size up to and including the new record. To prevent the writing of all intervening records,
set PREALLOCATE accordingly. This automatic filling in of records is to prevent Unix from
reporting the file as sparse (gaps). Sparse files are usually considered corrupted when the file
system is checked, although they are perfectly valid.

Creating Contiguous Files

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 84 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Contiguous files are created using the BUILD or CREATE statements. In addition, the
FORMAT command may be used from command mode to create the file. A Contiguous file may
have any number of records with a maximum record length of 65534 bytes (32767 words).
Contiguous files may be built as Universal files if the PREALLOCATE 8192 (16384 for “huge”)
flag is set or if the <U> or <H> attributes are specified.

Accessing Contiguous Files

Contiguous files are accessed by supplying the record and byte displacement. Access may cross
a logical record boundary. Care must be taken to ensure that your transfers are within the
specified record or data in subsequent records may be damaged.
When transferring data to a Contiguous file, the record, and byte displacement are used to
specify the starting point for the transfer. All items in the var list are transferred sequentially.
The following table illustrates the optional use of the supplied record.

Record Action Performed
omitted The record number used for the last access to this channel is incremented and

used to select the record if the program is an IRIS program. BITS programs
resume transfer at the first byte not transferred by a previous operation. This
mode reads sequential records of a file.

-1 The record number used for the last access to this channel is incremented and
used to select the record. This mode permits the selection of a new byte
displacement within the incremented record.

-2 The record is reset to the same record number used during the last access to this
channel. This, in effect re-transfers the same record.

Tree-Structured Data Files
Tree-structured files utilize a fixed-length record, specified during creation. Each record contains
the identical number of bytes. These type of files are preserved for compatibility with BITS
applications. They provide a free-format record in a dynamically expandable structure.

A Tree-structured file will return as its number of records (CHF/CHN functions), its current
physical size in records.

Access to any record within the valid CHF/CHN range with either READ or WRITE statements
is permitted. If the record is beyond the current physical size, the file is extended.

During expansion of the file, all intervening records are written (with zero bytes) from the files
current physical size up to and including the record being accessed. This automatic filling in of
records is to prevent Unix from reporting the file as sparse (gaps). Sparse files are usually
considered corrupted when the file system is checked, although they are perfectly valid.

Creating Tree-Structured Files

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 85 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Tree-structured files are created using the CREATE statement. A Tree-structured file may have
any number of records with a maximum record length of 65534 bytes (32767 words).

Accessing Tree-Structured Files

Tree-Structured files are accessed by supplying the record and byte displacement. Access may
cross a logical record boundary. Care must be taken to ensure that your transfers are within the
specified record or data in subsequent records may be damaged.
When transferring data to a Tree-structured file, the record, and byte displacement are used to
specify the starting point for the transfer. All items in the var list are transferred. The following
table illustrates the optional use of the supplied record.

Record Action Performed
omitted The record number used for the last access to this channel is incremented and

used to select the record if the program is an IRIS program. BITS programs
resume transfer at the first byte not transferred by a previous operation. This
mode reads sequential records of a file.

-1 The record number used for the last access to this channel is incremented and
used to select the record. This mode permits the selection of a new byte
displacement within the incremented record.

-2 The record is reset to the same record number used during the last access to this
channel. This, in effect re-transfers the same record.

Formatted (Item) Data Files
Formatted ITEM files are sequential data files utilizing a fixed-length record and fixed record
format. Each record is pre-defined with respect to the data record definition. The format is
initialized through creation and is maintained for the duration of the file's existence. When
initially created, only a single record (Record 0) is within the file.

The record length can be up to 65534 bytes in length. A null record is returned when access is
made to a record below the maximum record number, but not physically in the file.

The value of the PREALLOCATE environment variable is used during file creation and globally
during execution of programs performing Formatted Item file access. Refer to this documentation
in order to define the options properly for your applications.

A Formatted file will return as its number of records (CHF/CHN functions), the first record not
contained within the file. If your files grow dynamically using this function, no empty records
exist in the file. If you READ a record beyond the current number of records in the file, an error is
generated (Illegal Record or End-of-file). When you WRITE a record beyond the current number
of records, the file is expanded automatically.

During expansion of the file, all intervening records are written (with zero bytes) from the file's
current physical size up to and including the record being accessed. To prevent the writing of all
intervening records, set PREALLOCATE accordingly. This automatic filling in of records is to
prevent Unix from reporting the file as sparse (gaps). Sparse files are usually considered corrupted
when the file system is checked, although they are perfectly valid.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 86 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

PREALLOCATE may be set to return a Record-Not-Written error if required by the application.
When defined, each read operation is checked for a null record. If the record contains all zero-
bytes, the Record Not Written error is returned. When not defined, null records are returned. This
function slightly degrades read access to Formatted files. Set this option only when your
application expects the Record Not Written error in the middle of the file.

Creating Formatted ITEM Files

Formatted ITEM files are created using the BUILD or CREATE statements. In addition, the
FORMAT command may be used from command mode to create the file. A Formatted Item file
may have any number of records with a maximum record length of 65534 bytes (32767 words).
Formatted ITEM files may be built as Universal files if the PREALLOCATE 8192 (16384 for
“huge”) flag is set or if the <U> or <H> attributes are specified.

To create a Formatted Item file within an application, write to record zero a list of variables to
sequential item numbers. The type and DIM of each variable is recorded in the format map. When
a numeric variable is written, its precision is also stored in the format map. When a string variable
is written, its DIMensioned size is incremented and then rounded up to an even number of bytes.
If a MAT operation is performed, a Binary Item is created using the actual DIMensioned size.
Strings are rounded up (not incremented first), and numerics occupy the entire size of the
specified variable, array or matrix. The actual data within the variables is also written to the
record after the item is defined in the format map.

An error is generated if items are written in other than sequential item number order starting at 0,
or when you exceed 128 items. Once an item is defined, its type, precision or length may not be
changed.

Accessing Formatted ITEM Files

Formatted files are accessed by supplying the record and item number (byte displacement).
Access cannot cross a logical record boundary.
When transferring data to a Formatted Item file, the record and item number are used to specify
the starting point for the transfer. All items in the var list are transferred, and each must match
the pre-defined record layout in the format map.
If an Item is defined as string, only a str.var may be transferred. If the Item is numeric, a
conversion is performed when the variable precision does not match the item's definition. Data is
converted to the precision of the destination; var when reading, item when writing. An error
occurs if the destination precision is too small to hold the numeric value.
Binary items are accessible using MAT statements. You can, however transfer any str.var,
num.var, mat.var or array.var into a binary field. No conversion is performed. Care must be
exercised to ensure that numeric data is transferred into variables of the same precision used
when written or the resulting data will be indistinguishable to the application.
The following table illustrates the optional use of the supplied record.

Record Action Performed
The record number used for the last access to this channel is incremented and

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 87 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

omitted used to select the record. This mode reads sequential records of a file.

-1 Performs identically to 'omitted' except that it serves as a place holder so that a
byte displacement may be specified.

-2 The record is reset to the same record number used during the last access to this
channel. This, in effect re-transfers the same record.

Indexed Data Files

An Indexed Data File is any Contiguous Data File which is defined to contain a companion
ISAM Key file. Access to data records is identical to a standard Contiguous Data File, except
write operations may not cross a record boundary unless enabled by PREALLOCATE. The
companion ISAM (Indexed Sequential Access Method) file holds keys and pointers to data
within the Contiguous Data File. The use of an Indexed file allows an application to rapidly
locate data in a large database. Even when a file contains several hundred thousand data records,
a specific record can be located instantly.
The environment variable PREALLOCATE options affecting Contiguous Data Files also apply
to Indexed Data Files. In addition, four options are provided specifically controlling Indexed
Files:
PREALLOCATE option 128 prevents dynamic expansion beyond the number of records
specified at creation. This limits the number of active records a user may insert using the
SEARCH or INDEX statements. When enabled, a new record is not allocated when the first
available record is greater or equal to the number of records specified during creation. To expand
the file, WRITE to a higher limiting record number. The record number must be greater or
equal to the value returned by CHF or corruption of the delete list may occur! Note, this
operation is prevented if PREALLOCATE option 2 is enabled for this session.
PREALLOCATE option 256 forces a check prior to deleting a record using SEARCH or
INDEX. If the record is already deleted (not in use), an exception status is returned. This option
is required to simulate BITS and Polyfiles bit-map ability to delete records whether they are in
use or not.
PREALLOCATE option 512 allows a WRITE to cross an ISAM record boundary. Normally,
an error is generated when a WRITE to an indexed file crosses a record boundary. Setting this
option should only be done when the application can be certain that all records to be written are
already allocated, otherwise the file's deleted record list will be corrupted.
PREALLOCATE option 4096 prohibits writing to a deleted record. An examination of a
record's status (deleted or in-use) is made prior to performing a WRITE. An error is generated if
the record is already deleted, preserving a file's free record chain.
Indexed files, consisting of optional data records and keys, are maintained by the application
program. When new data is to be added to the file, you request a new record. Automatically, the
system expands the file if there are no unused records. After writing your new data to the
supplied record of the file, you insert a key, that is a unique piece of information tagged to the
new record. The key could be a customer name, number; any unique information about the
record. Later, you retrieve the record by simply asking for the record that contains the key.
Each file can have from 1 to 62 separate indices, and each index may have a different sized key
(up to 122-bytes). This allows multiple keys (e.g. name, account number, etc.) to access the same

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 88 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

data. Each different index provides a different way to locate a record.
Any given record may be located by its specific key. When the entire key is not available, a
group of records matching a partial key may be displayed for final selection under program
control.
Data records may be read from the file sequentially (in key order), forward or backward for as
many different indices as are in the file. For example, a file keyed by customer name and
number could produce a sorted (ascending or descending) report by those fields without any
resorting.
When information is no longer needed in a file, the keys are deleted, and the record is returned
to the system for later reuse before extending the file.
Indexed Files are not required to contain data records. A Contiguous Data File is always present
with a single data record, but may be unused. This allows indices to exist separately from the
data referenced, or to build key-only files into existing data bases.
Indexed files utilize the FairCom, release 4.3C c-tree™ file structure, widely accepted in the
Unix community for its reliability, industry standard approach, and extended features.
c-tree 4.3C provides for index node deallocation and b-tree compression when keys are deleted;
but only in the single-user or server environment. Using the full locking capabilities of Unix,
compression is allowed in the multi-user environment.
This is accomplished by granting a user who is deleting a key exclusive index access for the
duration of the delete. This is a requirement of the b-tree compression algorithm. Users
performing searches and/or insertions can still access an index concurrently.
This type of compression has the following benefits:

• Unused space in an index is kept to a minimum. When an index block becomes
empty, it is placed on the delete list. It therefore be can be reused elsewhere in the
index when required.

• An index that has keys systematically added to the end and deleted from the
beginning does not require the file to grow continuously.

• Since overall index size is reduced, overall access performance to the index is
proportionally increased, with very large indices benefiting the most.

The added locking permits implementation of the fast search-next and search-previous function
in c-tree. Sequential mode 3 or mode 6 searches through an index now do not require a complete
b-tree search. The current key position is always saved and the next key in sequence is returned,
if possible. Concurrent changes to the index are detected, and a full search is only performed if
necessary.
Indexed Data Files are maintained within 2 separate Unix files. These are a standard Contiguous
Data File utilizing a lower-case name (as built), and the ISAM (key) portion in a companion file
with the same name using upper-case characters (i.e. payroll and PAYROLL). In the case of
Universal Data files, the ISAM portion companion file has a .idx extension (i.e. payroll and
payroll.idx).

Indexed File Creation

Indexed files are created using the BUILD, CREATE, INDEX and SEARCH statements or

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 89 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

using one of the supplied utilities BUILDXF or MAKEIN. They are initially created with a
single data record. The actual number of records supplied to the statements or utilities is stored
in the file header. Indexed files may be built as Universal files if the PREALLOCATE 8192
(16384 for “huge”) flag is set or if the <U> or <H> attributes are specified.

Note: An ISAM file is made up of (2) separate files; the lower-case filename holds the data
portion and an uppercase filename is created to hold the ISAM portion. If the file is
Universal, the ISAM portion will have the data file name with a .idx extension rather
than an uppercase filename. Filenames that do not contain at least one letter cannot be
used for ISAM data files.

During initial creation, you may specify the type of B-Tree balancing to apply to each index.
Proper selection increases performance and minimizes the disk space required to hold keys. The
default is to assume random key insertions into each index. This results in a well balanced tree-
structure with nodes split when half full. If your insertions into a specific directory are
sequential (ascending or descending), you may change this parameter to suit your application.
An example of a sequential index is an order/invoice number file keyed by an increasing
(decreasing) number or date. By setting the proper parameter, as much as 25% performance and
a 50% reduction in disk space may be realized; See Summary of SEARCH/INDEX Modes.
When allocating new records, the system first checks for any deleted records that can be reused.
If found, they are used first. When no deleted records exist in the file, the file is expanded using
the number of records specified by the environment variable DXTDSIZ. This value is set to a
default of one for the best overall performance. Setting this to a higher value may increase
performance of certain applications.
Similarly, when the ISAM portion of the file is full, it is expanded by the value specified in bytes
of the environment variable IXTDSIZ. This value must be a multiple of 512 or the file may
grow erratically. The default value should never have to be changed.
To maintain a dynamically expandable file structure, c-tree maintains a linked list of deleted
records in the data portion of the file. When records are returned to the system, c-tree checks that
you have not returned the same record twice in a row. It does not normally check to see if you
have returned the record in a previous operation. It is therefore possible to corrupt the Deleted
Record Chain if you arbitrarily return records not actually allocated. To prevent this, you can set
the environment variable PREALLOCATE option 256 to force c-tree to check for a record
already deleted.
Deleted records are flagged with a single-byte delete-character (ff hex, 3778). Next, a 4-byte
pointer is written linking deleted records together into a delete-list. The top of the delete-list is
maintained in the header. It is possible to corrupt this pointer system if you perform a WRITE #
operation to a record following its release as a free record. Many applications write their own
delete-flag into unused records. If your applications require this capability, set the environment
variable ISAMOFFSET to a byte location other than zero (default) such that c-tree has 5
contiguous bytes available for delete-list maintenance.
C-tree requires internal arrays of data to maintain fast key operations such as search next. For
each Indexed file your application opens, one array element is required for the data portion of
the file, and one element for each Index in the file. A typical application opening 10 files with an
average of 3 indices requires (3 + 1) * 10 or 40 positions. If your application errors trying to
OPEN too many ISAM files, change the default value of the environment variable

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 90 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ISAMFILES.
Indexed files dynamically expand to meet the requirements of your application. Over a period of
time, continuous expansion and contraction of data occurs in your files. For example, at month
or year-end, applications typically delete a large number of keys and records. The Unix system
does not provide for a reduction in a file's size. The ubcompress utility is provided to rebuild
the ISAM portion of the file and release unneeded space back to the system. The data portion is
not compressed to insure that all records maintain their positions in the file. Additionally, since
not all applications have the keys within the data records, the process of sorting and rebuilding
all indices to point to the compressed file would be very time consuming.

Accessing an Indexed Data File

An Indexed File is accessed using the SEARCH # and/or INDEX# statements. The parameters
are identical and select operation mode, index to operate upon, and data values passed both
ways.
SYNOPSIS

SEARCH #channel , mode , index ; key var, record var, status var
INDEX #channel ; mode , index, key var, record var, status var
channel is any num.expr which, after evaluation is truncated to an integer and
used to specify an opened channel currently linked to an Indexed Data file. A
semi-colon may follow the channel or index.
mode is any num.expr which, after evaluation is truncated to an integer and used
to specify a mode of operation for the statement. The following pages provide a
detailed list of mode operations.
index is any num.expr which, after evaluation is truncated to an integer and used
to specify an Index or Directory (list of keys) for the operation.
key.var is any DIMensioned str.var which must be DIMensioned large enough to
hold the key being operated upon. An error is generated on search type operations
if a key from the file cannot fit into the supplied str.var.
record.var is any num.var and contains (or returns) a value for the statement
mode.
status.var is any num.var used to return a status (exception) value to the program.
Generally, a zero indicates a successful operation; non-zero for an exception
error. When issuing mode 1 functions, the status.var is set before the statement to
select the miscellaneous information to be returned.

Mode 0 - Index Definition

Generally, Indexed Files are created and structured using the MAKEIN or BUILDXF utility .

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 91 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SEARCH/INDEX mode 0 is used to create an Indexed File during program execution.
Each index in the file is defined using a mode 0 statement specifying the key length. Indices
must be defined in sequential order, beginning with 1, up to a maximum of 62. The index is
selected with the index expression.
The record.var defines the key length (2-122 bytes) of the selected index. Key length is
expressed in bytes for BITS Applications and IRIS Polyfiles where a CALL $VOLLINK is
issued, or in words (byte pairs) for standard IRIS Indexed files.
status.var is set upon completion as follows:

0 Operation successful.
4 File is not a data file (type Data or Contiguous).
6 Selected index number is out of sequence.
8 File already indexed (May not be changed once defined).
9 Illegal parameter specified. Key length can be 2-122 bytes.

10 Too many indices specified. Maximum is 62.
To create an Indexed File with two indices of key lengths (bytes) of 6 and 24 requires two mode
0 statements. The first to index 1 with record.var containing 6; the second to index 2 with
record.var equal to 24.
As each index is defined, a mode 8 may be issued to the same index with record.var set to 0 for
random insertions, 1 for increasing keys, and 2 for decreasing keys. If this step is omitted,
random insertions are performed.
The data portion of an Indexed File begins with data record zero. If the creation program is an
IRIS program, or the BUILDXF utility is used, the file begins with record one; that is no record
zero is logically within the file. To force the first data record to be other than zero, issue a mode
1, with record.var set to the desired first record number and status.var set to 6. Setting a First
Real Data Record other than zero does not occupy space within a file. The system simply stores
a starting record constant which is added or subtracted from all file operations. If the First Real
Record is set to 200, then logical record 200 equals physical record 0; 210 record 10, and so on.
This feature is included for compatibility when moving existing data files from a live IRIS
system in order to keep the record numbers and key pointers consistent.
Once all indices have been defined, the file structure must be locked. This is accomplished by
issuing a mode 0 statement with index equal to 0 and record.var set to the desired number of
data records. This number of records is placed into the file header and used by CHF/CHN
functions and to limit automatic expansion during record allocation; see PREALLOCATE.
Once all indices are structured according to the information supplied, the file is available for key
insertion, record allocation and other operations.
(Release 9.4) An index is only encrypted if the index was created by SEARCH mode 0 with
16384 added to the key length.
Note: The encryption status of an index can be determined using SEARCH mode 12 which

returns the key length of an index with 16384 added if the index is encrypted. SEARCH
mode 12 is otherwise identical to SEARCH mode 1 when used to determine key length.
The encryption status of indexes can also be determined by using the QUERY utility.

No further mode 0 statements may ever be issued to this file without an exception status
occurring.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 92 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Mode 1—Miscellaneous Index Information

SEARCH/INDEX mode 1 is used to access structure information about an open Indexed File.
When the index expression is non-zero, the key length of the selected index is returned in
record.var. If the running program is an IRIS program and the file was not structured as a
polyfile using CALL $VOLLINK, the size is returned in words using the formula INT (size in
bytes/2). BITS indexed files, or those created by MAKEIN with an odd size key length, will
appear to IRIS programs as having 1 less byte.
Specify index zero and set status.var to select one of the functions listed below. The value (if
any) yielded by the function is returned in record.var.

0 Return in record.var the First Real Data Record as defined during creation.
1 Return in record.var the available record count. This is either the value of the

environment variable AVAILREC if defined, or computed by taking the current size
of the file and subtracting the actual number of active records.

2 Allocate a new record in the file returning its value in record.var. Possible exception
status:
3 = No free records remaining. This condition is only returned when you have set the
environment variable PREALLOCATE option 128 restricting automatic expansion.

3 De-allocate (return) a record to the file. Available record count is incremented, active
records is decremented. record.var supplies the record number to mark as ‘available’.
Possible exception status:
1 = Record number already de-allocated. If you attempt to return the same record
twice in a row, this condition is returned. To check the records status before returning
it to the Delete List set the environment variable PREALLOCATE option to 256.

4 Return in record.var the number of physical records within the file for IRIS
applications only. Does not include the addition of the First Real Data Record value.
Error for BITS programs.

5 Same as mode 4; for IRIS or BITS applications.
6 Set the First Real Data Record to the value supplied in record.var. This function is

used by the Conversion Programs, and whenever having a record zero is undesirable.
This option may only be set prior to freezing the structure with mode 0.

7 Return in the current (actual) number of records in use within the file in record.var.
This number is maintained as records are allocated and de-allocated (See 2 and 3
above).

Mode 2—Search for a Specific Key

SEARCH/INDEX mode 2 is used to search an index for an exact match to the supplied key.var.
If found, record.var receives the data record number associated with the key, and the status.var
is set to zero. If no match is found, record.var is unchanged and status.var is set to one.
A match is indicated when the supplied key.var is equal to an entry in the index up to the end of
key, even if the entry in the file is longer. When the entry is longer, its value is returned in
key.var.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 93 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

For example, a search for key ABC produces a match with the first entry whose first three
characters are ABC. If the first such entry is ABC Company East, then a match is indicated,
key.var is set to contain ABC Company East, record.var is set to the associated record number,
and status.var is set to zero. A match is not produced if the entry in the index is shorter than the
key supplied. For example, the entry AB is not considered a match.

Note: The actual keys are case-sensitive. This means that "ABC" does not equal "abc."

Mode 3—Search for the Next Highest Key

SEARCH/INDEX mode 3 is used to access data records alphabetically, or to search forward from
a selected point in the index. The selected index is searched for the first entry logically greater
than the supplied key.var. If found, record.var receives the data record number associated with the
key, and status.var is set to zero. When no more entries are found, record.var is unchanged and
the status.var is set to two (End of Index).

For example, a search with key ABC returns the first entry logically exceeding ABC, such as
ABC Company East. Subsequent mode 3 searches using the same key might yield entries such as
ABC Company West, Dynamic Concepts, and Dynamic Conversions.

To search an entire index, start by setting key.var to a null string, and perform mode 3 commands
until status.var is set to 2.

Note that a mode 3 search yields the first entry greater than key; a mode 3 with the key ABC does
not return ABC itself if it exists. It is best to perform a mode 2 search first when you want to
include the starting key in your search.

Mode 4—Insert a New Key into an Index

SEARCH/INDEX mode 4 insert new keys into an index. The selected index is first searched for
an entry exactly matching key.var. If found, record.var is set to the record number associated with
the key and status.var is set to one.

If no match is found, and sufficient space exists within the selected index, key.var is inserted in
the index using the record number supplied in record.var as a pointer to the data record.
Successful insertion is indicated by a zero in the status.var. If no space exists within the selected
index, the status.var is set to two (End of Index).

Mode 5—Delete an Existing Key from an Index

SEARCH/INDEX mode 5 deletes existing entries from an index. The selected index is searched
for an entry exactly matching key.var. If found, the key is removed from the index, record.var is
set to the record number associated with the key and the status.var is set to zero (successful
deletion).

If the exact entry is not found, the record.var is unchanged and status.var is set to one.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 94 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Following successful deletion of a key, the record should be returned for re-use using mode 1 with
status.var set to 3.

Mode 6—Search for a Previous Lower Key

SEARCH/INDEX mode 6 is used to access data records in descending order, or backward from a
selected point in the index. The selected index is searched for the first entry logically less than the
supplied key.var. If found, record.var receives the data record number associated with key, and
status.var is set to zero. If not found, record.var is unchanged and status.var is set to two (End of
Index).

For example, a search with the key XYZ returns the first key found logically less than XYZ, such
as Solution Systems. Subsequent mode 6 searches using the same key might yield keys such as
Solution Concepts, Resources International, etc.

Note that a mode 6 search yields the first entry less than key.var, so a mode 6 executed with XYZ
will not yield the XYZ itself if it exists. It is best to perform a mode 2 search first when it is
desirable to include the starting key in your search.

To search an entire index, start by setting key to "\377\", and perform mode 6 commands until 2 is
returned in status.var.

Mode 7—Reorganize Index

SEARCH/INDEX mode 7 provides for compatibility with older IRIS applications performing an
index reorganization. This mode is a non-operation and always returns a status.var of zero
indicating success and allowing the older program to run without error.

Mode 8—Specify B-Tree Insertion Algorithm

SEARCH/INDEX mode 8 retrieves or changes the B-Tree insertion algorithm for an index. If
record.var is greater or equal to zero, it's value is truncated to an integer and used to select the
new insertion method for index. If successful, the file's header is changed, and status.var is set to
zero. If the record.var is outside the accepted range, status.var is set to one, and no change is
made.
If record.var is any negative value, the current insertion algorithm used for index is returned in
record.var and status.var is set to zero.
Value Type of Insertion Algorithm Invoked

0 Default. Selects random insertions and is used when keys in the index are inserted
in any order.

1 Selects increasing insertions and is used when each key inserted in the index is
greater than the previous insertion. Types of keys in this category include sequential
order numbers or date keys.

2 Selects decreasing insertions and is used when each key in the index is less than the
previous insertion.

Changes are stored in the file's header and become effective immediately for the user storing the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 95 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

change. Other users must first CLOSE and OPEN the file before the change takes effect.

The standard BUILDXF and MAKEIN utilities do not have options for setting the insertion
algorithm.
By default, files are created for random insertions. Random insertions split B-Tree nodes when
they are half full. This provides a better balancing and room for future insertions.
When sequential keys are inserted (ascending or descending), the nodes should be split only
when full. Extra space is not required for later insertions between sequential key values.
The benefits of adding a mode 8 to your Application code include saving up to 50% on disk
space; 25% increase in performance on insertions, deletions and searches; and less need to run
the ubcompress utility to release unused space to the system.

Mode 12-Determined encryption status

The encryption status of an index can be determined using SEARCH mode 12 which returns the
key length of an index with 16384 added if the index is encrypted. SEARCH mode 12 is
otherwise identical to SEARCH mode 1 when used to determine key length. The encryption
status of indexes can also be determined by using the QUERY utility.

Indexed File Errors & Recovery

If you accidentally delete the ISAM portion of an Indexed file, you can rebuild the file by the
following steps.

1. Create a new Indexed file with a different name using the same parameters for
number of Indices and Key Lengths.

2. Write a small program to rebuild and insert the keys into the new temporary file.
Only insert keys and records, do not copy the existing data.

3. Use the Unix mv command to move the new temporary files ISAM portion as the
old files ISAM file, i.e.: mv TEMPFILE MYFILE or mv tempfile.idx myfile.idx.
This command must be performed at the shell. Do not use any utilities designed to
operate on both portions of ISAM files, such as COPY supplied with UniBasic.

If an error is encountered during ISAM file access, an exception (V2=5) status or BITS error
#110 (Index file structure error or svar dim < Key Length) may be printed. First, check to see if
your string DIM is at least the size of the Key. If so, Print the value of ERR(8) and check the
following table for additional information. This table includes all of the c-tree error codes. When
using standard Indexed files, only a few of these errors are possible.
Code Explanation of c-tree Status

0 Successful Operation, No error.
10 Initialization parameters require too much memory.
11 Illegal Initialization parameters: Either ISAMBUFS < 3, ISAMSECT <1 or

ISAMFILES < 1.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 96 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

12 Could not OPEN the file. The Index portion is missing, protected or locked by
another process.

13 Cannot determine the file type - Corrupted file or Reversed Keys.
14 File appears corrupted and should be checked.
15 Data file has been compacted (CTCMPC), but not cleared through CTRBLD.

Rebuild data file (but do not force rebuild).
16 Not enough space to create file or invalid ISAM filename. ISAM filenames must

have at least one letter in the filename.
17 Could not create data file. Either no space exists or filename is an improper name.
18 Tried to create existing index portion filename.
19 Tried to create existing data portion filename.
20 Key length too large for node size. There must be room for at least 3 key values per

node. The node size is given by ISAMSECT *128. Default ISAMSECT is 4
resulting in 512-byte nodes.

21 Cannot create data file with record length smaller than 6 bytes.
22 File number out of range; Increase ISAMFILES environment variable.
23 Illegal Index Number specified.
24 Could not close file.
26 File number is not in use.
28 Trying to insert a key with a file byte pointer of zero.
29 High level c-tree function called with zero file byte pointer.
30 Selected file byte pointer is beyond the logical length of the file. If the pointer is

correct, it is possible that the ISAM header is damaged.
31 Next Record in delete chain does not have 1st byte set to ff (hex). Data File header

may be corrupt, or free records were overwritten by the application.
32 Attempt to delete the same record twice in a row. The record being deleted is already

the top record on the delete stack. Attempting to return records onto the delete stack
more than once may corrupt the file unless the PREALLOCATE option is set to
256.

33 File byte pointer is zero using high level c-tree function.
34 Could not find correct predecessor node. Indicates that an index insertion was

interrupted before completion. Rebuild index using ubcompress utility.
35 Cannot seek in the file - possibly out of disk space.
36 Cannot read in the file - possible cause: corrupted record position in file.
37 Cannot write to file - possibly out of disk space.
39 Record or node pointers have exceeded 2^32.
40 ISAMSECT environment variable was larger when this index was created. Buffers

are too small for nodes.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 97 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

41 Could not unlock data record.
42 Could not obtain a data record lock. Probably the Unix number of locks is too small

for the system. Re-configure system.
43 Current configuration parameters inconsistent with the parameters at time of

creation. File created under a different Byte swap (Reverse), or file came from an
incompatible machine.

Code Explanation of c-tree Status
45 Key length too large.
46 File number is already in use.
48 A function has been called for the wrong type of file, e.g.. a variable length record

function used for a fixed length file.
49 Could not write file directory updates to disk during file extension.
50 Could not lock index file node. Probably the Unix number of locks is too small for

the system. Re-configure the system.
51 Could not unlock an index file node.
52 Variable length and/or floating point keys disabled in CTOPTN.H.

108 Key number is out of range for the file.
113 Internal Lock Table overflow.
114 First byte of fixed-length data record found by ISAM routine equals delete flag.

Attempt to write to a non-allocated record. This exception only occurs when
operating with PREALLOCATE = 4096.

124 Number of indices in index file does not match information stored in the UniBasic
data file header. Either the UniBasic header or the ISAM file is damaged.

Accessing non-UniBasic Files and Devices
Any Unix file may be opened for read/write access by a program. Access is limited by the
permissions granted to the user by the creator of the file. If the file is other than a Text File, certain
programming precautions must be taken.

If the file is a character devicename, data may be read or written from/to the device usually a
character at a time. If the file is a block device, data must be read or written from/to the device a
block at a time. A typical character device is a terminal port such as /dev/tty01; a block device
might be a magnetic tape drive such as /dev/rct0.

If the file contains other than ASCII data, process the file as binary using MAT READ, MAT
WRITE, RDREL or WRREL statements. Use the CONV statement to view or alter data within
a binary file.

IRIS BCD Data and Key Files
IRIS BCD Data files are standard Contiguous, Formatted or Indexed files whose records conform
to IRIS data types. String fields contain IRIS 8-bit strings, and numeric fields are in IRIS BCD

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 98 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

precision.

IRIS BCD Key Files are Indexed Data Files whose keys conform to IRIS 8-bit form. Toggling is
performed in and out of each index to guarantee the proper insertion order when binary keys are
used.

A file is an IRIS BCD data file if the attribute <Q> has been set. Access to IRIS BCD files adds a
small amount of overhead (4%) during access of string fields.

A file is an IRIS BCD Key file if the attribute <K> has been set.

Creating IRIS BCD Data Files

IRIS BCD files are created using BUILD or CREATE statements. The Supplemental Protection
Attributes <Q> and <K> force the new data file to be maintained using IRIS BCD records
and/or IRIS 8-bit keys respectively.
Setting the environment variable PREALLOCATE option 32 forces all newly created data files
to contain IRIS BCD data records or keys.
The IRIS Conversion Utilities automatically create IRIS BCD Data files for all converted
Contiguous, Formatted, Indexed or Polyfiles where a record definition is not given. IRIS style
keys may also be preserved during the conversion.
During conversion, PREALLOCATE options must be cleared. Perform the conversion and
then set the options as desired.
The following conditions might be reasons to force the creation of new files in IRIS BCD data
record or key format:

1. Conversion of an existing end-user's system when the application is totally
unknown. Set both <K> and <Q> conditions globally in PREALLOCATE after
converting all files. Assume all files contain Binary Keys. You may omit binary
key conversion and setting <K> if you are sure binary keys are not used.

2. The application makes use of MAT READ / MAT WRITE statements to expand
files or copy records to history files without regard to the record format. This
condition is not supported between mixed Base 10000 and IRIS BCD files.
Required toggling and/or conversion is performed one-sided resulting in
corrupted data in the destination file. These types of operations are permitted
only when both files are of the same class (BCD/ Base 10000). Set global <Q>
BCD Data using PREALLOCATE options if some of the files have the <Q>
attribute following an IRIS Conversion.

3. The application moves data between num.vars and str.vars using a specially
designed CALL. Again, this condition is not supported between mixed Base
10000 and IRIS BCD files. Required toggling and/or conversion is performed
one-sided resulting in corrupted data in the destination file. Set global <Q> BCD
Data using PREALLOCATE option if some of the files are <Q> following an
IRIS Conversion. In rare cases, Dynamic Concepts may recommend the use of
the environment variable BCDVARS if the special CALL does not support
mixed file operations.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 99 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Accessing IRIS BCD Data Files

Accessing IRIS BCD Data files is identical to normal Contiguous, Formatted, or Indexed file
access. Most applications require no modifications to run with a mixture of IRIS BCD and
normal data files.
To preserve the record integrity of both standard and IRIS BCD data files, incoming data (read
operation) is converted (if necessary) to match the variable format used by the program.
Outgoing data (write operation) is converted (if necessary) to the format of the destination file.
For str.vars, incoming data is bit-8 toggled from an IRIS BCD file. Outgoing data is again
toggled if written to the same or another IRIS BCD file. Transfer to a normal Base 10000 file
does not require toggling. String access to/from IRIS BCD files add about 3% overhead to the
transfer.
For num.vars, array.vars and mat.vars, incoming data is placed directly into the variable, and its
internal type is changed to the corresponding BCD precision. For example, a variable
dimensioned to 4% may internally switch back and forth between precision %4 and %10; See
also Numeric Variable Precision. No overhead is required for these operations.
If you transfer a single element of an array.var or mat.var, that element is converted instead of
converting the entire array.var or mat.var. This operation is negligible, consisting of a load and
store of the variable from one data type to another.
Outgoing num.vars, array.vars and mat.vars are converted to the format of the file; that is, Base
10000 or IRIS BCD. Conversion is only performed when a variable's current precision does not
match the type of file. This conversion is negligible, simply changing the storage format and not
the size occupied by the data.
Each Base 10000 precision has a corresponding BCD precision occupying the same size. Base
10000 does provide additional digits of significance and extra digits may be lost converting from
Base 10000 to IRIS BCD. Typical IRIS programs are not affected since they are designed for
this lower number of significant digits.
If the environment variable BCDVARS is set, all num.vars, array.vars, and mat.vars are
allocated and stored internally using BCD precisions (%7-%10). In this mode, conversions are
eliminated when all files are IRIS BCD format.
When a file contains IRIS style 8-bit keys as indicated by the Supplemental Attribute <K>, keys
are inserted and maintained in the indices in 8-bit form. Toggling is performed to and from the
index and is negligible. This condition is required when an application utilizes binary keys and
the internal toggling corrupts your programmed insertion order.
An example is when keys contain data both below and above \200\. For example the IRIS Key:
\177\\200\\201\ is stored in UniBasic as the string \377\\300\\001\ which alters its order when a
sequential search of an index is performed.
See also: PREALLOCATE option 64, Creating IRIS BCD Data Files

Universal Data Files
Universal Data files are IRIS BCD style Contiguous, Formatted or Indexed files which are
platform independent. The files are accessible across all Unix platforms. In addition, they are

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 100 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

usable on a Windows system with version 3.1 and higher of dL4 for Windows. Packed data
should be avoided for maximum platform independence.

Text files are essentially platform independent, except Unix uses a 'LF' and Windows/DOS uses a
'CRLF' as the line terminator.

A file is a Universal data file if the attribute <U> has been set. The size of a Universal data file is
limited to 231 bytes or by the size of the file system. On most operating systems, a Universal file
can be created as a "huge" file if the attribute <H> is set. The size of a "huge" file is limited only
by the available space on the file system.

It is not necessary to run ubrebuild as Universal data files do not use deleted record lists. The
ISAMOFFSET environment variable is ignored and the user may write data at any location in
the record. The ISAMSECT environment variable should be set to a value of 8 or less (8 is
recommended).

Creating Universal Data Files

Universal data files are created using BUILD or CREATE statements. The Supplemental
Protection Attribute <U> forces the data file to be maintained using Universal records and/or
Universal keys.

Universal Indexed Data Files have their keys stored in a companion Index file that has the data
file name with a .idx extension, as opposed to the traditional method of using the uppercase of the
filename.

Setting the environment variable PREALLOCATE option 8192 forces creation of a Universal
data file. Setting PREALLOCATE option 16384 forces creation of Huge Universal data files.

Accessing Universal Data Files

Accessing Universal Data files is identical to normal non-Universal Contiguous, Formatted, or
Indexed file access. Applications can run with a mixture of both Universal and non-Universal data
files.

The ubcompress utility may be used to reduce the size of the index portion of a Universal
Indexed file.

Encrypted Data Files
Encrypted Data files are IRIS BCD style Contiguous or Indexed files in which some or all record
fields are encrypted. In an Encrypted Indexed file, some or all of the indexes can also be
encrypted. Like Universal files, Encrypted Data files are accessible across all Unix platforms. In
addition, they are usable on a Windows system with version 7.1 or higher of dL4 for Windows.

A file is an Encrypted data file if the attribute <N=''keyname''> has been set. The key "keyname"
(case insensitive) identifies a key definition in the current key list that specifies the encryption

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 101 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

algorithm and the passphrase. The size of a Encrypted data file is limited to 231 bytes or by the
size of the file system. On most operating systems, an Encrypted file can be created as a "huge"
file if the attribute <H> is set. The size of a "huge" file is limited only by the available space on
the file system. Encrypted files must also be Universal files so the <U> or <H> attributes should
be used when creating the file unless the PREALLOCATE environment variable has been set to
restrict all files to universal format.

It is not necessary to run ubrebuild as Encrypted data files do not use deleted record lists. The
ISAMOFFSET environment variable is ignored and the user may write data at any location in
the record. The ISAMSECT environment variable should be set to a value of 4 or 8 (8 is
recommended and larger values may be needed for very large key sizes).

Creating Encrypted Data Files

Encrypted data files are created using BUILD or CREATE statements. The Supplemental
Protection Attribute <N=''keyname''> forces the data file to be maintained using Encrypted
records and/or Encrypted keys. The use of quotation marks around the key name is mandatory.
The case insensitive key name must exist in the current key list which is loaded from a key file
(see UBKEYFILE) or defined with SYSTEM 100 statements. Encrypted files must also be
Universal files so the <U> or <H> attributes should be used when creating the file unless the
PREALLOCATE environment variable has been set to restrict all files to universal format.

Records in an Encrypted file can be either fully encrypted or they may consist of a mix of
encrypted and non-encrypted fields. By default, the entire record is encrypted. A file with fully
encrypted records cannot be opened unless the key used by the file is defined in the current key
list. A file with partially encrypted records can be opened for reading without the key, but all
encrypted fields will be returned as zero filled, space filled, or asterisk filled depending on how
the file was created.

To create an Encrypted file with partially encrypted records, the encryption attribute must use the
format <N=fld1,fld2,...,fldN,''keyname''>. The field definitions "fldN" specify which byte ranges
in the record are encrypted. An encrypted record can have up to 16 field definitions (each
encrypted field definition may contain as many actual data fields as will fit in the encrypted field).
Each field definition has the format S-E where S is the zero based starting byte offset in the record
and E is the ending byte offset. The byte range can optionally be followed by the character "Z" to
zero fill the field when the record is read without the key, by the character "S" to space fill the
field, and "*" to asterisk fill the field. The default behavior is to zero fill encrypted fields.

The following example builds an encrypted contiguous file with 80 character records in which the
first 10 characters and the last 6 characters are encrypted:

BUILD #1,"<UN=0-9Z,74-79S,CUSTDATA> [1:40] filename"

Encrypted Indexed files have their keys stored in a companion Index file that has the data file
name with a .idx extension, as opposed to the traditional method of using the uppercase of the
filename. By default, the indexes of an Encrypted Indexed file are not encrypted. To create an
encrypted index, specify the key length in words plus 16384 in the SEARCH or INDEX
statement that defines the index. The following IRIS style program creates an Encrypted Index
file with 10 character keys in the non-encrypted index 1 and 14 characters keys in the encrypted
index 2:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 102 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DIM K$[14],R,S

BUILD #1,"<UN=''keyname''>[1:40]filename"

LET R=5 \ SEARCH #1,0,1;K$,R,S \ IF S STOP

LET R=7 + 16384 \ SEARCH #1,0,2;K$,R,S \ IF S STOP

SEARCH #1,0,0;K$,R,S \ IF S STOP

CLOSE #1

Setting PREALLOCATE option 16384 forces creation of Huge Encrypted data files whenever
Encrypted data files are built.

Accessing Encrypted Data Files

Accessing Encrypted Data files is identical to normal non-Encrypted Contiguous or Indexed file
access. Encrypted Data files do not require or use any special syntax to open the files. The
encryption keys are supplied from the current key list which is loaded from a key file (see
UBKEYFILE) or using SYSTEM 100 statements. Applications can run with a mixture of both
Encrypted and non-Encrypted data files.

Special UniBasic Files

Special files are maintained and referenced during a UniBasic session. These files are:
errmessage Error Messages; BASIC Error descriptions.
sys/term.xxxx Terminal Input/Output CRT Translation.

Error Message File: errmessage

All BASIC and system error messages are stored in the system Text File errmessage. This file
must be in the directory search path specified by the Environment Variable LUST and is a
simple Text File with the format:

n:i:Text String for Message

The n indicates the default error number as defined in Appendix C of this guide. The optional i
field specifies the IRIS error number to be returned by SPC(8) whenever the error is indicated. A
default table of IRIS error numbers may be found in Appendix C.
Error codes above 256 correspond to internal Unix errors returned to BASIC. When a system
error has no equivalent, a negative error number is returned for SPC(8) and ERR(0). The
negative number corresponds to the actual Unix system error. For further information on Unix
errors, refer to errno values in your Unix system documentation.

$TERM Files: term.xxxx

Each terminal under UniBasic is assigned a Terminal Type as defined by the environment
variable TERM.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 103 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

When UniBasic is launched, or following the execution of the ! command, a term file is opened
and read into memory to affect input and output translation for the terminal. The term file is
located within the LUST using the filename term.$TERM, where $TERM is the value of the
environment variable TERM. For example, if the value of $TERM is tvi925, the file
term.tvi925 is located.
An error is generated at startup, or following the ! command if the term file cannot be opened.
No output translations are performed and standard input translation characters are not defined.
See also: Terminal Translation File $TERM Files, Input/Output

Device Input and Output
Port Numbering

The Unix system does not provide Ports or Port Numbering in the traditional sense. Each
process may or may not have a tty character device opened for input and output. When signing
onto the system, your process has a system tty channel opened which is connected to your
terminal.
A port number is a unique value from 0 to 4095 assigned to your terminal when launching a
UniBasic session. The port number is required for communication between applications and
users by the SIGNAL, SEND and RECV statements.
Upon initial entry, a message queue is created, a port number is established. When the session
terminates, the message queue is deleted and the associated port number becomes available
again. A port number is established by the successful completion of one of the following steps:

1. If the Environment Variable PORT is defined, its value selects the port number for
this session. If another UniBasic process is already established as the same port
number, your session terminates with an error message.

2. If the Environment Variable PORTS is defined, the list is searched for the system tty
name and, if found establishes the port number for this session. The system tty name
assigned to your terminal is available using the Unix command: who am i.

3. The system tty name is interpreted searching for trailing digits to use as an identifying
port number. For example, tty23 selects port number 23. Many systems use system tty
naming conventions such as tty1a, tty1b, etc. These usually require definition of the
environment variable PORTS to ensure consistent selection of a port number.

If a port number cannot be established using one of the above steps, the message queues are
scanned backwards from the value of the Environment Variable MAXPORT (default 999) for
the first unused port number.
An error is generated, and the session is terminated if you attempt to utilize a port number
already signed on and in use.
You may initiate multiple UniBasic sessions, with different port numbers, from the same
terminal..
Suppose you have an application error and wish to launch another session without going to
another terminal. While in BASIC program mode, issue the command:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 104 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

!PORT=nnn ; UniBasic

where: 'nnn' is an unused port number.

To cancel secondary session(s), issue a BYE command.

Phantom Ports

A phantom port is any UniBasic session which is not connected to a character tty. That is no tty
is opened for the process. All input for the session must be transmitted from another port
number, and output must be re-directed to a file or device or it is discarded.
Communication to a phantom port is restricted to the statements SEND, RECV, PORT, CALL
$TRXCO, CALL 98, and SIGNAL. An application may control any active UniBasic process
whether or not it has an opened system tty device.
A phantom port is initialized using either CALL $TRXCO or the PORT statement. A port
number is supplied for these operations. The active message queues are interrogated to
determine whether an active process is already assigned to that port number. If so, an error
status is returned to the parent and no process is launched. If the port number is not in use, a
phantom port initialization proceeds.
Commands may be transmitted to a phantom port or an interactive port number which has an
active message queue entry. When transmitted to an interactive port number, commands become
input to the interactive process. Data is echoed on the terminal as if it were entered on the
keyboard.
If the port number does not have an active message queue, a copy of your process is forked
(duplicated). The new child process immediately severs its connection to you as the parent. It
assumes your environment and default working directory, but closes the system tty channels re-
directing all input and output to the /dev/null file. A new message queue is created for the
specified port number which now becomes a phantom port. It is available to all other users for
communication and transmission of commands.

Note: Commands may only be transmitted to a port number which is actively running a
UniBasic process and has an assigned Message Queue.

Simply defining /dev/tty23 to be port number 23 does not provide for communication until port
number 23 actually launches a UniBasic process. To send commands to an interactive port, first
login to Unix and launch a UniBasic process.
When connecting modems or other non-keyboard devices that you wish to control using CALL
$TRXCO or PORT statements, configure your Unix system to automatically launch a UniBasic
process on a known port number for communication. You might also communicate with a
modem or other device by directly opening the device, and using standard READ and WRITE
statements.
See also: Launching UniBasic Ports at Startup.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 105 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Accessing Drivers ($LPT) and Pipes

A pipe may be opened for input to or output from a BASIC program. An output pipe is the
mechanism whereby another Unix process is started and your output to a channel pipes the data
as standard input to the new process. An input pipe is the mechanism whereby another Unix
process is started and its output becomes your input on the opened channel.
To open a pipe, the filename must be the name of an executable Unix program or shell script,
that is, the permissions of the file must include 'x'. To open an input pipe, the filename is
preceded by two dollar-signs ($$name); an output pipe is preceded by a single dollar sign
($name).
Unlike IRIS or BITS, the $ character is not part of the filename. It is a flag indicating the desire
to access another process using a pipe. The filename does not select a data file, but instead
selects the name of a Unix executable command or shell script. If you must specify a full Unix
pathname, the $ or $$ must be the first character in the filename string, such as $/bin/ls. When
opening pipes to processes found within your defined directory search list, as defined by the
Environment Variable LUST, the $ or $$ may be the first character of the string, or the first
character of the filename, such as $23/lpt or 23/$lpt. In general you may establish a pipe to any
command accepted by the shell, such as ls, cat, or lpt.
Printer driver scripts ($LPT) are examples of output pipes. Your application opens $LPT. The
LUST is searched for the filename "lpt". If the file is executable, it is started as a process and a
pipe is established on the specified channel. As you PRINT to the channel, "lpt" receives the
data and processes the output. It may re-direct the output to a physical device, or through the
spooler. When you CLOSE the channel, "lpt" receives an end-of-file and terminates.
An example of an input pipe might be to read a list of all filenames stored in a directory. By
opening the file "$$/bin/ls {pathname}", you read the output of the Unix ls command as if it
were a Text File. A null string (IRIS) or end-of-file error (BITS) is generated when the pipe is
empty.
If a filename specified with a $ or $$ is not within the paths specified by LUST, the entire
pathname must be specified to OPEN.
When creating your own C or shell scripts to be used as pipes, always make a backup copy,
ensure that the file is executable and does not have write permission enabled. This prevents
accidental overwriting if the $ is omitted.

Note: The $ and $$ are only flags used during OPEN. You may still OPEN any Unix
file, according to the rules of Text File access, regardless of executable attributes.

When processing from/to a pipe, many systems buffer data in blocks of 4096 characters, or until
the appropriate process terminates. You cannot use pipes for simple communication between
processes. To transmit data between application programs, use the SIGNAL or SEND/RECV
Statements.
When an OPEN is requested using the $ prefix, the following operations are performed by
UniBasic:

1. The file is checked for execute permission, and that the file is not a directory. If
these conditions are met, a pipe operation is attempted. If not, the file is opened

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 106 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

as a standard Text File and those rules apply.

2. The file is opened and the first 5-characters are read from the file.
3. A check is made for a string with the first 5-characters as '#lock'. Other characters

on the line are ignored. Any preceding spaces, tabs or blank lines cause a failure
of the test.
If '#lock' is seen, the system checks the /tmp directory for a filename in the form
/tmp/lk.inode, where 'inode' is the Unix i-node number of the executable script
being opened.
If the file is not found, it is created to prevent other users from opening the same
printer script. This file contains the process ID (PID) and UniBasic port number
of the process requesting the lock. Its permissions are set to allow reading and
writing by all levels, but it should neither be written to by a user nor its
permissions changed. This file may be read by a user to determine what process
or port has the printer locked.
If the file exists, the system reads the port number and verifies that the port is an
active port.
If the port is active, the error 'Device is in use and Locked' is generated to the
BASIC program, and the operation fails.
If the port is not active, as in the case of a lock file not being removed because of
a previous system failure, the system overwrites the existing lock file with the
current requesting process.
If the '#lock' string is not seen, a lock file is not created. The script itself must
guarantee against multi-user access, and most likely will rely on the Unix
Spooling System.

Note: The Unix Spooling System is the preferred way to use a printer.

4. The file is now launched as a process, and a pipe is opened on the users channel
to it.

Printer Drivers
A printer driver is nothing more than an executable Unix shell script opened from your
application as a pipe. Whenever an opened filename begins with a $, and is executable, a pipe is
established and the selected filename (without the $) is started as a process reading as its input the
data you PRINT to the pipe.

The supplied lpt.iris and lpt.bits are sample printer shell scripts for IRIS and BITS applications
respectively. The main difference is that the IRIS driver utilizes locking (only a single user may
access the device until closed), whereas the BITS driver passes its data to the Unix spooling
system.

The sample lpt.iris driver may be modified using the Unix editor. It is designed to operate using
the bourne shell. Once complete, it is copied and given different names such as LPT, LPT1, etc. as

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 107 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

required by your applications. For information on the supplied printer scripts and configuring
serial ports for printers, see also Configuring Printer Drivers and Configuring Serial Printers.

Mail Drivers
A mail driver is nothing more than an executable Unix shell script opened from your application
as a pipe. Whenever an opened filename begins with a $, and is executable, a pipe is established
and the selected filename (without the $) is started as a process reading as its input the data you
PRINT to the pipe.

The supplied email.mail and email.sendmail are sample shell scripts that allow UniBasic
applications to send email. The main difference is that the email.mail driver utilizes the Unix
mail command, whereas the email.sendmail driver passes its data to the Unix sendmail facility.

The sample mail drivers are designed to operate using the bourne shell. To use these drivers, their
path must be in the LUST environment variable and have read and execute permissions. Read and
execute permissions must be set prior to use.

The driver scripts may be renamed and/or modified for your application using any Unix editor.

The following is an example of using the email.mail script in a UniBasic application:

10 OPEN #1,"$email.mail -s test -t recipient"

20 PRINT #1, "Test Message"

30 CLOSE #1

The UniBasic OPEN statement opens the email.mail pipe driver script with arguments to specify
the subject and recipient of the email. The -s option is followed by the subject and the -t option is
followed by the recipient list. All data PRINTed to the channel will be sent to the email pipe until
the channel is CLOSEd, which closes the pipe and sends the mail.

The mail program on some Unix systems may not require and/or accept the -s option. Consult
your system documentation and the man pages for your particular requirements. The driver script
may be modified as necessary to work with the mail program. For example, mail will not accept
the -s option with a subject on the command line, while mailx requires the -s option and a subject
on the command line or it will interactively request a subject. UnixWare has both mail and mailx
programs, whereas SCO only has the mailx program; the mail command is a link to mailx.

The email.mail driver script may be tested outside the UniBasic environment by issuing the
following command, modified as necessary, at the Unix prompt:

$ echo body of mail |email.mail -s test -t your_userID

Verify that the mail is received.

The email.sendmail pipe driver script was written to interface with the sendmail program. If
used, the user must identify the location of sendmail on the system and modify the assignment to
the variable 'EMAILPATH' in the email.sendmail script. The command line arguments to
email.sendmail must include a -f option with the sender specified. For example, the UniBasic
OPEN statement above becomes:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 108 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

10 OPEN #1,"$email.sendmail -s test -f sender -t recipient"

A -r option to specify a 'Reply-to:' field in the arguments is optional.

The email.sendmail driver script may be tested outside the UniBasic environment by issuing the
following command at the Unix prompt:

$ echo text | email.sendmail -s test -f your_userID -t your_userID

Verify that the mail is recieved.

Terminal Translation File $TERM Files

Each terminal under Unix is assigned a Terminal Type as defined by the environment variable
TERM.
When UniBasic is launched, or following the execution of the ! command, a term file is opened
and read into memory to affect input and output translation for the terminal. The term file is
located within the LUST using the filename term.$TERM, where $TERM is the value of the
environment variable TERM. For example, if the value of $TERM is tvi925, the file
term.tvi925 is located.
An error is generated at startup, or following the ! command if the term file cannot be opened.
No output translations are performed, and standard input translation characters are defined.
Terminals operate in two distinct modes: Normal and Window Tracking. Normal mode allows
the terminal to control the operations based upon sequences and data transmitted. The effect of
wrap-around from line to line, scrolling, behavior of protected regions is terminal dependent.
Applications transmitting mnemonics (such as CS to clear screen) retrieve a replacement string
unique to the terminal for the mnemonic function selected from the term file.
Window Tracking is a feature whereby software maintains a tracking map of all characters and
attributes on the screen. Little or no overhead is caused by the maintenance of this map. Its
purpose is to simulate features not supported by most terminals, such as multi-screen windows.
In addition, Window Tracking is effective for PC Monitors and other dumb terminals lacking
features such as Protected Fields. For a complete discussion of Window Tracking, see Using
Dynamic Windows.
The term file is a standard Unix Text file. The file contains four types of information:

$TERM Flags and Switches
Mnemonics Translated for Output
$TERM Extended Graphic Mnemonics
$TERM Input Character Processing

$TERM Flags and Switches

Flags and switches control the formatting of cursor addressing strings sent to the terminal.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 109 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

When a cursor address is specified @x,y;, the system first outputs the mnemonic PC as the
lead-in. This mnemonic is defined to be the codes required by a terminal to expect a cursor
addressing sequence. The following steps are then performed on the supplied cursor address:

1. The coordinates are converted to integer and checked against the limits as specified
by the max_x and max_y definitions.

2. If the xy-direc flag is zero, then the integer X and Y values are added to the base_x
and base_y parameters. A non-zero value in xy_direc causes a subtraction of the
base_x and base_y parameters.

3. The X and Y values are then readied for transmission to the screen. If xy_ascii is
zero, no further processing is performed. The single characters X and Y are ready
for output. If, however, xy_ascii is non-zero, the X and Y values are converted to
ASCII digits for output. For example if X is 23, the resulting outputs are the digits
'2' and '3'. This feature is required on most ANSI terminals and PC monitors.

4. If xy_order is non-zero, the Y value is output first, otherwise X is assumed to be
first.

5. If pc_leadin is non-zero, then the mnemonic PC1 is sent following the transmission
of the first coordinate (X or Y from step 4).

6. The second coordinate is transmitted.
7. If the mnemonic PC2 is defined as other than null, it is output to terminate a cursor

addressing sequence.
Flag name Description / Effect on operation
xy_order:n Selects the order that the coordinates are sent to the terminal. A zero

specifies XY order (column/row as in the BASIC application), and non-
zero selects YX (row/column) order.

xy_direc:n A zero (default) selects that the coordinates are to be added to the base_x
or base_y character specifications. A non-zero flag causes the coordinates
to be subtracted from the base_x and base_y ASCII characters.

xy_ascii:n A zero specifies that the coordinates sent to the terminal are the result of
simply adding/subtracting the coordinate from the base_x or base_y
specification. A non-zero flag causes the coordinates to be output as ASCII
digits (i.e. ANSI terminals).

base_x:n The base ASCII character in decimal to be added to (or subtracted from) a
cursor positioning operation to a column (x coordinate). This value
represents X coordinate zero.

base_y:n The base ASCII character in decimal to be added to (or subtracted from) a
cursor positioning operation to a row (y coordinate). This value represents
Y coordinate zero.

max_x:n The maximum number of columns on the terminal in all modes.
max_y:n The maximum number of lines on the terminal in all modes.
pc_leadin:n A non-zero flag specifies that a special lead-in is required between the two

coordinates. If this flag is set, then the mnemonic PC1 is transmitted after
the first coordinate.

crt_type:n Define the terminal type to be returned to the BASIC program by the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 110 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

MSC(32) and SPC(13) functions. Set the type to 23 for ANSI monitors
and other ANSI terminals to force them to behave more like conventional
terminals with respect to protected fields. When set, Window Tracking is
always enabled.

crt_flags:n. Flags controlling character transmission and interpretation of mnemonics
for Dynamic Windows. Multiple options are set by adding the values
together.

Mode Description
1 Convert \200\ characters to \0\ on output. Required on older NCR Tower

systems, and other conditions where you always want \200\ nulls
transmitted as true zero bytes before transmission to a serial port.

2 Interpretation of Format Mode using Dynamic Windows. Set for BITS
programs and applications relying on only BP/EP to set both format and
write-protected. In this mode, BP is defined to perform both FX and BP
functions, and EP performs both EP and FM functions. Clear for IRIS
programs and applications using BP/EP to write protect and FM/FX to
control Format Mode separately.

4 Interpretation of Dimmed Mode using Dynamic Windows. Set for BITS
programs and applications relying on dimmed characters to be normally
unprotected. Clear for IRIS programs and applications using BD/ED as
replacements for BP/EP. In this mode, the BD/ED mnemonics cannot be
defined with a size greater than zero; See Defining TERM Mnemonics.

8 Controls the function of the CL and CE mnemonics. Set to clear up to the
End Of Line or until the first protected character. Normally, CL and CE
clear unconditionally to the end of the line or screen, skipping over
protected fields.

48 When set, MD does not cause the terminal to scroll on the last line. When
clear, MD causes the terminal to scroll on the last line.

192 When set, MR does nothing at the last position of the screen. When clear,
MR moves the cursor forward either to the first position of the new last
line after scrolling the screen or, if the terminal is in Format Mode (see
FM/FX), home without scrolling.

768 When set, the terminal does not reposition the cursor after it receives an IL
or DL. When clear, the terminal positions the cursor to the beginning of the
current line after it receives an IL or DL.

The default value for crt_flags is 0. Values of crt_flags in the term file can be expressed in
decimal, octal, or hexadecimal form. For example, to represent the decimal value 16, simply
enter 16. To represent an octal value, proceed the value with a zero, i.e. 020. To represent a
hexadecimal value, proceed the value with a zero+x, i.e. 0x10.

Note: Because screen behavior differs from terminal to terminal, it is not recommended
that you rely on any specific behavior when developing applications. This can lead
to incompatible and/or non-portable software in the future.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 111 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The behavior of the mnemonics mentioned above is undefined within UniBasic at this time,
however future versions may clarify their operation. Proposed future changes more clearly
define the interface between software and the terminal screen or window. As a result, do not rely
on crt.flag settings when developing applications. Rather, they are included to provide varying
degrees of compatibility for older applications running within in Window Tracking mode.

Note: Because Window Tracking mode is a simulation and many applications are coded to
a specific behavior, not all applications will behave identically in Normal mode and
Window Tracking mode.

All printable characters are maintained with their attributes for Protect, Reverse, Underline,
Blink, Graphics and Dimmed. Printable characters overflow the right edge of a window and
wrap automatically to the first column of the window on the next line.
The following examples illustrate use of crt_flags with Wyse 50 terminals:
Programs using BD and ED to protect characters and FM to turn on format mode (IRIS style):

1020 PRINT 'BD' "This is protected!"'EDFM'

term.wyse50 file settings:
crt_flags:0

BP:\33\)

EP:\33\(

BD:\33\)

ED:\33\(

FM:\33\&

FX:\33\'

Programs using BP and EP to protect characters and turn on format mode (BITS style):
1020 PRINT 'BP'"This is protected!"'EP'

term.wyse50 file settings:
crt_flags:2

BP:\33\'\33\)

EP:\33\(\33\&

BD:\33\)

ED:\33\(

FM:

FX:

Programs using BP and EP to protect characters and FM and FX to turn on and off format
mode, retaining dimmed characters (BD/ED) as unprotected:

1020 PRINT 'FXBP'"Protected,"'EPFMBD'"Dim!"'ED'

term.wyse50 file settings:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 112 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

crt_flags:4

BP:\33\)

EP:\33\(

BD,1:\33\GP

ED,1:\33\G0

FM:\33\&

FX:\33\'

Note: Because a Wyse 50 terminal treats dimmed mnemonics as embedded, the BD and
ED must be defined with a size of 1. See Defining $TERM Mnemonics.

Unfortunately, not all terminals are created equal. For example, the Wyse 60 uses a bit map to
store every possible attribute combination for each character. When a Begin Underline is sent, it
places the cursor into Underline mode and sets an underline bit for each successive character
until Underline is turned off.
In contrast, the Wyse 50 terminal uses a physical screen position to store the actual attribute.
When a Begin Underline is sent, it is stored at the position of the cursor and the cursor is
advanced one position. From that position to the end of the screen is immediately underlined.
When Underline is turned off, underlining is cleared from that position to the end of the screen.

Defining $TERM Mnemonics

The standard format within a term file for defining a mnemonic replacement string is:
MNEMONIC {,size} :replacement string

CS:\33*

BPW:\33\Gw

G1:[

BU,1:\33\g

The MNEMONIC is any 2-character supported mnemonic (in either upper or lower case) used
by an application. In addition, the three-letter mnemonics BPW EPW may be defined as special
replacements for BP/EP used exclusively during Window Tracking operations.
Extended Graphics characters are defined using the form: Gn where n selects one of 28 (G1-
G28) special graphics sequences.
IOxx mnemonics control internal system flags and are not defined as output replacement strings.
The optional size specifies the number of screen positions required to hold the mnemonic. The
default is zero positions for all attributes other than BH, BV, PI and Extended Graphics
Characters which assume one position. Include a size definition for specific mnemonics when:

1. Applications assume, or the terminal itself outputs a space as part of the
mnemonic - i.e. certain Wyse 50 mnemonics.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 113 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

2. You modify attributes, adding a space to compensate for assumptions made with
older terminals.

3. You are using user-defined mnemonics SA, etc., or color mnemonics for graphics
or other functions that physically require one or more spaces on the screen for
display.

4. Your replacement string contains one or more printable characters.
The colon and text define the replacement string generated when the data is transmitted to a
terminal. The text may be made up of printable characters or octal characters in the form \xxx\.
Sequences are transmitted directly to the system without toggling. Printable characters should be
less than \200\. Only use codes greater than \200\ when a local printer or screen calls for a
special graphics function and the terminal / printer manual specifies use of an 8-bit code.

Mnemonics Translated for Output

As discussed in the beginning of this section, printable characters are stored and operated
internally using 7-bit ASCII codes. For programming ease, and compatible program source,
octal values used within str.lits are toggled internally such that \215\ is toggled to the printable
\015\, and \015\ is toggled to be \215\; same as the mnemonic CR. In the same way, entry of
\301\ toggles to \101\ producing the ASCII character 'A'. Mnemonics are converted to an 8-bit
character such that CS has the same representation as an IRIS \020\ str.lit after toggling.
In simpler terms, str.lits and mnemonics are toggled internally from their IRIS/BITS form to
match the industry-standard without re-programming.
Mnemonics use the same coding sequence as IRIS, allowing octal code representations of crt
functions.
When data is processed for output, a stream of characters is produced containing codes less than
\200\ for printable characters, and greater than \200\ for crt mnemonics, functions or special
printer/device control. To transmit codes above \200\, program str.lits using codes less than \200\
and vice-versa.
The IOBO mnemonic and SYSTEM 16 statements enable Binary Output Mode and prevent
toggling with the ASC, CHR and CALL $STRING functions.
All mnemonics required by an application must be defined within the term file. Use of an
undefined mnemonic results in the transmission of the internal code used to represent the
mnemonic. These codes are in the range \200\ to \377\. Some terminals may interpret these
codes leading to undesirable results on the screen.
When outputting through a channel, the internal code is passed through. This facilitates device
independence and the ability to write text containing mnemonics to a file. Later retrieval and
transmission to a terminal substitutes the replacement strings required. When mnemonics are
sent to through a pipe to a device, the supplied lptfilter utility may be included within the pipe
to substitute replacement strings for a device.
See also: Configuring Printer Drivers, lptfilter Utility

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 114 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CRT Mnemonics

CRT mnemonics are used in conjunction with a CRT term file to provide control of video
terminal functions such as clear-screen, reverse-video, etc. CRT mnemonics appear in one of
two forms:

• A set of one or more 2-character codes enclosed in single quotation marks (').
Each code can be preceded by an optional count value.

• A cursor address in the form: @num.expr, num.expr;. Addresses are given in the
form column, row from origin 0,0 home (upper-left of screen).

For example:
'CS' Clear screen

'CS10ML' Clear and move left 10 positions.

@5,5;’CL' Position to column 5, row 5 and clear line

@10,L; Position cursor to column 10, row L.

See also: Using Dynamic Windows, Terminal Translation
Appendix B shows these mnemonics and their octal replacement value when used within str.lits,
and their internal representation in files or when sent to a device or pipe.
This section lists the output mnemonics within their general functional area. The functional
areas are:

• Keyboard and aux port
• Clear & reset the terminal
• Cursor position
• Control attributes
• Control color
• Transmit data
• Miscellaneous functions
• I/O control
• I/O mnemonics not supported

Mnemonics for Keyboard and Auxport

Mnemonic Description
AE Enable the Auxiliary port on the terminal. This mnemonic enables the

Auxiliary Printer port until the AD mnemonic is sent.
AD Disable the Auxiliary port on the back of the terminal.
BA Begin Transparent output to Auxiliary printer port. Enabling Transparent

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 115 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

output causes all output characters (and input echoing) to be directed to the
Auxiliary Port of the terminal until the mnemonic EA is sent.

BO Begin non-Transparent output to Auxiliary printer port. This mnemonic
operates similar to the 'BA' mnemonic except that data is transmitted to both
the Auxiliary port and the screen until an EO mnemonic is sent.

EA End Transparent output to Auxiliary port.
EO End non-Transparent output to Auxiliary port.
EF End Function Key Definition. This code terminates all characters being sent to

down-load function keys using the mnemonics P1 through P8.
LK Lock Keyboard. The keyboard is locked and no further characters are accepted

from the terminal. All keys are locked out until the UK mnemonic is sent or
until the terminal is reset.

P1 Begin Programming down-loadable function key 1. All further characters are
sent to the terminal's function key until the mnemonic EF is sent.

P2 Begin Programming down-loadable function key 2. All further characters are
sent to the terminal's function key until the mnemonic EF is sent.

P3 Begin Programming down-loadable function key 3. All further characters are
sent to the terminal's function key until the mnemonic EF is sent.

P4 Begin Programming down-loadable function key 4. All further characters are
sent to the terminal's function key until the mnemonic EF is sent.

P5 Begin Programming down-loadable function key 5. All further characters are
sent to the terminal's function key until the mnemonic EF is sent.

P6 Begin Programming down-loadable function key 6. All further characters are
sent to the terminal's function key until the mnemonic EF is sent.

P7 Begin Programming down-loadable function key 7. All further characters are
sent to the terminal's function key until the mnemonic EF is sent.

P8 Begin Programming down-loadable function key 8. All further characters are
sent to the terminal's function key until the mnemonic EF is sent.

RF Reset Function keys to their default values.
UK UnLock Keyboard. Characters and functions may now be entered from the

keyboard.

Mnemonics to Clear & Reset the Terminal

Mnemonic Description
CE Clear from cursor to end of screen. All unprotected characters from the current

cursor position up to the end of the screen are cleared.
CL Clear from cursor to end of line. All unprotected characters from the current

cursor up to the end of the line are cleared.
CS Clear the entire screen. All characters both protected and unprotected are

cleared.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 116 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CT Clear all TAB Stops set by the ST mnemonic.
CU Clear all unprotected characters on the screen. This mnemonic is used to clear

data from the screen while leaving any protected mask intact. Also, performs a
Move Home (MH), if window tracking is on. The cursor is moved to position
0,0 of the current window.

ES End Write Status Line. Characters output and echoed are no longer displayed
in the status line of the terminal (See also: WS).

K0 CURSOR Set no cursor to be displayed on the terminal.
K1 CURSOR Set Blinking Block.
K2 CURSOR Set Steady Block.
K3 CURSOR Set Blinking Underline.
K4 CURSOR Set Steady Underline
NR Narrow Display. Set 132 column mode and display further output and echoed

characters in narrow format.
NV Normal video. Display reverse video as dark on lighted background.
RS Reset Terminal. Send the commands to reset the terminal to its power-up

parameters. This normally resets baud, protocols, translations, function keys
and clears the screen.

RV Reverse video. Display reverse video as lighted characters on dark
background.

SF Status Line OFF. Turn off the optional status line at the bottom (or top) of the
screen.

SO Status Line ON. Turn on the optional status line at the bottom (or top) of the
screen.

WD Wide Display. Set the terminal into 80 column mode and display further output
and echoed characters in normal format.

WS Write Status Line. All further characters echoed or output are displayed in the
terminals status line until the ES mnemonic is sent.

XX Initialize Terminal. This mnemonic can define a series of functions such as
Clear screen, Clear Memory, Clear Status Line, etc. required to reset the
terminal; See also: RS.

Mnemonics Applied to the Cursor Position

Mnemonic Description
BK Cursor Back. A carriage return without line-feed is sent to the screen moving

the cursor to the beginning of the current line. Since Unix output post
processing normally converts a \215\ into \215\\212\, it may not be possible to
send only a return.

CR Perform a new-line operation. A carriage return and a line-feed are sent to the
terminal. If the cursor is at the bottom of the window, the screen will scroll up

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 117 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

one line. Some terminals will not scroll if the screen window contains
protected fields.

DC Delete Character. The character at the cursor is deleted and all remaining
characters on the line are shifted left.

DL Delete Line. The line containing the current cursor is deleted from the window
and all remaining lines are moved up.

FF Form Feed. Scroll to the next page. This mnemonic is used primarily for
printers using the supplied lptfilter(u), when directing data through the
Auxiliary printer port.

IC Insert Character. A space is added at the current cursor position by shifting the
character under the cursor (and all remaining characters on the line) right one
position.

IL Insert Line. A new line is added by shifting the line containing the cursor (and
all following lines) down one line. Lines may disappear off the end of a
window.

LF Perform a Line-Feed. This, in effect, is identical to a MD mnemonic. The
cursor is moved down to the next line while staying at the same column.

MD Move Down. The cursor is moved down to the next line while staying at the
same column. Some terminals will scroll if you are already on the last line of
the screen.

MH Move Home. The cursor is moved to position 0,0 of the current window.
ML Move Left. The cursor is moved Left one character.
MP Use Memory Pointer instead of cursor for next positioning command.
MR Move Right. The cursor is moved Right one character.
MU Move Up. The cursor is moved up to the previous line while staying at the

same column.
PC Position CURSOR; Lead-in sequence. This mnemonic is not used directly. PC

as well as PC1/PC2 are shown here for documentation purposes only. These
mnemonics are output when a cursor address @x,y; is specified. The sequence
sent is: PC lead-in, coordinate 1, PC1 separator, coordinate 2, PC2 trailer.

PC1 Position Cursor separator. Defined when a sequence is required between the X
and Y coordinates in cursor addressing. Not normally output directly by the
application program.

PC2 Position Cursor trailer. Defined when a sequence is required after sending the
second coordinate position. Not normally output directly by the application
program.

TB Tab Backward. The cursor is moved to the start of the previous TAB Stop as
defined with the ST mnemonic.

TF Tab Forward. The cursor is moved to the start of the next TAB Stop as defined
with the ST mnemonic.

VT Vertical Tab. Move the cursor Down in the window to the next preset Vertical
Tab Stop. This mnemonic is normally used for printers using the supplied

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 118 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

lptfilter(u), or when you direct data through the Auxiliary printer port.

Mnemonics to Control Attributes

Mnemonic Description
BB Begin Blink Mode. All further output and echoed characters will blink until

the EB mnemonic is sent.
BD Begin Dimmed Intensity Mode. All further output and echoed characters will

be displayed in Dimmed (half) intensity until the ED mnemonic is sent. Some
terminals will treat dimmed intensity data as protectable and use of the FM
mnemonic will cause dimmed fields to become protected.

BG Begin Graphics Mode. All further output characters are translated upon the
special Graphics Control Sequences defined the default term. file. Each of the
256 ASCII characters conform to the special graphics characters GRnnn.
Normal character and CRT translation is disabled.

BP Begin Protectable Field. Further characters echoed or sent to the terminal are
flagged as protectable and are usually displayed in half-intensity. Similarly,
half-intensity data printed using the BD mnemonic may also be protectable,
depending upon your terminal. After you have painted your protectable fields
on the terminal, you must issue the FM mnemonic to format and write-protect
your protected field.

BPW Display format for Beginning a Protected field when using dynamic windows.
To simulate protected fields, normally, BD and ED mnemonics are used. This
definition in the term file provides an alternate sequence, such as; reverse
video, underlined or color, to denote protection. This mnemonic is not used
within the program, rather it is output in place of BP when Window Tracking
is enabled.

BR Begin Reversed Video . All further output and echoed characters will be
displayed in reverse video format. On most terminals, the background will
become lit and the characters are shown as black. Color monitors and other
terminals may permit control of the display.

BU Begin Underline Mode. All further output and echoed characters will be
underlined until the EU mnemonic is sent.

BX Begin Expanded Print. All further output and echoed characters will be
displayed in your pre-defined choice of double-high, double-wide or both.

EB End Blink Mode. Characters output and echoed will no longer blink.
ED End Dimmed Mode. Characters output and echoed will no longer be in half-

intensity.
EG End Graphics Mode. Normal terminal translation is restored. Printable

characters represent themselves and CRT codes are processed normally.
EP End Protectable Field. All further characters transmitted are not to be

considered part of a protected field.
EPW End Protected special display for Window Tracking. Used in conjunction with

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 119 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

BPW replacing BP/EP simulated use of BD/ED mnemonics.
ER End Reversed Video. Characters output and echoed will no longer be in

reverse video format.
EU End Underline Mode. Characters output and echoed will no longer be

underlined.
EX End Expanded Print. Characters output or echoed will no longer be in

expanded format.
FM Enter Format Mode. Write protect is set on all characters previously sent using

the BP mnemonic. The protectable fields are now protected preventing any
overwriting of protected data. On some terminals, dimmed characters (BD)
may also become protected.

FX Exit Format Mode. All previously write-protected characters are now returned
to their protectable state. Fields can be overwritten or changed until another
FM is issued. Some terminals cannot overwrite protected characters once
formatted by the FM mnemonic. A clear-screen (CS) is required to reset these
fields.

ST Set a TAB Stop at the cursor. To be used with the TF and TB mnemonics for
presetting TAB stops on the screen.

Mnemonics to Control Color

Mnemonic Description
RE Color RED. All further output and echoed characters are displayed in Red.
GR Color GREEN. All further output and echoed characters are displayed in

Green.
YE Color YELLOW. All further output and echoed characters are displayed in

Yellow.
BL Color BLUE. All further output and echoed characters are displayed in Blue.
BK Color BLACK. All further output and echoed characters are displayed in

Black.
MA Color MAGENTA. All further output and echoed characters are displayed in

Magenta.
CY Color CYAN. All further output and echoed characters are displayed in Cyan.

WH Color WHITE. All further output and echoed characters are displayed in
White.

Mnemonics to Transmit Data

Mnemonic Description
BT Begin Transmission. Begin transmitting all characters from the terminals

memory. This function is highly terminal dependent.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 120 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ET End Transmission. Disable transmission of characters from the terminal's
memory.

LU Send Line Unprotected. All non-protected characters from the current cursor
through the end of the line are transmitted from the terminal.

PS Print Screen. Send the contents of the current screen through the terminal's
Auxiliary/Printer port.

PU Send Page Unprotected. All unprotected characters on the screen are
transmitted from the screen to the system.

SL Send Line All. All characters (including protected fields) on the line
containing the cursor are transmitted from the screen to the system.

SP Send Page All. All characters (including protected fields) on the screen are
transmitted to the system.

TL Transmit Line unprotected. All non-protected characters from the current
cursor through the end of the line are transmitted from the terminal.

TP Transmit Line protected. All characters (including protected fields) on the
screen from the current cursor to the end of the screen are transmitted to the
system. NOTE: TP may also be used by BITS Applications to Toggle Pages of
screen memory.

TR Transmit Screen unprotected. All non-protected characters from the current
cursor through the end of the screen are transmitted from the terminal.

TS Transmit Screen protected. All characters from the current cursor through the
end of the screen are transmitted from the terminal.

Miscellaneous Mnemonics

Mnemonic Description
AS Print String in ASCII. This mnemonic is not defined in the normal term. file.

Instead it sets a flag for PRINT. The next PRINT of a string variable will be in
ASCII output format. The entire DIMensioned size of the string is sent,
including nulls. The internal (non-toggled) information is displayed
representing the actual data that would be sent. All codes greater than \200\ are
displayed as \xxx\ octal. Printable characters represent themselves, and control
characters (001-031) display in ^x format.

BH Box Horizontal character. This mnemonic is used to draw horizontal box
characters using WINDOW. If undefined, the '_' character is printed.

BV ' character is printed.
HX Print String in Hex. This mnemonic is not defined in the normal term. file.

Instead it sets a flag for PRINT. The next PRINT of a string variable will be in
Hex output format. The entire DIMensioned size of the string is sent, including
nulls. The internal (non-toggled) information is displayed representing the
actual data that would be sent. All codes are represented as hex digits 00 to ff.

OC Print String in Octal. This mnemonic is not defined in the normal term. file.
Instead it sets a flag for PRINT. The next PRINT of a string variable will be in

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 121 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Octal output format. The entire DIMensioned size of the string is sent,
including nulls. The internal (non-toggled) information is displayed
representing the actual data that would be sent. All characters are displayed in
\octal\.

RB Ring BELL. Sends the sequence causing the terminal to beep.
TP Toggle Page. Switches the display to another page of memory in the terminal.
RD Read Cursor. The terminal will transmit its current coordinate position to the

program. This function is highly dependent upon the terminal.
PI Position Indicator. This mnemonic is used by supplied utilities to display the

requested number of input characters in a field. The form used by the program
is usually 'nPInML' where n is the number of characters in the field. The
default character for this mnemonic is _.

SA User Defined mnemonic to contain any non-supported terminal function.
SB User Defined mnemonic to contain any non-supported terminal function.
SC User Defined mnemonic to contain any non-supported terminal function.
SD User Defined mnemonic to contain any non-supported terminal function.
S1 User Defined mnemonic to contain any non-supported terminal function.
S2 User Defined mnemonic to contain any non-supported terminal function.
S3 User Defined mnemonic to contain any non-supported terminal function.
S4 User Defined mnemonic to contain any non-supported terminal function.

Special Mnemonics for I/O Control

Mnemonic Description
IO Special lead-in for an IO Control mnemonic. IO is followed by a 2 or 4-

character IO mnemonic.
IOBC Begin activate-on-control-character. The IOBC mnemonic enables

XON/XOFF and CTRL+Q/CTRL+S are ignored. The terminating control
character is placed into the last position of the INPUT string variable. INPUT
continues to terminate on receipt of a control character until the mnemonic
'IOEC' is sent.

IOBD Begin Destructive Backspace. When destructive backspace is enabled
(default), pressing a BACKSPACE or CONTROL-H results in the sequence
backspace, space, backspace being transmitted to the screen. Destructive
backspace continues until the 'IOED' mnemonic is sent.

IOBE Begin Input Echo. As characters are entered on the screen, they are displayed
(normal default). Input echo continues until the IOEE mnemonic is sent.
CALL $ECHO and the SYSTEM Statement provide additional ways to
enable/disable echo. Any of the 3 methods can be used together or separately.
A CALL $ECHO can enable echo disabled by IOEE, etc.

IOBF Mnemonic accepted, but does not perform a function.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 122 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

IOBI Begin input transparency. The IOBI mnemonic enables Binary Input mode
resulting in no input translation of characters received until the IOEI is sent.
Nulls, [ESC]s, and control characters are placed into the string exactly as
received with and without the high-order bit set. When Binary Input is
enabled, your INPUT statements must specify a time limit or character count
or input continues indefinitely. See also HALT Command to unlock a port,
and SYSTEM Statement Binary Input Mode.

IOBO Begin output transparency. The IOBO mnemonic enables Binary Output
Mode resulting in no output translation of characters. All 256 ASCII
characters are sent to the terminal directly. No graphics or CRT functions are
performed. The format of this mnemonic is IOBO;"nnnnn\377\". 'nnnnn' is a
one to five digit number in the range 1 to 65535 representing the number of
characters to output in Binary Output Mode. This field may contain leading
spaces or a zero byte. No trailing spaces are allowed. The digit field must
terminate with "\377\". If the format is incorrect, Binary Output will not be
enabled and the request is ignored. For example, to send the sequence
ESCAPE=**, output: "4\377\\233\=**". After the specified number of
characters are transmitted, Binary Output Mode is disabled automatically. The
PRINT statement terminates strings on zero bytes. To output true zero/null
bytes, you may use the CHR() function in BITS programming mode. Zero
bytes cannot be sent in IRIS mode. See also SYSTEM Statement Binary
Output mode.

IOBX Begin XON/XOFF protocol. The IOBX mnemonic enables Unix sending
XON/XOFF protocol when communicating with a Host computer until the
IOEX mnemonic is sent. The system will prevent overflow of the type-ahead
buffer by sending an XOFF to a host when the buffer is full. This function is
usually used when you activate a program on a port that is wired directly to
another system. Normal keyboard XON/XOFF protocol is always enabled.

IOB\ Begin sending the \ character to the screen whenever [ESC] is pressed. The
default operation is to always send the \ character for IRIS programs, and only
for BITS applications without [ESC] branching in effect. The \ will be sent
until the IOE\ mnemonic is sent.

IOCI Clear the contents of the terminal's type-ahead buffer. Any input entered but
not processed as INPUT is discarded.

IOEC Disable activate-on-control-character. Normal INPUT (default) is restored, and
XON/XOFF flow control are terminated. CTRL+Q and CTRL+S are
recognized. Input is terminated by [EOL] (usually RETURN), length or time.

IOED End Destructive Backspace. Stop sending backspace, space, backspace. Send
only a single backspace and erase the input character from the input buffer.

IOEE End Input Echo. Disable echo of input characters on the terminal. Identical to
using CALL $ECHO or SYSTEM Statement. Input characters are not
displayed on the screen until echo is enabled by CALL $ECHO, SYSTEM or
an IOBE mnemonic is sent.

IOEF Mnemonic accepted, but does not perform a function.
IOEI End Input Transparency. Normal Input Mode is activated, and Binary Input is

disabled. Special characters are processed and [EOL] (usually RETURN)

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 123 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

terminates INPUT.
IOEX End XON/XOFF Protocol. Normal overflow of the type-ahead buffer is

allowed. This is the default condition whereby type-ahead buffer overflow
outputs a bell to the terminal, and input is discarded.

IOE\ End sending the \ character to the screen whenever [ESC] is pressed. This
function disables the IOB\ mnemonic and system default. The \ character is
never sent to the terminal when [ESC]is pressed.

IOIH Setup for special Input Handling. This mnemonic is followed by a byte
defining the type of Input processing to be performed. In a future release,
custom tables may be defined within the default term. file.

IORS Reset the I/O parameters for this terminal. Echo is enabled as is the output of
"\" on [ESC]. All other IO modes are turned off.

IRIS Mnemonics Not Supported

Mnemonic Description
IOIHIR Set the input handler type to standard processing as defined in your default

term. file.
IOIHSM Set the input handler type to SM BASIC standard.
IOIHSR Set input handler to SM BASIC Read Record format.
IOIHSI Set input handler to simple format. All characters are input except CONTROL

S and CONTROL Q.

$TERM Extended Graphic Mnemonics

To define graphics sequences, you may define the mnemonics BG EG to send starting and
ending graphics sequences required for the terminal. You then define unused mnemonics, such
as the Special Mnemonics (SA, SB, SC, SD), color mnemonics, etc. as your own defined
graphics sequences. For example, SA may be used to draw a left pointing T.
The second (recommended) method involves the definition of special mnemonics for Extended
Graphics Characters, or EGC . These are a set of 28 octal characters that, when printed in
between BG and EG mnemonics display graphics characters on the terminal. To enable EGC,
define replacement strings for the mnemonics BG and EG only if your terminal requires a
special sequence to switch between normal and graphics modes. It is not necessary to define BG
or EG to use the EGC mnemonics.
Next, define up to 28 different graphics sequences listed below. The format in the term file for
defining an EGC is Gn: replacement where 'n' is the graphics sequence (1-28), and
'replacement' is the string necessary to create the desired character. The first 11 have pre-defined
meanings and should be defined accordingly. They are used for Windows when replacement
strings for the first six sequences and BG EG are defined in the term file.
By defining any Gn mnemonics in the term. file, you enable EGC and change the method
whereby graphic sequences are sent to a screen. No longer are BG EG treated as a simple
mnemonics. Transmission of the BG mnemonic switches translation to the EGC table providing

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 124 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

the 28 possible sequences listed0 in the following table. The EG mnemonic resets translation to
the standard mnemonic table.
When EGC is enabled, the following \octal\ and mnemonics output graphics sequences. When
disabled, the \octal\ or either mnemonic outputs the replacement string defined for the first
mnemonic below. For example: AE, G3 or \110\ normally enable the auxiliary port. When EGC
is defined, these codes output a Lower Left Corner of a box when sent between BG and EG
mnemonics.

Table of Extended Graphics Octal Codes

term Octal Mnemonics Description
G1 \106\ 'CT' G1 Upper left corner
G2 \107\ 'ST' G2 Upper right corner
G3 \110\ 'AE' G3 Lower left corner
G4 \111\ 'AD' G4 Lower right corner
G5 \112\ 'SL' GH Horizontal bar
G6 \113\ 'LU' GV Vertical bar
G7 \114\ 'SP' GL Left pointing T
G8 \115\ 'GR' GR Right pointing T
G9 \116\ 'TB' GU Upward pointing T

G10 \117\ 'PI' GD Downward pointing T
G11 \120\ 'RE' GC Cross (+)
G12 \121\ 'PU' none User defined
G13 \122\ 'YE' User defined
G14 \123\ 'BL' User defined
G15 \124\ 'MA' User defined
G16 \125\ 'CY' User defined
G17 \126\ 'WH' User defined
G18 \127\ 'XX' User defined
G19 \130\ 'SA' User defined
G20 \131\ 'SB' User defined
G21 \132\ 'SC' User defined
G22 \133\ 'SD' User defined
G23 \134\ 'BV' User defined
G24 \135\ 'BH' User defined
G25 \136\ User defined

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 125 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

G26 \137\ User defined
G27 \140\ User defined
G28 \141\ User defined

Programs display graphic characters by printing the octal value associated with them.
The following example displays a 3 by 3 box:

10 PRINT 'BG'"\106\\112\\107\"

20 PRINT "\113\\40\\113\"

30 PRINT "\110\\112\\111\"'EG'

Dynamic Windows use EGC to draw boxes using graphics mode. If the first six EGC are
not defined, BV (if defined) or '|' becomes the vertical character, BH (if defined) or '- '
becomes the horizontal character, and '+' becomes the corner character as defaults. To
use EGC with Dynamic Windows, the first six EGC (G1 through G6) must be defined in
the term file.
BG and EG need not be defined to display EGC unless the terminal requires
initialization sequences for graphics. If the terminal is an ANSI monitor or one that
displays graphic characters without an initialization sequence, BG EG need not be
defined.

Note: The first eleven EGC (G1 through G11) are reserved and should be used
for the features described above. Failure to do so will render Dynamic
Windows automatic box drawing useless. Any EGC reserved in the future
will start at G12. When defining your own characters, start from the end of
the list (G28) moving backwards.

$TERM Input Character Processing

Characters are processed in the form received from the Unix system. To avoid
application problems, normal printable characters should be received in 7-bit form. To
verify that your terminal is configured for 7-bit characters, issue the Unix command: stty
-a. The option istrip should be displayed. If the option is displayed as -istrip, then the
8th bit is not being stripped prior to passing the data into the application. Refer to the
Unix Terminal Information for additional information.
Input Character Definitions are included within the term file to define special functions
for your applications. These characters are not passed as input unless Binary Input Mode
is enabled using IOBI or SYSTEM 14. Some of these characters will be passed as input
if Activate-On-Control-Character mode is enabled by using IOBC. Any given function
may have one or more characters invoke its operation, however a single character may
not perform two different functions. The format of this information in the term file is:

c:action (printable character c)

^c:action (control character c)

\ooo\:action (octal value of character c)

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 126 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

In the following table, action is a number from 0 to 24 representing a function to be
performed upon entry of a character tagged to the action. The CODE represents the
name of the function invoked. Throughout this guide, the [CODE] format is used to
specify an Input Character Function.

Action Code Function
 0 Normal data, echo character and process as normal input

characters.
 1 Convert to space. These characters are to be converted to

spaces whenever they are used.
 2 Ignore this character completely. Used to disable special keys

not supported by an application.
 3 Ignore this character and echo a BELL whenever the character

is entered by the user.
 4 [DBS] ^H: Destructive backspace. Erase one character from the

input buffer and echo backspace, space, backspace to erase
the character from the screen. If no characters are in the
buffer, the terminal bell is sounded.

 5 [BS] DEL: Echoed backspace. Erase one character from the input
buffer and echo the erased character.

 6 [ESC] ESC: ESCape. Send the application an ESCAPE. The
application can elect to abort, ignore or process the [ESC]
itself using IF ERR, ESCSET, ESCDIS or ESCSTM. A \ is
sent to the terminal for BITS applications only if [ESC]
branching is disabled. For IRIS applications, the \ is always
sent unless the mnemonic IOE\ is enabled.

 7 [EOBC] ^D: [ESC] override. Abort any running command or program.
This character bypasses any program [ESC] handling. A \ is
always sent to the terminal.

 8 [CANCEL] ^X: Cancel input buffer. Erase all characters currently typed
as input characters.

 9 ^O: Cancel output. Not implemented.
 10 ^S: Pause output. Temporarily suspend output. This character

is set by Unix and cannot be changed.
 11 ^Q: Resume output. Any output stopped by ^S is resumed.

This character is set by Unix and cannot be changed.
 12 [ECHO] ^E: Toggle echo. If echo is enabled, disable further echoing

until another ^E is entered.
 13 [SIGNAL] ^B: Generate signal to your program. This character sends a

SIGNAL with two (-1) values.
 14 [INTR] ^C: BASIC program interrupt. Used for applications to have a

second method of interruption. Requires the use of INTSET
statement.

 15 [EOL] RETURN: Terminate input. Transmit any input to the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 127 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

program or system as a completed line.
 16 Normal data but no echo. This allows the input of certain

characters with an echo inhibit. Some characters may, for
example, perform an unwanted screen function when entered.

 17 Normal data but echo space. This allows the input of certain
characters that may affect a terminal to be echoed as space.
The cursor will then move reflecting the input of a character.

 18 Convert to carriage return. Each input of this character is
replaced by a [EOL] (Usually RETURN) in the buffer,
however, this character does not terminate input. The default
character ^Z performs this operation.

 19 [HOT-
KEY]

Perform a SWAP to the Executive Program chosen by CALL
$SWAPF. When this character is entered at any INPUT
statement, the current program is suspended, the Executive is
loaded and run until it terminates. See WINDOW and Using
Dynamic Windows.

 20 [UP] Cursor Tracking up character. Whenever this character is
entered during Cursor Tracking Mode, the character \053\ is
returned in the string variable.

 21 [DOWN] Cursor Tracking down character. Whenever this character is
entered during Cursor Tracking Mode, the character \052\ is
returned in the string variable. This character, if defined, also
performs an [EOL] when Cursor Tracking mode is disabled.

 22 [LEFT] Cursor Tracking left character. Whenever this character is
entered during Cursor Tracking Mode, the character \010\ is
returned in the string variable. This character, if defined, also
performs a non-destructive backspace [NDBS] when Cursor
Tracking mode is disabled.

 23 [RIGHT] Cursor Tracking right character. Whenever this character is
entered during Cursor Tracking Mode, the character \040\ is
returned in the string variable.

 24 [NDBS] Non-destructive backspace. Erase one character from the
input buffer and echo a backspace. If no input characters are
in the buffer, the terminal bell is sounded.

For example, "^A:4" defines the CTRL+A key to perform a destructive backspace. This
does not disable the CTRL+H key which is pre-defined to perform the same function. To
change one of the default characters, first redefine the existing character, then set the
new character for the function. For example: ^H:0 to set CTRL+H as normal data, ^A:4
to set CTRL+A for destructive backspace.

Note: Only one key each may be selected to perform functions 6 and 7.
Functions 9, 10 and 11 may not be changed on Unix systems.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 128 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Cursor Tracking Mode

Cursor Tracking is an INPUT mode available to BASIC programs to monitor the motion
of the cursor on the screen. When activated, the arrow keys on the terminal are
intercepted and returned as CRT control characters to the BASIC program. The program
then tracks the cursor by knowing its position and counting the number of up, down, left
and right arrows entered.
To activate Cursor Tracking, output the character \001\ as the last character prior to
INPUT. Any other character disables Cursor Tracking. Cursor Tracking continues
during input until the [EOL] character is entered.
The characters sent by the actual arrow keys must be defined in the term file equated to
input translation functions 20,21,22 and 23 All terminals behave differently when using
the arrow keys past the end of a line or screen. Make sure your application handles the
keys the same as the terminal would operate in local mode.

10 INPUT {@x,y; and mnemonics} "\001\" str.var

20 PRINT ... ;"\001\";

30 INPUT "" str.var

Statement 10 enables Cursor Tracking for the INPUT of A$. Statement 20 enables
Cursor Tracking (note the terminating ; preventing transmission of a [EOL] usually
RETURN). Statement 30 then receives INPUT in Cursor Tracking Mode.
The actual INPUT received will be standard ASCII characters. The arrow keys are
returned as octal values:

OCTAL Key Pressed
\010\ Left Arrow
\040\ Right Arrow
\052\ Down Arrow
\053\ Up Arrow

Cursor Tracking operates on all data processed following the output of "\001\". Data
typed ahead (but not yet received from Unix) will process correctly.

Using Dynamic Windows

A window is simply another page of information on the screen. It may be the entire
screen, or a smaller region placed anywhere on the current screen. When a window is
created, the underlying information is saved and then cleared. An optional box with
heading may be created to highlight a window. When a window is deleted, it is cleared
restoring any previous underlying data. See also WINDOW.
Each window behaves as a full screen of the dimensions specified. Data automatically
wraps within the boundaries of the window and many of the mnemonics are supported.
Cursor positioning is relative, such that position 0,0 is the first character of the window.
Scrolling within a window is allowed.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 129 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The number of windows that may be opened concurrently is limited by the environment
variable WINDOWS which must be explicitly assigned a value greater than zero (its
default) to enable Dynamic Windows.
Window Zero is the full screen before any windows are open.
Window Tracking Map is the screen map maintained for the actual screen display
present. As windows are created, the underlying information is copied into allocated
memory and saved until the window is deleted. The Window Tracking Map holds
characters and attribute information for each position on the screen. The map is also
used to simulate protected data on ANSI monitors.
Window Tracking is the process whereby each character and its attributes is maintained
in a display map. Each character along with attributes for Protect, Reverse, Underline,
Dim, Blink and Graphics are maintained. Mnemonics, keyboard echo and cursor
addressing are intercepted to prevent access outside the current window. When enabled,
a Map is automatically created for Window Zero; the first full-screen window.
If the environment variable WINDOWS is not defined or set to zero, a Window
Tracking Map is not created and all characters and mnemonics pass directly to the
screen. Similarly, if the crt.type in the term.file is not defined or zero, Window Tracking
will be disabled.
By default, when using an ANSI style monitor with crt_type in the term file set to 23,
the environment variable WINDOWS defaults to one if undefined or zero. A Clear
Screen automatically enables Window Tracking during RUN mode. This allows the
monitor to simulate Protected Fields, a normally unsupported feature on most PC
monitors.

Using Protected Characters & PC Monitors

Protected characters and fields are simulated whenever Window Tracking is enabled.
This is done for the following reasons:

1. Protected fields are not supported on ANSI PC Monitors.
2. Creating a new window on top of already protected characters.
3. Repainting protected characters when restoring underlying data.
4. Limit Clear Unprotect CU from clearing characters outside the current

window.
On most terminals, protected characters are not truly protected until format mode FM is
enabled. To accommodate a wide range of terminals, protection is available using {BP
EP}, {BP FM EP} or {BD ED FM}. See also $TERM Flags and Switches; crt_flags.
To overlay protected fields with a new window, the terminal is never placed into format
mode. On most terminals, Format Mode prohibits placing characters over a protected
area unless the entire screen is cleared. Window Tracking intercepts FM, FX, BP and
EP mnemonics to maintain the Window Tracking Map. BD and ED (or BPW and EPW
if defined) are sent to the screen instead of BP EP and FM FX are never transmitted.
BPW and EPW mnemonic definitions are provided as an alternative to BD and ED

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 130 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

when using either embedded dimmed mnemonics or alternative attributes.
Because terminals behave differently, and applications have control defining mnemonic
replacement strings, the following problems may occur:

1. The cursor is moved using a non-supported window mnemonic, or Unix
command, corrupting the Window Tracking Map.

2. When closing a window, attributes are enabled and disabled as needed to
repaint the screen. If the edge of a window overlaps an underlined word, the
underline code is sent in the middle of the word in a futile attempt to restore
the screen.

3. When a window is created on top of or between beginning and ending codes,
the underline runs through the window, up to end of the screen, or disappears
altogether.

4. When underlined text wraps from the right edge of a window to the left,
underline does not obey a windows borders.

By default, all mnemonics are assumed to occupy zero character positions on the screen
with the exception of BH, BV, PI, and Extended Graphics Characters which default to
a single position.
For problems 1 and 2 above, modify the term file for the specific mnemonics inserting
the number of characters required on the screen. For example if BU (Begin Underline)
requires a screen position, modify the entry to read:

BU,1:\33\G8
For problems 3 and 4 above, there is no simple solution. This occurs on terminals
requiring a screen position to flag start and end of an attribute. When opening a window
thereby clearing the end-attribute, the terminal automatically extends the attribute to the
end of line or screen. If the terminal uses an identical sequence to end all special
attributes, try lining the left and right sides with these ending mnemonics and modify the
window to occupy one less character on each side using WINDOW MODIFY.

Mnemonics Simulated During Window Tracking

When a window is opened and Window Tracking is enabled, characters and mnemonic
codes are intercepted and forced within the boundaries of the window. If the cursor is
moved into a protected region, the cursor is automatically advanced to the first non-
protected position. Scrolling is permitted in full screen mode and within a window.
The behavior of Windows varies, depending on the state of the Format Mode ('FM') and
the crt.flags field in the term file. Format Mode controls whether or not protected
characters can be overwritten or cleared. When Format Mode is enabled, characters with
the protect attribute ('BP') are immune to being cleared by 'CU', 'CE', or 'CL'
mnemonics. When Format Mode is disabled ('FX'), protected characters are vulnerable.
Format Mode can be changed either explicitly with 'FM/'FX', or implicitly with
'BP'/'EP' by setting crt_flags:2.
There are three additional flags used to describe the behavior of Windows with regards
to the 'MD','MR', and 'IL'/'DL' mnemonics on a particular terminal when windows is
enabled. They can be modified in the crt_flags field of the term file. Window Tracking

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 131 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

needs this information in order to accurately represent the screen. These flags do not
control how the mnemonics function, and are only meaningful when Window Tracking
is in use. See also: crt_flags.
The following pages list the mnemonics supported during Window Tracking. Exercise
caution using mnemonics not listed. Verify that the number of screen positions required
is defined in the term file.
Mnemonic Function Performed

\215\ Carriage Return. BITS mode sends the cursor to the first column of the
window on the current line, whereas IRIS mode also performs an
automatic Line-feed (See \212\ New-Line).

\212\ New Line. The cursor is moved to the first column of the open window on
the next line.

\210\ Backspace. Backspacing is forced to stay within the boundaries of any
open window. Backspacing off the left of the window places the cursor in
the last window column of the previous line.

@x,y; Cursor Addressing operates normally, but is restricted to the boundaries of
any open window. If the x or y coordinate is out of range, it is reduced to
within range. Cursor positions are origin (0,0) as the first position of the
window.

\001\ Cursor Tracking is supported within the boundaries of any open window.
'CR' Carriage Return. The actual characters defined by the mnemonic are sent

and the screen is adjusted to be within the boundaries of the current
window. If the mnemonic contains only \15\, then the cursor is moved to
the beginning of the current line. If the mnemonic contains \15\\12\ or \15\
in IRIS mode, the carriage is advanced to the first column of the window
on the next line.

'LF' Line Feed. During Window Tracking, the LF mnemonic does not get
interpreted from the UniBasic term file and always outputs a line feed.

'MH' Move Home. The cursor is placed into the first unprotected character
position of the window.

'MU' Move Up. The cursor is moved to the line above in the window unless the
cursor is already on the first line of the window , then it scrolls to the next
line up.

'MD' Move Down. The cursor is moved down to the next line in the window
unless the cursor is already on the last line of the window, where the action
is determined by the configuration, and the crt_flags.

'ML' Move Left. The cursor is moved one position to the left. If the cursor
underflows the first column of the window , the cursor is placed on the last
character position of the previous line in the window , if any.

'MR' Move Right. The cursor is moved one position to the right, If the cursor
overflows the last column of the window, the action is determined by the
configuration, and the crt_flags.

'BP' Begin Protect. The Protect attribute is turned on and all further characters
will be tracked with the Protect attribute. If you wish BP to turn off format

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 132 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

mode, see crt_flags ($TERM Flags and Switches). The CRT code BD
(Begin Dim) is output to place the screen into half-intensity mode. The
alternate sequence BPW may be defined to display protected data in other
than dimmed intensity.

'EP' End Protect. The Protect attribute is turned off. If you wish EP to turn on
format mode, see crt_flags ($TERM Flags and Switches). The CRT code
ED (End Dim) is output to restore normal intensity. The alternate
sequence EPW may be defined to display protected data in other than
dimmed intensity.

'FM' Turns on format mode. Formats characters transmitted as protected or
dimmed to become protected. Can be used with crt_flags:2 set. See also
crt_flags ($TERM Flags and Switches).

'FX' Turns off format mode. Can be used with crt_flags:2 set. See also crt_flags
($TERM Flags and Switches).

'BU' Begin Underline.
'EU' End Underline.
'BD' Begin Dimmed intensity. By default, dimmed characters are protectable.

See also crt_flags ($TERM Flags and Switches).
'ED' End Dimmed Intensity. See also crt_flags ($TERM Flags and Switches).
'BR' Begin Reverse Video.
'ER' End Reverse Video.
'BB' Begin Blink.
'EB' End Blink.
'BG' Begin Graphics (see $TERM Extended Graphics Characters).
'EG' End Graphics (see $TERM Extended Graphics Characters).
'CU' Clear Unprotected data. All data in the window that is not protected is

cleared. The attributes currently enabled are not disturbed by this
mnemonic.

'CS' Clear Screen. The entire window is cleared and all attributes are turned
off. Note that Clear Screen does not delete the window, rather it performs
a Clear Screen within the boundaries of the window.

'XX' Initialize terminal. Same as Clear Screen.
'IC' Insert Character. This action is simulated when the window border does

not extend to the right edge of the screen, or a protected character is to the
right of the character. The action is dependent on the setting of the
crt_flags.

'DC' Delete Character. This action is simulated when the window border does
not extend to the right edge of the screen, or a protected character is to the
right of the character. The action is dependent on the setting of the
crt_flags.

'IL' Insert Line. An open line is inserted at the current position. This action is
simulated when in a window. The action is dependent on the setting of the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 133 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

crt_flags.
'DL' Delete Line. Deletes the current line. This action is simulated when in a

window. The action is dependent on the setting of the crt_flags.
'CL' Clear Line. All unprotected characters from the current cursor position

through the last character of the window line are cleared to space. See also
crt_flags ($TERM Flags and Switches) to control the operation of CL
with protected data.

'CE' Clear End of Screen. All unprotected characters from the current cursor
position through the last line of the window are cleared to space.

'BV' ' if undefined. Unused if Extended Graphics are defined. See also $TERM
Extended Graphics Characters.

'BH' Box Horizontal. Default character used for horizontal line around a
window. Defaults to '-' if undefined. Unused if Extended Graphics are
defined. See also $TERM Extended Graphics Characters.

'PI' Position Indicator. Used to display a field width for a user INPUT prompt.
Normally, PI is '_' (underline), and is used in the form: '20PI' to display for
the user a 20-character input field. The cursor is not repositioned to the
start of the field.

Note:
No other mnemonics are supported during Window Tracking. Others are
sent directly to the terminal. If a mnemonic moves the cursor or transmits
data, the Windows Tracking Map may be compromised! Define other
mnemonic's number of screen positions.

UniBasic Commands

Commands include those functions built within the UniBasic process. Certain other
familiar commands (such as LIBR or DIR) are external system programs and are
documented as Utilities.
Commands are issued in either program mode or at command mode. Commands
restricted to command mode are signified by the SCOPEPROMPT '#'. BASIC program
mode commands are shown without a prompt. When setting the environment variable
BASICMODE=BITS, both modes are combined into a single prompt, BITSPROMPT,
where both types of commands may be issued.
For
example:

#SAVE {<attributes>} filename {!}
SAVE must be issued from command mode.

LIST {parameters}
LIST must be issued from BASIC program mode.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 134 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Some commands are restricted to a single BASICMODE. For example, BITS uses the
DELETE command to delete files from command mode, while IRIS uses the DELETE
command to remove statements.

Note: At the top of each page in this section, if a command is restricted to one
mode or the other, it is so indicated. In addition, if a command is restricted
to BITS, the command format is preceded by the prompt '*'.

For example:
*DELETE filename

Starting & Ending Statement Numbers

Statement Numbers (or labels), are referenced as stn, starting stn, or ending stn.
Commands which allow both a starting stn and ending stn behave differently when
selecting BASICMODE=IRIS or BASICMODE=BITS:
When operating under the environment selected by BASICMODE=IRIS, the following
rules apply:

1. Supplying a starting stn without an ending stn selects those statements
greater or equal to starting stn through the end of the program: 10 LIST

2. Supplying an ending stn without a starting stn selects those statements
from the beginning of the program up to and including any statement
equal to the supplied ending stn: LIST 1000

3. Supplying both a starting stn and ending stn selects all statements greater
or equal to starting stn, and less than or equal to ending stn:1000 LIST
2000

4. Supplying an identical starting stn and ending stn selects only that single
statement, or the first stn greater: 100 LIST 100

When operating under the environment selected by BASICMODE=BITS, the following
rules apply:

1. Supplying a starting stn followed by a comma and no ending stn selects
those statements greater than or equal to starting stn through the end of the
program: LIST 1000,

2. Supplying a comma followed by an ending stn selects those statements
from the beginning of the program up to and including any statement
equal to the supplied ending stn: LIST ,1000

3. Supplying both a starting stn and ending stn selects all statements greater
than or equal to starting stn, and less than or equal to ending stn: LIST
1000,2000

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 135 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

4. Supplying a single starting stn without a preceding or trailing comma
selects only that single statement, or the first stn greater: LIST 1000

labels may be specified wherever a stn is required. Some commands, such as
RENUMBER or ENTER, rely on integer statement numbers for their operation. If a
label is supplied, its current statement number is substituted.

Processing in Command Mode

When in command mode, the following steps are performed for each input line:

1. If the command is internal to UniBasic, it is executed immediately. This
includes commands such as BYE, BASIC, etc., otherwise -

2.
A search is made through the directories defined in the environment
variable LUST for a BASIC program or utility (such as LIBR, QUERY).
If found, the program is started, otherwise -

3.
A sub-shell process is started and the command is fed to the shell for
execution by Unix. Following execution of the command, command mode
is resumed.

If an existing internal command (1), or BASIC program (2) conflicts with the name of a
Unix command, begin the command line with ! to force Unix execution (3). In addition,
the ! command reloads the term file and may be used within BASIC program mode
without sacrificing open files normally closed for IRIS users when command mode is
entered.
Since commands are performed in a sub-shell child process, changes to environment
variables or current working directory are only effective while in the sub-shell. When it
terminates, the parent (UniBasic) resumes unaware of the child's activities.
The Unix command sh can be issued to enter the shell for a series of operations. The
shell remains active until CTRL+D (EOF) or an exit command is issued. At that time,
command mode is reentered.
Because Unix is a multi-processing system, it is possible to have many processes
running concurrently on a port. The Unix command ps may be used to display all active
processes. If this command is executed from command mode, you may see a number of
shells:
#ps

PID TTY TIME COMMAND

10308 00 0:01 sh

10334 00 0:02 UniBasic

10336 00 0:00

10337 00 0:00 ps

The first sh is the active shell launched at login. This process will not be displayed if the
.profile contains exec UniBasic since exec replaces the current sh with the UniBasic
process. Next, the UniBasic process is running which launched a sub-shell in command
mode to execute the ps command.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 136 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

When making changes to your current term file using a Unix editor (such as vi), execute
a ! command from either command mode or BASIC program mode to force a reloading
of the term file with your changes.

! Command

SYNOPSIS
Execute External Unix Command

SYNTAX
#! command
! command

DESCRIPTI0N
command is any Unix (or null) command to be executed by a sub-
shell.
Upon completion of the command, the default term file is reloaded,
and any opened Windows are cleared.
All system commands are executed by a separate shell child process -
effectively putting UniBasic to sleep until the command terminates.
Changes to environment variables, tty settings and current working
directory within a child process are effective only during that process.
Upon termination of the command, the parent (UniBasic) resumes
execution unaware of the child's activities.
You may use the ! command to launch another copy of UniBasic (for
debug purposes) should you wish to leave the current process intact,
i.e. files open, variables undisturbed, etc. Issue the command:
!PORT=xx UniBasic
Where 'xx' is an unused UniBasic port number. You then are
controlling 2 different port numbers as if you went to another terminal
When a BYE command or SYSTEM 0 is executed from the second,
the first resumes as if the command was never issued. Care must be
exercised with respect to locked records or files, since the second
process obeys locks placed on files by the first.

EXAMPLES
!ls -l

!vi /usr/ub/sys/term.tvi925

ERRORS
As reported by Unix for specific command

See also
CD Command, Unix Documentation

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 137 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

/ Command (BITS only)

SYNOPSIS
Load and RUN a SAVED BASIC program.

SYNTAX
*/ { filename }

DESCRIPTI0N
filename is any optional filename or full pathname to a BASIC
program to which you have read-permission. If omitted, the current
program (if any) is executed.
The / command is only available when operating within the
BASICMODE=BITS environment.
If filename exists as a BASIC saved or system program file, any
current program is erased. filename is loaded, and execution begins
immediately at the lowest stn within the program.
This command is identical to a RUN filename command, available in
either IRIS or BITS mode.

EXAMPLES
*/

*/payroll

*//usr/ub/programs/pay200

*/sys1:program

ERRORS
Filename does not exist
Read Protected File
Not a loadable program file

See also
RUN Command, LUST Environment Variable

AUTO

SYNOPSIS
Automatic entry of program statement numbers.

SYNTAX (IRIS)
{starting stn} AUTO {increment}

SYNTAX (BITS)
AUTO {starting stn} {,increment}

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 138 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DESCRIPTI0N
starting stn is an optional first statement number in the current
program to begin entering new statements. If omitted, 10 is the
default. If an existing statement label is supplied, entry begins at that
statement number.
increment is the optional statement number increment for automatic
entry. If omitted, 10 is the default. If a label is supplied, its statement
number is used as the increment. It is suggested that only a number
be supplied as the increment.
AUTO displays the stn allowing entry of the new statement. If the stn
already exists, it is replaced by the new entry if the statement is
accepted without error.
If an error is detected in the statement entered, a message is displayed
and the same stn is requested.
AUTO is terminated by pressing ESC.

EXAMPLES
AUTO 1

AUTO 100,1

ERRORS
Various syntax and encoding ERRORS

See also
Program Statements

BASIC (IRIS only)

SYNOPSIS
Load a new BASIC programand/or switch to program mode.

SYNTAX
#BASIC {filename}

DESCRIPTI0N
filename is any filename or pathname to a BASIC program or saved
System BASIC program to which you have read-permission.
If filename is a saved BASIC program file or System BASIC program
file, any current program is cleared and the partition is loaded with the
new program. If the partition contains a needed program, it should first
be saved or dumped.
The error 'Not a Loadable Program File' may occur if the program has
been encrypted using the PSAVE command. These programs are not
accessible unless your system has an authorized OSN (OEM Selection
Number) installed by the owner.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 139 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

If the new program was saved with variables (VSAVE or CHAIN
"SAVE ...", the message 'with variables' is displayed.
The Supplemental Protection Attribute F flags an IRIS program file. If
the program was saved with the attribute E (Execute only), the
program is automatically erased from memory after loading.
BASIC is only available when operating in the environment
BASICMODE=IRIS. Use the GET command when
BASICMODE=BITS.

EXAMPLES
#BASIC 23/FILENAME

#BASIC /usr/ub/sys/libr

ERRORS
Filename does not exist
Not a loadable program file - wrong revision, protected or corrupted
Read Protected File

See also
GET, MERGE, LOAD, Filenames and Pathnames, OEM Command,
Supplemental Protection Attributes, RSAVE, PSAVE, VSAVE,
CHAIN "SAVE ...", LUST

BAUD

SYNOPSIS
Change terminal's IO parameters.

SYNTAX
#BAUD rate

DESCRIPTI0N
Baud is the rate of transmission, in bits-per-second on a serial line.
Most I/O controllers use the RS-232 serial standard to interface with
terminal devices. In this case, rate generally equals the number of bits
per second. Since a frame of data is usually 10 bits (start bit, 8 data
bits, stop bit), the actual transmission speed in characters per second is
calculated by dividing the rate by 10.
To change your port’s baud rate, the following conditions should be
observed:

1. Your terminal device must be speed-selectable.
2. Your terminal must be connected to a software speed-

selectable controller board. Some boards are speed-selectable
via switches on the board itself, older boards may not be
selectable at all.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 140 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

3. The baud rate selected must be legal both for your terminal
and the port controller board. Most programmable controllers
allow the rates: 110, 150, 300, 600, 1200, 2400, 4800, 9600,
19200 and 38400.

If your terminal's rate cannot be changed, an error message is
returned, and the command is ignored.
BAUD uses the Unix stty command to change the rate.

EXAMPLES
#BAUD 2400

*BAUD 19200

ERRORS
Illegal speed

See also
Unix stty command

BYE

SYNOPSIS
Terminate UniBasic session.

SYNTAX
#BYE

DESCRIPTI0N
The BYE command clears any program from the user’s partition,
closes all channels, deletes any remaining signals, removes the
message queue associated with the port and terminates the current
session.
The current day and time, Unix [group-user] and current port number
are displayed:

09 JUL 1986 13:10:47 [7-4] Port=15

CPU=10, Connect=15, Disk=13234

The second line contains cpu and connect time usage for the session
just ended, followed by the number of available disk blocks on the file
system.
The parent process resumes when UniBasic terminates. If UniBasic
was launched from the shell (or .profile) using the command exec
UniBasic, the terminal is signed off, and the login prompt is displayed.
Otherwise, the shell or calling process is resumed.
If you are in debug mode following a non-trapped error, [ESC], or
[EOBC] in a child UniBasic process launched using the [Hot-Key] or
SWAP statement, the parent UniBasic is resumed.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 141 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLES
#BYE

*BYE

ERRORS
None

See also
SYSTEM 0

CD

SYNOPSIS
Change current working Directory.

SYNTAX
#CD { pathname }

DESCRIPTI0N
pathname is any logical unit, pack name, directory name or full Unix
pathname.
If no pathname is specified, the current default working pathname is
displayed.
If a logical unit, packname or directory name is specified, the Logical
Unit Search Table LUST is searched for the first full pathname where
the directory is below. The current working directory is changed to the
new pathname.
This command is not totally compatible to the Unix cd command. The
Unix environment variable CDPATH is not searched. The command is
provided for convenience since direct execution of the Unix cd
command is performed in a sub-shell, and changes do not affect the
current process.

EXAMPLES
#CD 23

#CD /usr/ub/text

#CD data:

ERRORS
System Error - No such file or directory

See also
PACK, Filenames and Pathnames, UNIT, LUST, CLU

CHAIN "SAVE. . ." (IRIS only)

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 142 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Save the current program with variables.

SYNTAX
CHAIN "SAVE filename{!}"

DESCRIPTI0N
The CHAIN statement is executed in immediate mode as a long chain
to the SAVE command providing for the saving of variables and
program state for later debugging.
The optional ! provides for replacement of an existing filename.
filename is any legal filename or pathname to contain the saved
version of the current program.
All variables, GOSUB stack, FOR/NEXT stack, User Defined
Function stack are saved. A prompt 'with variables' is displayed during
the SAVE as well as during later loading of the program using BASIC
or GET.
CHAIN "SAVE ..." is used to save a copy of a program for later
debugging. Any open file information is not saved. Applications may
use a combination of error-branching (ERRSET, ERRSTM, or IF
ERR) and CHAIN "SAVE ..." to facilitate later debugging of an
application failure.

EXAMPLES
CHAIN "SAVE ERRORS/"+MSF(4)

CHAIN "SAVE PROGRAMERROR!"

ERRORS
Filename already exists; use "!" to replace
No program in partition

See also
VSAVE, CHAIN, LUST

CHANGE (BITS only)

SYNOPSIS
Change filename or attributes.

SYNTAX
*CHANGE filename (newfilename{!} | <new attributes>)

DESCRIPTI0N
filename is any filename or pathname to a file with write permission.
The optional ! provides for the replacement of an existing filename.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 143 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

newfilename is any new filename or pathname if a name change is
desired.
new attributes is any IRIS, BITS, Unix or Supplemental Attributes if
the file permissions are to be changed.
The CHANGE command is only available when operating in the
environment BASICMODE=BITS. To change filenames or attributes
in an IRIS environment, see the CHANGE utility, or MODIFY
statement.
CHANGE uses the Unix mv command to rename a file, and the
chmod command to change attributes. Supplemental Attributes are
stored in files unique to UniBasic within each file's header.
If the file is an Indexed Data File, both the data and ISAM portion are
changed.
CHANGE may also be used to move a file from one directory to
another. If a Logical Unit, Packname, or pathname is specified for
filename, you must include the same for the newfilename or the file is
moved to your current working directory.

EXAMPLES
*CHANGE PACK:FILENAME PACK:NEWFILENAME

*CHANGE PACK:FILENAME <EO666>

ERRORS
Filename does not exist

See also
CHANGE Utility, MODIFY Statement, Filenames and Pathnames,
File Attributes, Protection and Permissions, LUST

CHECK (IRIS only)

SYNOPSIS
Scan program for proper blocked-IF's.

SYNTAX
CHECK

DESCRIPTI0N
The current program is checked for proper Blocked-IF structure. If
any ERRORS are detected, an error is printed.
Blocked IF statements are also checked whenever a program is
SAVEd.
CHECK is only available when operating in the environment
BASICMODE = IRIS. For BITS environments, use the VERIFY
command.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 144 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

If no ERRORS are detected, the message 'No errors detected' is
displayed.

EXAMPLES
CHECK

ERRORS
IF without ENDIF
ENDIF without IF
ELSE without ENDIF

See also
VERIFY, SAVE, IF

CLU (IRIS only)

SYNOPSIS
Change current working Directory.

SYNTAX
#CLU { pathname }

DESCRIPTI0N
pathname is any logical unit, packname, directory name or full Unix
pathname. If no pathname is specified, the current default working
pathname is displayed.
If a logical unit, or packname or directory name is specified, the
Logical Unit Search Table LUST is searched for the first full
pathname where the directory is below. The current working directory
is changed to the new pathname.
This command is not totally compatible to the Unix cd command. The
Unix environment variable CDPATH is not searched. The command is
provided for convenience since direct execution of the Unix cd
command is performed in a sub-shell, and changes do not affect the
current process.

EXAMPLES
#CLU 23

#CLU /usr/ub/text

ERRORS
System Error - No such file or directory

See also
PACK, Filenames and Pathnames, UNIT, LUST, CD Command

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 145 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CONTINUE

SYNOPSIS
Resume execution of stopped program.

SYNTAX
CONTIN{UE}

DESCRIPTI0N
CONTINUE resumes execution of a program stopped by Breakpoint,
STOP, non-trapped error, or [EOBC] (usually CTRL+D).
If debugging options such as Breakpoint or Single Step is used,
execution resumes at the first instruction in sequence not yet executed.
Entry into debug mode using STOP, Breakpoint, non-trapped error or
[EOBC] leaves all channels open.
When operating in the environment BASICMODE=IRIS, command
mode automatically closes all open channels. To perform shell or other
system commands, use the ! command to invoke a shell or another
copy of UniBasic.

EXAMPLES
CONTINUE

CONTIN

ERRORS
none

See also
STOP, END, BASICMODE, Program Breakpoints, Single Step
Execution, TRACE, SYSTEM 20/21/22/23

DEL (BITS only)

SYNOPSIS
Delete a file.

SYNTAX
*DEL filename ...

DESCRIPTI0N
filename is any legal filename or pathname to a file to which you have
write permission.
The DELete command may be used to delete one or more files from
disk.
Multiple filenames separated by spaces may be included on the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 146 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

command line up to the length of the input buffer.
If, for any reason, a file cannot be deleted, a message to this effect is
output and deletion of files stops immediately. DEL does NOT
indicate which file caused the error. It is best to delete multiple files
only when you are sure all can be deleted, or use the KILL utility.
DEL is only available when operating in the environment
BASICMODE=BITS. For IRIS environments, use the KILL utility.

EXAMPLES
*DEL PACK:FILENAME

*DEL /usr/ub/sys/term.old

ERRORS
File does not exist
File is read-protected

See also
KILL, MFDEL, KILL, LUST

DELETE (IRIS only)

SYNOPSIS
Delete program statements.

SYNTAX
{starting stn} DELETE {ending stn}

DESCRIPTI0N
starting stn is an optional first stn in the current program to delete. If
omitted, the first stn is selected. If the starting stn does not exist, the
first existing higher stn is used.
ending stn is an optional last stn in the current program to delete. If
omitted, the highest statement number is selected. If the ending stn
does not exist, the first existing lower stn is used.
DELETE without a starting stn or ending stn removes all statements
in the current program. It is not the same as a NEW command which
also clears variable names and values.
When operating in the environment BASICMODE=BITS, use the
ERASE command to remove statements.

EXAMPLES
INPUT: DELETE END_INPUT:

9900 DELETE

100 DELETE 200

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 147 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ERRORS
none

See also
ERASE, Program Statements, Starting & Ending Statement Numbers

DUMP

SYNOPSIS
Decode a program to a file, device or pipe.

SYNTAX (IRIS)
{starting stn } DUMP {opt} {<attr>} filename{!} {/text/} {ending
stn}

SYNTAX (BITS)
DUMP {opt} {{<attr>} filename{!}} {/text/}{starting stn}{,ending
stn}

DESCRIPTI0N
starting stn is an optional first stn in the current program to decode. If
omitted, the first stn is selected. If the starting stn does not exist, the
first existing higher stn is used.
opt are optional parameters to control the display. Each parameter is a
single letter preceded by / or - :

Tn Set the tab stop to column 'n'. Statements are tabbed to
column 'n' for easier readability. This option is most useful
when statement labels are used instead of standard statement
numbers.

L Substitute labels for statement numbers in GOTO, etc.
wherever possible.

N Do not list statement numbers.
<attr> are any optional valid file attributes, protections, or permissions
to apply to the file on creation. Since the file is created as a standard
Unix Text file, Supplemental Protection Attributes are not permitted.
Standard IRIS, BITS, or Unix permissions may be supplied. If
omitted, file creation is defaulted to permissions 0666 (Read/Write by
all users) subject to any umask in effect.
filename is any filename or pathname to a directory to which you have
write permission. If the filename already exists, it must be terminated
by an exclamation point (!) to replace its contents. The file is built as a
standard Unix Text File compatible with standard editors such as vi.
filename may also be a pipe by beginning the filename with a $.
/text/ is any optional string to search each statement for. If omitted, all
statements of a program are decoded. To decode only statements

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 148 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

containing a specific string, enclose the search text within / /. For each
statement containing text, that statement is decoded, otherwise it is
omitted. Note that all text is case dependent. Statements, variables, etc.
must be searched for using uppercase as shown during program
listings.
ending stn is an optional last stn in the current program to decode. If
omitted, the highest statement number is selected. If the ending stn
does not exist, the first existing lower stn is used.
When using BASICMODE=IRIS, the first format is used. BITS
requires entry using the second form.

EXAMPLES
*DUMP -T5 FILENAME /WRITE #/ 100,200

100 DUMP -L FILENAME! 200

INPUT: DUMP -T5 FILENAME! /INPUT/ END_INPUT:

ERRORS
Write Protected File
Illegal Filename
Filename already exists; use ! to replace

See also
LIST, FIND, Pipes, Filenames and Pathnames, Starting & Ending
Statement Numbers

EDIT

SYNOPSIS
Edit and change an existing statement.

SYNTAX
EDIT stn
EDIT .

DESCRIPTI0N
stn is the statement number of an existing statement within the
program to edit.
EDIT . displays the last command or line entered for editing. This is
helpful when an error is made during program or command entry.
After an EDIT command is issued, the statement is displayed and the
cursor is placed in the first position. Typing H displays a help screen.
EDIT
commands: (n = optional repetition count, default = 1)

D Displays the current line and repositions to the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 149 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

beginning.
nSpace Moves n positions to the right, echoing characters.
nBackspace Moves n positions to the left, echoing characters.

I<text> Inserts <text> at the current position until ESCape is
pressed.

A<text> Appends <text> to the end of the line until ESCape
is pressed.

nX Deletes n characters to the right of the cursor.

nS<text> Substitutes n chars to the right with <text> until
ESCape is pressed.

R<char> Replaces the current character with <char>.
n/<text> Searches forward for the nth occurrence of <text>.
n?<text> Searches backward for the nth occurrence of <text>.
N Search Next. Repeats last / or ? command.

U Undo all editing and reload edit buffer with original
contents.

Q Exit the edit mode, ignoring any changes.
<Return> Exit edit mode and encode the resultant line.

While in an insert type command (I, A), data is not re-displayed until
ESC is pressed. During delete, the screen is updated as each character
is deleted.

EXAMPLES
EDIT 10

ERRORS
No such statement number

ERASE (BITS only)

SYNOPSIS
Delete program statements in BITS mode.

SYNTAX
*ERASE {starting stn} {,ending stn}

DESCRIPTI0N
starting stn is an optional first stn in the current program to erase. If
omitted, the first stn is selected. If the starting stn does not exist, the
first existing higher stn is used.
ending stn is an optional last stn in the current program to erase. If
omitted, the highest statement number is selected. If the ending stn

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 150 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

does not exist, the first existing lower stn is used.
ERASE with a single stn will delete only that statement.
ERASE without a starting stn or ending stn deletes all statements in
the current program loaded in memory. It is not the same as a NEW
command which also clears variable names and values.
When operating in the environment BASICMODE=IRIS, use the
DELETE command to remove statements.

EXAMPLES
*ERASE 10

*ERASE ,100 !From beginning to 100 inclusive

*ERASE 1000, !From 1000 to end of program

*ERASE INPUT:, END_INPUT:

ERRORS
none

See also
DELETE, Program Statements, Starting & Ending Statement
Numbers

EXEC (IRIS only)

SYNOPSIS
Execute contents of a text file.

SYNTAX
#EXEC filename

DESCRIPTI0N
filename is any legal filename or pathname to a Text File to which
you have read permission.
Standard Input is switched to the text file performing all commands
within the file until EOF.
EXEC is an internal command. To perform a Unix exec command, the
!exec form must be used.
EXEC may be used to automatically load and dump BASIC programs,
or perform any series of commands as if they were entered at the
keyboard.
The DIR and MAKECMND utilities may be used to construct a
series of commands on all (or selective) files in a directory.
When operating in the environment BASICMODE=BITS, use the
GET command to execute a text file.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 151 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLES
#EXEC filename

ERRORS
File does not exist
Read Protected file

See also
DIR, GET, MAKECMND, Filenames and Pathnames, LUST, LOAD

EXIT (IRIS only)

SYNOPSIS
Exit program mode to command mode.

SYNTAX
EXIT

DESCRIPTI0N
EXIT is used to terminate BASIC program mode and enter into
command mode. EXIT is identical to pressing CTRL+C. However, it
may be included in a text file executed using the EXEC command.

EXAMPLES
EXIT

ERRORS
none

See also
[INTR], CTRL+C

FILE

SYNOPSIS
Display current program and all open files.

SYNTAX
FILE

DESCRIPTI0N
FILE displays the name of the current BASIC program loaded into
the partition. If the program was entered via a [HOT-Key] or SWAP
statement, the calling program and stn are also displayed:

Program: ar.custmaint

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 152 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SWAP at statement: 110;1 in: op.openorder1

SWAP at statement: 20;1 in: sp.selector

For all data files opened, the channel number and full pathname are
displayed:

CHANNEL# FILENAME OPENED

0 /usr/ub/sys/lpt

1 /usr/ub/3/ar.customers

2 /u/5/orderheader

Note: When operating in the environment BASICMODE=IRIS, all
channels are closed whenever END, CHAIN "", or command mode
is entered.

EXAMPLES
FILE

ERRORS
none

See also
Filenames and Pathnames, CHF, CHN

(Filename)

SYNOPSIS
Load and RUN a SAVED BASIC program.

SYNTAX
#filename

DESCRIPTI0N
filename is any filename or full pathname to a BASIC program to
which you have read-permission.
If filename exists as a BASIC saved or system program file, any
current program is erased. filename is loaded, and execution begins
immediately at the lowest stn within the program.
This command is identical to a RUN filename command.

EXAMPLES
#payroll

#/usr/ub/23/payroll

ERRORS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 153 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Filename does not exist
Read Protected File
Not a loadable program file

See also
/ Command, RUN Command, LUST

FIND

SYNOPSIS
Search & list statements.

SYNTAX (IRIS)
{starting stn} FIND {opt} /text/ {ending stn}

SYNTAX (BITS)
FIND {opt} /text/ {starting stn} {, ending stn}

DESCRIPTI0N
starting stn is an optional first stn in the current program to search and
decode. If omitted, the first stn is selected. If the starting stn does not
exist, the first existing higher stn is used.
opt are optional parameters to control the display. Each parameter is a
single letter preceded by / or - :

V Visual mode. The first screen full of lines are displayed. If
additional lines are included, the user is prompted at the
bottom of the screen with [MORE]. Pressing [RETURN]
displays additional program lines one at a time. Pressing
[SPACE] displays the next screen full of lines starting with
the last line of the previous screen. This process is repeated
until no more lines are found, or [ESC] or [EOBC] (usually
CTRL+D) is pressed.

Tn Set the tab stop to column 'n'. Statements are tabbed to
column 'n' for easier readability. This option is most useful
when statement labels are used instead of standard statement
numbers.

L Substitute labels for statement numbers in GOTO, etc.
wherever possible.

N Do not list statement numbers.
/text/ is any optional string to search each statement for. If omitted, all
statements of a program are decoded. To decode only statements
containing a specific string, enclose the search text within / /. For each
statement containing text, that statement is decoded, otherwise it is
omitted. Note that all text is case dependent. Statements, variables, etc
must be searched for using uppercase as shown during program

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 154 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

listings.
ending stn is an optional last stn in the current program to search and
decode. If omitted, the highest statement number is selected. If the
ending stn does not exist, the first existing lower stn is used.
To perform a FIND and re-direct output to a file, device, or pipe, use
the DUMP command.
When using BASICMODE=IRIS, the first format is used. BITS
requires entry using the second form.

EXAMPLES
*FIND -V /OPEN #/

100 FIND -V /V$=/ 500

100 FIND -V /CHAIN WRITE/ INPUT:

ERRORS
none

See also
LIST, DUMP, Starting & Ending Statement Numbers

GET (BITS only)

SYNOPSIS
Load a text or saved BASIC program.

SYNTAX
*GET filename
*GETI filename
*GETB filename

DESCRIPTI0N
filename is any filename or pathname to a text file, BASIC program or
saved System BASIC program.
If the supplied filename exists as a saved BASIC program file, System
BASIC program file or Text File, any current program is cleared and
the partition is loaded with the new program. If the partition contains a
needed program, it should be saved or dumped (using the SAVE or
DUMP commands) first.
All saved BASIC programs retain a current checksum of the entire
program file. The error 'Not a Loadable Program File' may occur if the
program has been encrypted by the owner using the PSAVE
command. These programs are not accessible unless your system has
an authorized OSN (OEM Selection Number) installed by the owner.
If a saved program is loaded successfully, it’s checksum and

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 155 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

compatibility are output in the form:
*GET ABC Check = AF23 *** BITS PROGRAM ***

*GET ABC1 Check = D680 *** IRIS PROGRAM ***

If the new program was saved with variables (using VSAVE or a long
CHAIN to SAVE, the message 'with variables' is printed.
The Supplemental Protection Attribute F is used to indicate an IRIS
program file. If the program was saved with the attribute E (Execute
only), the program is automatically erased from memory after loading.
The GET command is only available when using
BASICMODE=BITS. To load a BASIC program with
BASICMODE=IRIS, use the BASIC, or LOAD command.
If filename is a Text File, it is loaded using the rules invoked by the
GET command chosen:

GETI is used to force the loading of a text file using the encoding
rules of IRIS.
GETB is used to force the loading of a text file using the
encoding rules of BITS.

EXAMPLES
*GET 23/filename

ERRORS
Filename does not exist
Not a loadable program file - wrong revision, protected or corrupted

See also
BASIC, MERGE, LOAD, Filenames and Pathnames, OEM,
Supplemental Protection Attributes, RSAVE, PSAVE, VSAVE, LUST

GO (IRIS only)

SYNOPSIS
Resume execution of stopped program.

SYNTAX
GO

DESCRIPTI0N
GO resumes execution of a program stopped by Breakpoint, STOP,
non-trapped error, or [EOBC] (usually CTRL+D).
If debugging options such as Breakpoint or Single Step are used,
execution resumes at the first instruction in sequence not yet executed.
Entry into debug mode using STOP, Breakpoint, non-trapped error or
[EOBC] leaves all channels open.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 156 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Note: When operating in the environment BASICMODE=IRIS, entry into
command mode automatically closes all open channels. To perform
shell or other system commands, use the ! command to invoke a shell
or another copy of UniBasic.

EXAMPLES
GO

ERRORS
none

See also:
CONTINUE, STOP, END, BASICMODE, Program Breakpoints,
Single Step Execution, TRACE, SYSTEM 20/21/22/23

HALT

SYNOPSIS
Terminate BASIC program on another port.

SYNTAX
#HALT port number

DESCRIPTI0N
port number is any integer in the range 0 to the upper limit defined by
the environment variable MAXPORT.
The message queues are searched for the process running as the
selected port number. If found, the program running on that port
number is terminated unconditionally into BASIC program mode with
channels left open.
If no program is running, the HALT command is ignored.
HALT may be used when an application has disabled [ESC] using IF
ERR, ESCSET, ESCSTM or ESCDIS, and no input translation
character is defined for [EOBC] (usually CTRL+D). It is also useful to
terminate a running program started by SPAWN, PORT or CALL
$TRXCO on a phantom port.

EXAMPLES
#HALT 25

*HALT 25

ERRORS
none

See also:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 157 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Port Numbering and Phantom Ports

HELP

SYNOPSIS
Print text DESCRIPTI0N of an error.

SYNTAX
HELP {error number}

DESCRIPTI0N
error number is any optional positive integer representing a BASIC
error number, or negative integer representing a Unix system error as
returned by the ERR(0) or SPC(8) functions.
If no error number is specified, the text DESCRIPTION of the last
error is displayed. If no error exists, the string No such error is
displayed.
When running an IRIS program, error number is assumed to be an
IRIS error number as returned by SPC(8).
When running a BITS program, error number is assumed to be a
UniBasic or BITS error number.
The environment variable BASICMODE does not determine the
interpretation of error number. Instead, the current program type,
BITS or IRIS, determines the error text returned. Negative (system)
ERRORS are identical for either type of program.
If you are unsure as to the type of program loaded in the partition, you
may issue a VERIFY command.

EXAMPLES
HELP

HELP 23

*HELP 9

ERRORS
No such error number

See also:
ERR, SPC, VERIFY, Appendix C, Error Message file
/usr/ub/errmessage

LEVEL

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 158 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Print UniBasic revision data.
SYNTAX

#LEVEL
DESCRIPTI0N

The LEVEL command prints the current UniBasic revision number,
PASSPORT revision level, and the UniBasic license number.

EXAMPLES
#LEVEL: UniBasic 8.1, PASSPORT daemon 4.1

Your license# is 9C4D3168

ERRORS
none

See also:
UniBasic Security

LIST

SYNOPSIS
Decode BASIC statements.

SYNTAX (IRIS)
{starting stn} LIST {switches} {/text/} {ending stn}

SYNTAX (BITS)
LIST {switches} /text/ {starting stn} {, ending stn}

DESCRIPTI0N
starting stn is an optional first stn in the current program to decode. If
omitted, the first stn is selected. If the starting stn does not exist, the
first existing higher stn is assumed.
switches are optional parameters to control the display. Each parameter
is a single letter preceded by a / or - :

V Visual mode. The first screen full of lines are displayed. If
additional lines are included, the user is prompted at the
bottom of the screen with [MORE]. Pressing [RETURN]
displays additional program lines one at a time. Pressing
[SPACE] displays the next screen full of lines starting with
the last line of the previous screen. This process is repeated
until no more lines are found, or [ESC] or [EOBC] (usually
CTRL+D) is pressed.

Tn Set the tab stop to column 'n'. Statements are tabbed to
column 'n' for easier readability. This option is most useful
when statement labels are used instead of standard statement

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 159 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

numbers.
L Substitute labels for statement numbers in GOTO, etc.

wherever possible.
N Do not list statement numbers.

/text/ is any optional string to search each statement for. If omitted, all
statements of a program are decoded. To decode only statements
containing a specific string, enclose the search text within / /. For each
statement containing text, that statement is decoded, otherwise it is
omitted. Note that all text is case dependent. Statements, variables, etc
must be searched for using uppercase as shown during program
listings.
ending stn is an optional last stn in the current program to decode. If
omitted, the highest statement number is selected. If the ending stn
does not exist, the first existing lower stn is assumed.
To decode statements to a file, device or pipe, use the DUMP
command.

EXAMPLES
LIST -V

*LIST -V /WRITE #0/ START:, INPUT:

100 LIST -V 500

INPUT: LIST END_INPUT:

ERRORS
none

See also:
FIND, DUMP, Starting & Ending Statement Numbers

LOAD (IRIS only)

SYNOPSIS
Load BASIC statements from a text file.

SYNTAX
LOAD {filename} {-filename}

DESCRIPTI0N
filename is any Text File to which you have read-permission. The file
must contain BASIC program statements generated from a DUMP
command or editing program.
-filename strips comments from the text of a BASIC program.
As each line of text is loaded, it is added to the current program in
your partition. The statements in the text file need not be in any

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 160 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

particular order. If any statement already exists, it is replaced. For
example, assume the following program is currently in your partition:

10 LET A=A+1

20 LET B=SQR(A)

and a LOAD is performed from a text file containing:
26 IF A=30 THEN END

30 GOTO 100

The resultant program would be:
10 LET A=A+1

20 LET B=SQR(A)

26 IF A=30 THEN END

30 GOTO 100

EXAMPLES
LOAD sys/program

ERRORS
Filename does not exist
Read Protected File

See also:
GET, BASIC, MERGE, Filenames and Pathnames, LUST

MERGE (BITS only)

SYNOPSIS
Merge statements from a text file.

SYNTAX
*MERGE filename

DESCRIPTI0N
filename is any Text File to which you have read-permission. The file
must contain BASIC program statements generated from a DUMP
command or editing program.
MERGE is similar to GET except that the user’s partition is not
cleared first. When operating in IRIS mode, the LOAD command is
used to merge statements.
As each line of program text is merged, it is added to the current
program in your partition. The statements in the text file need not be in
any particular order. If any statement already exists, it is replaced. For
example, assume the following program is currently in your partition:

10 LET A=A+1

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 161 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

20 LET B=SQR(A)

and a MERGE is performed from a text file containing:
26 IF A=30 THEN END

30 GOTO 100

The resultant program would be:
10 LET A=A+1

20 LET B=SQR(A)

26 IF A=30 THEN END

30 GOTO 100

EXAMPLES
*MERGE 23/FILENAME

ERRORS
Filename does not exist

See also
GET, LOAD, Filenames and Pathnames, LUST

MSG

SYNOPSIS
Transmit a message to another port.

SYNTAX
#MSG (port number | @) ; text

DESCRIPTI0N
port number is any integer from zero to the value defined by the
environment variable MAXPORT (usually 999). An @ may be used
by the root account to transmit a message to all active UniBasic
processes.
text defines the string of characters to transmit to the specified port
number or @ all ports.
If a selected port number is running a UniBasic process, the text is
transmitted immediately, regardless of the receiving port’s status. The
output is duplicated on the sender’s own port. Messages may not be
transmitted to processes other than UniBasic. It is preceded by an
identification of the sender in the form:

[g-u] Port=p/message

where [g-u] is the group and user and ‘p’ is the port number of the
sender
CTRL+Z characters may be embedded within the message string and

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 162 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

will be transmitted as a carriage return and line feed.
To transmit a message to any Unix user, issue one of the following
Unix commands:

mail name message [return] [CTRL+D]

write name message [return] [CTRL+D]

EXAMPLES
#MSG @; System is going down in 10 minutes

#MSG 0; Please mount Tape #12/23/88

*MSG 7; Please call me for lunch at 12:30

ERRORS
Port 'n' is not logged on

See also
Unix mail command, Unix write command

NEW

SYNOPSIS
Clear partition for a new program.

SYNTAX
NEW
NEWI
NEWB

DESCRIPTI0N
The NEW command clears your partition of any current program. By
default, the operational mode selected by the environment variable
BASICMODE specifies the type of program to be created.
NEW clears the partition and closes any open channels.
All memory allocated is released, and reallocated.
NEWI selects IRIS program syntax for the creation of a new program.
NEWB selects BITS program syntax for the creation of a new
program.
In any case, the programming mode is output, e.g.:

NEW *** IRIS PROGRAM ***

NEWB *** BITS PROGRAM ***

NEWI *** IRIS PROGRAM ***

EXAMPLES

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 163 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

NEW

NEWI

NEWB

ERRORS
none

See also
BASICMODE

OEM

SYNOPSIS
Display list of authorized dealer software.

SYNTAX
#OEM

DESCRIPTI0N
The OEM command is issued at command mode. A list of all active
OEM protections enabled is printed. "M" is printed to indicate the
presence of a Master OSN. The list is numbered when more than one
OEM package is installed. This number corresponds to the PSAVE
command.

Authorized software:
DESCRIPTION

1

M
Customized Accounting Package

This display indicates that an OSN (OEM Security Number) is
installed allowing the operation of the Customized Accounting
Package. In addition, the Master OSN is installed allowing access to
program source.

EXAMPLES
#OEM

ERRORS
none

See also
PSAVE

PACK (BITS only)

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 164 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Change current working Directory.
SYNTAX

*PACK { pathname }
DESCRIPTI0N

pathname is any logical unit, packname,. directory name or full Unix
pathname. If no pathname is specified, the current default working
pathname is displayed.
If a full pathname is specified, the current default working directory is
changed to that pathname.
If a logical unit, or packname or directory name is specified, the
Logical Unit Search Table LUST is searched for the first full pathname
where the directory is below. The current working directory is changed
to the new pathname.
This command is not totally compatible to the Unix cd command. The
Unix environment variable CDPATH is not searched. The command is
provided for convenience since direct execution of the Unix cd
command is performed in a sub-shell, and changes do not affect the
current process.
PACK is only available when operating in the environment
BASICMODE=BITS. For IRIS environments, use the CD or CLU
commands.

EXAMPLES
*PACK 23
*PACK /usr/ub/text

ERRORS
System Error - No such file or directory

See also
CD, CLU, Filenames and Pathnames, UNIT, LUST

PROTECT

SYNOPSIS
Protect individual BASIC statements.

SYNTAX (IRIS)
{starting stn} PROTECT {ending stn}

SYNTAX (BITS)
PROTECT {starting stn} {, ending stn}

DESCRIPTI0N
starting stn is an optional first statement number in the current

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 165 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

program to protect. If omitted, the first statement number is selected. If
the starting stn does not exist, the first existing higher stn is assumed.

ending stn is an optional last statement number in the current program
to protect. If omitted, the highest statement number in the program is
selected. If the ending stn does not exist, the first existing lower stn is
assumed.
All program statement numbers inclusive are protected from being
decoded. This applies to the commands: FIND, LIST and DUMP.
Protected program lines are output as a stn only by the LIST and
DUMP commands. This is done as a reminder that the lines exist, but
are protected.
Once protected, there is no unprotect ability; the lines must be re-
entered. It is recommended that an original source copy of a program
be kept somewhere for later reference, if necessary.
Any attempt to load an ASCII program with protected lines will
produce an error. One must use the original copy without the protected
lines in order to DUMP and GET or LOAD a program.

EXAMPLES
100 PROTECT 999</file>

*PROTECT 1000,1100</file>

READ_FILE: PROTECT END_READ_FILE:</file>

ERRORS
none

See also
PSAVE, Starting & Ending Statement Numbers

PSAVE

SYNOPSIS
Protect & SAVE the current program.

SYNTAX
#PSAVE {-ro} {OSN#}, {{<attributes>} {filename{!}}}

DESCRIPTI0N
OSN# is the number displayed by the OEM command. It selects the
application group and encryption algorithm to employ. If omitted, the
first group is selected. The OSN# may be omitted if only one
encryption algorithm is installed on the system.
<attributes> are the desired protection, permission or attributes to
apply to the newly created filename. If <attributes> are supplied, a
filename must also be specified.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 166 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

(Release 9.1) Use the command option "-ro" to prevent modifications
without the master OSN.
filename is any optional filename or full pathname to a directory to
which you have write-permission. If omitted, the original filename for
the program in memory is used. An error is generated if the current
program was not previously saved using PSAVE, SAVE, VSAVE, or
CHAIN SAVE.
PSAVE is only available at command mode and is used to initially
encrypt BASIC programs. The OEM command prints the current list
of OSN numbers installed on your system. You can only PSAVE an
application with an OSN that is a Master OSN.
Once a program is encrypted using PSAVE, normal SAVE or RSAVE
commands preserve the encryption status. Protection on a system is
driven by three distinct security numbers:

SSN System Security Number
OSN OEM Security Number
PDN Product DESCRIPTION Number

Only the SSN is necessary to run UniBasic; the OSN and PDN are
optional numbers used in the program protection scheme. The PDN is
of interest only to the dealer.
PSAVE simultaneously encrypts and saves the current program using
a key derived from the dealers own company name and/or
DESCRIPTION of his product. A protected program may be copied to
a user's system, but is prevented from execution until the system is
authorized by the dealer. Should someone attempt to RUN, CHAIN
to, or otherwise load an unauthorized program, the following error is
generated:

Not a loadable program file; wrong Revision, protected
or corrupted

If the application is authorized, the program becomes executable by
RUN, CHAIN, etc. but may not be decoded using FIND, DUMP, or
LIST. Program changes may be entered, checksums taken, and the
program re-saved, and the PSAVE encryption status is always
maintained. It is impossible to remove this encryption without first
decoding the program to text, and reloading. Decoding operations are
prohibited unless a Master OSN is installed by the owner of the
application.
The OSN is the number used to authorize a user's system. Each OSN
entered on a system is displayed each time UniBasic is started, e.g.:

Authorized software:

DESCRIPTION

1M ABC Software Inc.

1 indicates that this is the first package authorized on this system. As
implied, there may be many different packages authorized to run on a

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 167 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

single machine. The M indicates that a Master OSN is installed, and
protected programs may be decoded. If an M is not displayed at
startup, or by the OEM command, then a User OSN is installed
allowing execution and changes only, without decoding.

To perform in-house development using PSAVE, the machine should
be authorized with a Master OSN's. The Master has the same
properties as the User with the exception that decoding of protected
programs is allowed.
The concept of a Master OSN has an interesting application in field
debugging. Such a number makes it possible for the dealer to enter it
at a user site and temporarily be granted decoding capabilities for his
programs. To accomplish this, sign on to the system, and issue the
command:

UniBasic -t

You will be asked to enter a temporary OSN. The Master OSN is
entered and becomes effective only for that port and only for that
session. All other users on the system remain unaware that the Master
OSN was entered. This is particularly effective for cases like modem
debugging.
If no OSN's are entered on a system, PSAVE is ignored and performs
a normal SAVE command.

EXAMPLES
#PSAVE 3, <22> filename!

#PSAVE

#PSAVE -ro 3,<22> filename! (Release 9.1)
ERRORS

No program in partition
Write Protected File
Program Channel not OPEN; cannot RSAVE until SAVE/PSAVE
issued
File already exists; use '!' to replace
Illegal Filename
IF without ENDIF

See also
Filenames and Pathnames, File Attributes, Protections and
Permissions, OEM command, SAVE, RSAVE, VSAVE, LUST

RENUMB

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 168 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Renumber statements in a program.
SYNTAX (IRIS)

{begin stn} RENUMB {step}
SYNTAX (BITS)

RENUMB {begin stn} {, step }
DESCRIPTI0N

begin stn is the optional first statement number to use for the
renumbered program. If omitted, 10 is assumed. If begin stn is a label,
its current stn is used as the first statement number.
step is the optional increment to use between the renumbered lines. If
omitted, 10 is assumed. If step is a label, its current statement number
is used as the step.
RENUMB is used to make room for new statements when all
statement numbers have been used.
When statements such as ON, GOTO, GOSUB, THEN or ELSE
point to non-existent statement numbers, an error is generated and you
are asked whether to proceed, and all references to non-existent lines
are cleared. If the non-existent statement numbers are outside the
range of the old or new numbering, they are cleared. If an overlap
occurs, the non-existent statement numbers are changed to : (null
label). For example:

1 GOSUB 1000 ! 1000 non-existent & out of range

2 STOP

3 END

RENUMB

Non-existent lines referenced.

Continue with renumber? (Y-N/N) y

Line Referenced by

1000 10

LIST

10 GOSUB 1000

20 STOP

30 END

The default parameters 10,10 are used during renumbering starting at
statement 10 and progressing in steps of 10. In the example above, line
1000 does not exist, and is outside the range of the program before and
after renumbering if the default is used. The reference to statement
1000 remains unchanged allowing later entry of that statement.
In the following example, the first line references statement number
30, which is non-existent. The default renumbering parameters of

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 169 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

10,10 result in the creation of a statement 30. Assuming that it is not
the intention of the program to resolve the reference to the newly
created statement number 30, all references to statement 30 are
replaced to reference: (a null label).

NEW *** IRIS program ***

1 GOSUB 30 ! 30 non-existent within range

2 STOP

1000 END

RENUMB

Non-existent lines referenced.

Continue with renumber? (Y-N/N) y

Line Referenced by

30 10

LIST

10 GOSUB :

20 STOP

30 END

EXAMPLES
1000 RENUMB 10

*RENUMB 1000,10

ERRORS
Non-existent lines referenced

See also
Statement Numbers, Starting & Ending Statement Numbers

RSAVE (BITS only)

SYNOPSIS
Re-SAVE the current program.

SYNTAX
*RSAVE

DESCRIPTI0N
RSAVE is only available at command mode and is used to re-save a
program using the same filename.
If the program was previously encrypted using PSAVE, the encryption
status is preserved.
A CHECK command is performed prior to re-saving the program to

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 170 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

verify the logic of Blocked-IF statements. If any discrepancies exist,
an error is printed.
A checksum is maintained for each saved BASIC program file. When
RSAVE is performed, the filename, checksum and type of BASIC
program is displayed:

#RSAVE /u/2/file Check=AF3E ***IRIS Program***

RSAVE is only available when operating in the environment
BASICMODE = BITS. When operating in an IRIS environment, the
SAVE command performs a re-save whenever a filename is not
specified.

EXAMPLES
*RSAVE

ERRORS
No program in partition
Write Protected File
Program Channel not OPEN; cannot RSAVE until SAVE/PSAVE
issued
File already exists; use '!' to replace
IF without ENDIF
Illegal Filename

See also
Filenames and Pathnames, File Attributes, Protections and
Permissions, OEM command, SAVE, RSAVE, VSAVE, LUST

RUN

SYNOPSIS
Execute a program in memory or on disk.

SYNTAX
{stn} RUN
#RUN {filename}

DESCRIPTI0N
stn is any statement number contained within the current program.
This form of the command is restricted to BASIC program mode.
filename is any legal filename or pathname to a SAVED BASIC
program file to which you have read-permission. This form of the
command is only available in command mode.
An initial RUN without a supplied stn unassigns all variables, closes
all channels and begins execution at the lowest numbered statement of

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 171 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

the program.
stn RUN may be used in debug mode following a STOP, END, non-
trapped error, [ESC], or [EOBC] (usually CTRL+D) to resume
execution of a program at a specific statement. It is not generally
possible to perform a stn RUN prior to a RUN since channels are not
open and variables are un-initialized. When loading a BASIC program
which was saved with variables (CHAIN SAVE, or VSAVE, you may
perform a stn RUN if you first manually open the required files using
immediate mode statement execution.

EXAMPLES
#RUN FILENAME

100 RUN

RUN

ERRORS
No such statement number

See also
Filenames and Pathnames, Program Debugging Aids, LUST

SAVE

SYNOPSIS
SAVE the current program.

SYNTAX
#SAVE {{<attributes>} {filename{!}}}
SAVE {{<attributes>} {filename{!}}}

DESCRIPTI0N
<attributes> are any optional valid file attributes, protections, or
permissions to apply to the file on creation. Standard IRIS, BITS, or
Unix permissions may be supplied. If omitted, file creation is defaulted
to permissions 0666, subject to any umask in effect. If <attributes>
are supplied, a filename must follow.
filename is any optional filename or full pathname to a directory to
which you have write-permission. If omitted, the original filename for
the program in memory is used. An error is generated if the current
program was not previously saved using PSAVE, VSAVE, or CHAIN
SAVE.
If the program was previously encrypted using PSAVE, the encryption
status is preserved in the new filename.
A CHECK command is performed prior to saving the new filename to
verify the logic of Blocked-IF statements. If any discrepancies exist,
an error is printed.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 172 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

When a SAVE command is performed from program mode, active
channels and variables are undisturbed.
A checksum is maintained for each saved program file. When any
SAVE operation is performed, this checksum and type of BASIC
program is displayed.

EXAMPLES
#SAVE <22> prog! check=AF3E ***IRIS Program***<.font>

SAVE <PWD> dat! check=FFEB ***BITS Program***

ERRORS
No program in partition
IF without ENDIF

See also
Filenames and Pathnames, File Attributes, Protections and
Permissions, OEM command, SAVE, RSAVE, VSAVE, LUST

SHOW

SYNOPSIS
Show all statements which contain a specific variable.

SYNTAX (IRIS)
{starting stn} SHOW {opt} variable {ending stn}

SYNTAX (BITS)
SHOW {opt} variable {starting stn} {, ending stn}

DESCRIPTI0N
starting stn is an optional first stn in the current program to search for
variable. If omitted, the first stn is selected. If the starting stn does not
exist, the first existing higher stn is used.
opt are optional parameters to control the display. Each parameter is a
single letter preceded by / or - :

V Visual mode. The first screen full of lines are displayed. If
additional lines are included, the user is prompted at the
bottom of the screen with [MORE]. Pressing [RETURN]
displays additional program lines one at a time. Pressing
[SPACE] displays the next screen full of lines starting with
the last line of the previous screen. This process is repeated
until no more lines are found, or [ESC] or [EOBC] (usually
CTRL+D) is pressed.

Tn Set the tab stop to column 'n'. Statements are tabbed to
column 'n' for easier readability. This option is most useful
when statement labels are used instead of standard statement

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 173 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

numbers.
L Substitute labels for statement numbers in GOTO, etc.

wherever possible.
N Do not list statement numbers.

variable is any mat.var, array.var, num.var or str.var to search the
specified statements for. For each statement containing usage of
variable, that statement is decoded, otherwise it is omitted.
ending stn is an optional last stn in the current program to search. If
omitted, the highest statement number is selected. If the ending stn
does not exist, the first existing lower stn is used.

EXAMPLES
SHOW -V A$ 1000,2200

100 SHOW -N -V data 2900

SHOW -V T$

ERRORS
No program in partition
Illegal statement number

See also
Filenames and Pathnames, File Attributes, Protections and
Permissions, OEM command, SAVE, RSAVE, VSAVE, LUST

SIZE

SYNOPSIS
Display memory usage for current program/data.

SYNTAX
SIZE

DESCRIPTI0N
The SIZE command displays the amount of memory allocated for the
storage of a current program and variables. Unused space is also
displayed:

SIZE: Unused=16370, (Prog)=14, (Vars)=0

Unused is the amount of available memory before a reallocation is
necessary.
(Prog) is the number of bytes used to store the PCODE encoded
program.
(Vars) is the number of bytes used to store data for variables.
The UNASSIGN command may be used to clear space occupied by

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 174 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

(Vars). A NEW command results in the release of all memory, and a
reallocation based upon the default values. This reallocation does not
occur during CHAIN.

EXAMPLES
SIZE

ERRORS
none

See also
UNASSIGN, NEW

STATUS (IRIS only)

SYNOPSIS
Prints the name of current program file and execution status.

SYNTAX
STATUS

DESCRIPTI0N
STATUS prints the current execution status and program filename. For
example:

Now at (line#) in (program name)

where:
line# is the line number of the last statement executed.
program name is the filename of the current program.

If the program is halted after the end of the program, line# is shown as
0. When the current program does not have a filename, the status is
printed as:

STATUS at (line#)

When the current program is a subprogram, the status of the current
program as well as the calling program(s) is displayed.
When the current program is a child from a SWAP, the status of the
current program as well as the parent program is displayed.

Now at statement: 2310;1 in: HELP.DISP

CALL at statement: 1075;3 in HELP

CALL at statement: 1230;1 in: EXEC

SWAP at statement: 3290;1 in AR.MENU

This output is identical to that produced by the STOP and SUSPEND
statements.

EXAMPLES

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 175 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

STATUS

ERRORS
none

See also

STOP, SWAP, END, CALL

TIME

SYNOPSIS
Display current system time & usage.

SYNTAX
#TIME

DESCRIPTI0N
The current system time is displayed in the form:

DD Mon Year HH:MM:SS CPU=cpu used Connect= connect used

DD is the current day of the month.
Mon is a three-letter month name, such as JAN.
Year is the current year such as 1993.
HH is the current hours in 24-hour format.
MM is the current minute of the hour.
SS is the current second on the minute.
CPU is the amount of seconds used by the computer for all of
your commands and program execution.
Connect is the number of minutes you have been signed on to
the system.

EXAMPLES
#TIME

ERRORS
none

See also
CALL $TIME, MSF, MSF, TIM, SPC

UNASSIGN

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 176 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Unassign all variables.
SYNTAX

UNASSIGN
DESCRIPTI0N

All variables are unassigned, including common variables. Memory
shown by the SIZE command for (Vars) is now zero.
UNASSIGN is similar to loading a new program. All dimensioned
space and values are cleared without clearing program statements.
Whereas the NEW command clears both program and variables,
UNASSIGN does not disturb any program statements.

EXAMPLES
UNASSIGN

ERRORS
none

See also
NEW, SYSTEM 4, SYSTEM 5

USERS

SYNOPSIS
Display current number of ports in use.

SYNTAX
#USERS

DESCRIPTI0N
The Message Queues are searched for all in-use port numbers. The
total number is then displayed on the terminal.
In-use port numbers include Unix multi-screens, phantom ports,
terminals and jobs initiated by SPAWN.

EXAMPLES
#USERS

ERRORS
none

See also
Port Numbering and Phantom Ports, Message Queues

VARIABLE

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 177 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Control and display variables.

SYNTAX
VARIAB{LE} { (+ | -) }
VARIAB{LE} { = } {{<attributes>} filename{!}}
VARIAB{LE} old name = new name

DESCRIPTI0N
+ or - enables or disables the use of long variable names in BASIC
program mode. This command overrides the setting of the
environment variable LONGVARS. The new setting remains until
changed. The setting is not affected by NEW, GET, BASIC, LOAD
or other commands.
A program containing long variable names may be RUN in either
mode. Program changes, loading of BASIC Text Files, PRINT in
immediate mode, etc. require long variables enabled if they are used
within a program. Both long and short variable names may be used
when long variables are enabled.
Care should be exercised using long variable names. Spaces are
required between keywords; spaces or parentheses are required around
functions. For example, LENA$ must be entered as LEN A$ or
LEN(A$) to avoid the creation of a str.var named LENA$.
The second general form, VARIABLE = is used to print the current
variables used by a program. The = operator forces the display of the
variable and its value. Omission of the = produces a listing of variable
names only.
<attributes> are any optional valid file attributes, protections, or
permissions to apply to the file on creation. Since the file is created as
a standard Unix Text file, Supplemental Protection Attributes are not
permitted. Standard IRIS, BITS, or Unix permissions may be supplied.
If omitted, file creation is defaulted to permissions 0666 (Read/Write
by all users) subject to any umask in effect.
filename is any filename or pathname to a directory to which you have
write permission. If the filename already exists, it must be terminated
by a ! to replace its contents. The file is built as a standard Unix Text
File compatible with standard editors such as vi. filename may also be
a pipe by beginning the filename with a $.
The filename may be the name of a device or pipe, otherwise a text file
is created with the report.
In the third general form, VARIABLE old name = new name, old
name is the name of an existing variable name used within a program.
new name is the new variable name to replace all occurrences of old
name in the current program.

EXAMPLES

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 178 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

VARIABLE +

VARIABLE V=RECORD_VAR

VARIABLE = $LPT

*VARIAB +

ERRORS
none

See also
Variable Names, Filenames and Pathnames, Accessing Drivers ($LPT)
and Pipes

VERIFY

SYNOPSIS
Check program & display checksum & type.

SYNTAX
#VERIFY

DESCRIPTI0N
The current program is checked for illegal Blocked-IF statements. If
any are located, an error is printed. Otherwise, the following is
displayed:

Check; File= 0, Current= 32E2 ***IRIS program ***

Check; File is the original checksum of the program when last loaded
from disk. A zero is displayed if the program has never been saved.
Current is the current checksum. It will be different from the File=
checksum if any program changes have been made.
The type of program *** IRIS Program *** or *** BITS Program ***
is displayed.

EXAMPLES
#VERIFY

ERRORS
IF Without ENDIF
ELSE Without IF
ENDIF without IF

See also
CHECK, SAVE

VSAVE (BITS only)

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 179 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Save the current program with variables.

SYNTAX
*VSAVE {{<attributes>} {filename{!}}

DESCRIPTI0N
<attributes> are any optional valid file attributes, protections, or
permissions to apply to the file on creation. Standard IRIS, BITS, or
Unix permissions may be supplied. If omitted, file creation is defaulted
to permissions 0666 (Read/Write by all users) subject to any umask in
effect. If <attributes> are supplied, a filename must follow.
filename is any optional filename or full pathname to which you have
write-permission. If omitted, the original filename for the program in
memory is used. An error is generated if the current program was not
previously saved using PSAVE, SAVE, or CHAIN SAVE.
All variables, GOSUB stack, FOR/NEXT stack, User Defined
Function stack are saved. A prompt 'with variables' is displayed during
the SAVE as well as during later loading of the program using BASIC
or GET.
VSAVE is used to save a copy of a program for later debugging. Any
open file information is not saved. Applications may use a
combination of error-branching (ERRSET, ERRSTM, or IF ERR)
and CHAIN "\377\VSAVE filename" to facilitate later debugging of
an application failure.

EXAMPLES
*VSAVE <666> ERRORS23

*VSAVE PROGRAMERROR!

ERRORS
Filename already exists; use "!" to replace
No program in partition
Write Protected File
Illegal Filename
IF without ENDIF

See also
CHAIN "SAVE ...", CHAIN, SAVE, File Attributes, Protection and
Permissions, Filenames and Pathnames

UniBasic Statements

This section describes the wide variety of statements that make up the numbered lines of

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 180 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

a BASIC program. The computer runs a program by executing the statements in logical
order.
There are three modes of BASIC statement execution:
Programming Mode Numbered statements are entered while in BASIC program mode.

A collection of statements (program) is executed by a RUN(c)
command.

Run Mode Execution of a program begins with a RUN command and
continues until normal termination (END or CHAIN ""),
abnormal termination (STOP or Breakpoint), non-trapped Error,
non-trapped [ESC] or Escape Override Branch Character
[EOBC] (CTRL+D).

Immediate Mode Each statement entered without a statement number, in program
mode, is performed immediately.

In this chapter, statements are listed alphabetically with the general forms given in terms
of literal elements in bold type or metalinguistic variables in Backus-Naur form in italic
type. Bold type is used for all key words such as utilities, statements, functions, and
environment variables. Key words are all cross-referenced in the Index at the back of
this guide. Each statement begins on a separate page and conforms to the standard
format.

Program Debugging Aids

Extensive program debugging aids are included. Any BASIC statement may be executed
immediately by entering the statement without a statement number using immediate
mode.
Special program termination (STOP, Breakpoint), non-trapped Error or forced
termination (ESCAPE or CTRL+D) leaves all channels OPEN and available for
immediate statement operations. To resume execution, simply type CONTINUE.

Single-Step Program Execution

Single statement execution is performed by entering a period and pressing return. The
current statement is executed and the next statement to execute is displayed. Subsequent
periods are used to step through the program. To force execution at a specific statement,
issue a GOTO stn and press [RETURN]. Single step or CONTINUE can then be
performed from that statement number. To resume normal execution of a program, issue
the command CONTINUE.
For applications relying on CALLed subprograms, single statement execution can be
performed for both stepping through a subprogram by entering a period and pressing
return; or bypassing the single step operation of a sub-program by entering two periods
and pressing return. Bypassing with two periods actually performs the subprogram, but

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 181 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

does not single step through it.

Trace Mode

Trace mode is used when it is desirable to observe the statement number program flow
without performing single steps. SYSTEM 20, TRACE ON, or TRACE ON chn num
enables tracing; SYSTEM 21, TRACE OFF, or CLOSE chn num turns trace off.
These statements may be used in immediate mode, or imbedded within specific code
segments of a program. For each statement executed, the statement number stn and sub-
statement number sub-stn (statements on the same BASIC line) is printed.
The following information is displayed on the terminal during trace mode:

TR - statement number ; sub-statement number BITS

[statement number] IRIS

In BITS mode, “TR -" indicates trace mode is enabled and the next stn and sub-stn to be
executed are displayed. In IRIS mode, a new-line is performed, and the stn only is
displayed within []. The execution of the statement then proceeds. Output from a
PRINT is displayed following the trace information.

Program Breakpoints

Breakpoints are used to terminate normal execution when a specific stn is reached. The
statement SYSTEM 22, stn sets a breakpoint at statement stn. Typing stn RUN or
CONTINUE resumes execution until the statement is reached. SYSTEM 23 clears any
active breakpoint. These statements can be within a program or executed in immediate
mode. By inserting breakpoint statements within a program, you can control when a
breakpoint is set, for example:

229 SYSTEM 22,6620 \ GOSUB 6600 \ SYSTEM 23

Brk @ stn:stn

To resume execution at the breakpointed statement, issue a SYSTEM 23 to clear the
breakpoint, followed by a CONTINUE command.
A breakpoint will not occur if trace mode is enabled when the breakpointed statement is
reached. When a breakpoint occurs, any other SYSTEM or IOxx modes return to their
default states.

Statement Documentation Format

Each statement Statement Documentation Format occupies one page, documented in the
form:

STATEMENT
SYNOPSIS

UniBasic statement to ...

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 182 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNTAX
STATEMENT {num.var,} str.var

DESCRIPTION
General description of what the statement does and how it uses
arguments.

EXAMPLES
statement examples

ERRORS
Text description of errors likely to result from the improper use of the
statement. For a complete list of all errors and their descriptions, see
Appendix C

See also
COM, ISAMFILES Other index keywords to refer to for additional
information.

BUILD #

SYNOPSIS
Build and open a new text or data file.

SYNTAX
BUILD #channel,{+}filename.expr {,{#channel,}{+}filename.expr}

DESCRIPTION
The channel expression is evaluated, truncated to an integer and used
to select the channel on which to open the file once it has been
created.
The optional + character specifies that the file is to be built as a
standard text file without any special header information.
Each filename.expr contains the file's attributes and filename to be
created. Multiple strings may be specified to create several files and
they will be opened on successive channel numbers. Any new
channel number (#channel) in the filename list will cause assignment
of channels to continue from that number.
The attributes are optional and may consist of several items, selecting
the type, structure, and protection of the file. If attributes are to be
selected, they must be specified in the form <attributes> and precede
the filename.
The filename is any legal filename, operating system full pathname
beginning with /, or a blank quote (""). If the filename is to replace an
existing file on the system, the name must be terminated with an
exclamation point (!). When the "" is used, BUILD is used to check
for "Channel already open" prior to building the file.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 183 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

If the file is to be created as a Contiguous data file, the initial Record
Count and Record Length must be specified in the form "
[count:length]". The Record Count is the initial number of records to
be allocated to the file. Record length is specified in 16-bit words.
If no record count/length is specified, the file is created as a Formatted
Item file. The Record Length and format is defined by the program
when Record 0 is written.
If the str.expr defining the filename is preceded by a + sign (note: the
+ character is not within the str.expr), the file is created as a text file.

EXAMPLES
BUILD #0,"2/ABC" , + "/usr/ub/3/textfile!"

BUILD #C,"<644> [1000:256] PAYROLL/CFILE!"

ERRORS
Illegal parameter or syntax for command
File already exists; use “!" to replace
Illegal filename
Illegal channel number specified
Channel is already OPEN and in-use

See also
CREATE, File attributes and permissions, channel, filename, files,
PREALLOCATE, IBITSFLAG

CALL

SYNOPSIS
Call an external BASIC or C-Language subroutine.

SYNTAX
CALL filename.expr | $string | num.expr , var.list

DESCRIPTION
CALL is used to invoke the execution of a BASIC subroutine, named
C subroutine or numbered C subroutine. Any given CALL statement
may only invoke one of the three types.
To call a named BASIC subroutine, filename.expr is any str.expr
which contains the name of BASIC sub-program to be executed.
To call a named subroutine written in C, $string selects the named
routine.
To call a numbered subroutine written in C, num.expr selects a
numbered subroutine in the range 1 to 128.
Named and numbered C subroutines must be compiled and linked

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 184 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

into your system by DCI or a qualified systems programmer. BASIC
subroutines may be created for use on any UniBasic installation by
experienced BASIC programmers. No special linking is required to
create or utilize BASIC subroutines.

Either a comma or semicolon separates the CALL name/number and
the var.list.
BASIC programs called as subroutines are referred to as
subprograms. A subprogram accepts a list of argument variables
passed by the calling program by use of the ENTER statement. The
number and type of arguments in the CALL statement must match
those in the ENTER statement of the called program, and only one
ENTER statement is allowed in the subprogram. The maximum
number of arguments is limited only by the maximum statement
length.
A subprogram accepts and returns values through the passed list of
arguments which may be any combination of: str.var, num.vars,
array.vars, or mat.vars. num.vars must be DIMed in the calling
program or an IRIS error 33 will occur. Variables are passed by
reference meaning that the actual names of the variables may differ
from the calling program to the subprogram. For example, if the
calling program passes A$ and T, the subprogram may ENTER with
DATA$ and VALUE. The variable names specified by ENTER are
mapped to reference the data space of the variable names passed in
the CALL. All other variables in a subprogram are considered local
to the subprogram.
Expressions, including substrings, are passed to subprograms by
value. If a subprogram updates or returns a value in a referenced
variable, that operation will be lost if the caller passed an expression.
Subprograms can be nested indefinitely, limited only by the maximum
process size of Unix.
Standard named and numbered C subroutines are documented in the
User Calls section of this guide. Certain systems may include
additional CALL statements. For a complete listing of CALL
statements included with your system, contact your distributor.
A maximum of 63 arguments may be passed to a CALL C subroutine.
The var.list may be defined as any combination of str.vars, num.vars,
mat.vars, str.exprs, num.exprs, array.vars or str.lit, depending on the
requirements of the subroutine being called. A mat.var in CALL or
ENTER is given a num.var with empty subscripts; e.g. A3[]. The
subroutine may use these items for input and output of data. A
variable (not an expression) must be specified in positions of the
var.list which return information to the program.
CALLS accessed by number can be re-mapped using the environment
variable ALTCALL. For example, if your application utilizes a
CALL 60, which is provided as CALL 20, include in the .profile the
command: ALTCALL=20:60.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 185 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Table of CALL Names & Replacement Numeric CALL ID's

$NAME Replacement No. $NAME Replacement No.
$ATOE 77 $RDFHD 97
$AVPORT -- $RENAME --
$CKSUM -- $STRING 82
$ECHO 78 $SWAPF --
$ETOA 76 $TIME 99
$FINDF 96 $TRXCO 98
$INPBUF -- $VOLLINK 91
$LOCK -- $WINDOW --
$LOGIC 88

EXAMPLES
CALL "pgm",A$,B[],C[2],INPUT$

CALL 98, P, A$, A, P1

CALL $STRING, A$

ERRORS
Parameter list overflow
Error detected in/by user CALL routine
Not enough parameters passed to user CALL
User CALL parameters out of order
Subprogram file not found

See also
User CALLS, ENTER, LIB

CHAIN

SYNOPSIS
Transfer control to another program.

SYNTAX
CHAIN filename.expr{,num.expr{,num.var}}

DESCRIPTION
The filename.expr is any str.expr containing the filename of a BASIC
program (type B) to which you have access. If the program is found
and is not protected against you, CHAIN terminates execution of the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 186 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

current program and RUNs the selected program. If the program is
not accessible, an error is generated and the current program remains
intact.
The optional num.expr selects a starting stn in the new program to
begin execution. If not specified, execution begins with the first stn.
The num.var, if included, is set to the stn following the CHAIN in the
current program. The variable should be common, and may be used to
chain to a subroutine, passing the return stn in the variable. In this
case, the second program must contain the necessary COM or
CHAIN READ statement.
CHAINing to a null string terminates the current program and returns
the user to SCOPE command mode.
There are two types of CHAIN operations; short and long.
A short CHAIN transfers control from one BASIC program to
another. All files remain open and common variables are passed using
COM or CHAIN READ / CHAIN WRITE. A short CHAIN is
performed if the filename.expr is the name of an existing BASIC
program, or begins with the string 'RUN' or 'run'.
Only type B (SAVE) files may be short CHAINed to. If the selected
file is not accessible or is not type B, a long CHAIN is performed.
Certain BASIC SAVE programs reclassified as SYST (System BASIC
programs) are not available in short CHAIN mode. These are
supplied system commands, such as LIBR and are designed to be
treated as commands instead of programs.
A long CHAIN appends the supplied filename.var to the type-ahead
buffer, exits the program to command mode, and processes type-ahead
as though the command was entered from the keyboard.
Several commands may be within a long CHAIN, and they are
executed in sequence. A long CHAIN is performed for IRIS
programs whenever a short CHAIN fails.
Each command should be terminated with an [EOL] terminator,
usually \215\ or CTRL+Z. The number of characters that can be
passed in this fashion is limited to the size of the user’s input buffer
(value of INPUTSIZE environment variable).
The existing contents of the type-ahead buffer may be cleared by
specifying the character \230\, \231\, \210\ or \377\ as the first
character of the supplied str.var. The IRIS \231\ mode providing for
inserting data before the current contents of the type-ahead buffer is
not supported at this time.
Any long CHAIN which enters or passes input to command mode
first closes all channels.
Any CHAIN terminates the current program.
For BITS applications, all CHAIN operations are assumed to be short
unless an ASCII 3778 is the first character of the supplied str.var. An
error is generated if the supplied program name is not found.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 187 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Following the program name, the inclusion of a \377\ code provides
for appending data to the type-ahead buffer.

Note: If characters are passed through to the input buffer using long
CHAIN, a terminating [RETURN] code is appended to the string
unless the \377\ character is explicitly used.

The \377\ character must be explicitly used in a BITS program to send
a command through command mode. This character may also be used
in IRIS programs to force a long CHAIN. All data following the
\377\ is appended to the type-ahead buffer.

EXAMPLES
CHAIN "3/FILENAME"

CHAIN "LIBR [OUTPUT]\215\RUN PART2"

CHAIN Q$,4000,B

CHAIN "\377\DIR /L=$LPT\215\RUN MENU\215\"

ERRORS
No such line (stn) number
File does not exist
Not a loadable program file; Protected, wrong revision or corrupted

See also
COM, CHAIN READ, CHAIN WRITE, INPUTSIZE,
BASICMODE

CHAIN READ

SYNOPSIS
Read variables from a previous program.

SYNTAX
CHAIN READ var.list
CHAIN READ =
CHAIN READ *

DESCRIPTION
CHAIN READ specifies common variables passed to this program
via CHAIN WRITE statements in a preceding program. Multiple
CHAIN READ statements may be used, and they may be placed
anywhere within a program. Variables listed in a CHAIN READ may
not be dimensioned by a DIM statement.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 188 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CHAIN READ = causes all variables passed as common to be read
into the program. All such variables must appear in the program at
least once (even if not used).
CHAIN READ * functions like CHAIN READ = except that
variables passed to, but not appearing in this program are ignored.
The CHAIN READ statement is ignored if executed. When a
program passes data to another using CHAIN WRITE, the new
program's CHAIN READ statements are executed during the
CHAIN operation.
The actual CHAIN READ statements may be placed anywhere in a
program, however the best method is to group them together at the
beginning of a program near your DIM statements.
CHAIN READ statements may not be used together with COM.

EXAMPLES
CHAIN READ A,B,C,X$

CHAIN READ *

ERRORS
Variable in CHAIN READ not passed by CHAIN WRITE
Variable from CHAIN WRITE not in this program
Variable in CHAIN READ already contains data

See also
CHAIN WRITE, COM

CHAIN WRITE

SYNOPSIS
Write variables to the next program.

SYNTAX
CHAIN WRITE var.list
CHAIN WRITE *

DESCRIPTION
CHAIN WRITE statements specify variables to be passed as
common to the next program. All variables specified must be
dimensioned or otherwise have a value assigned to them in order to be
passed. It is the responsibility of the receiving program to contain the
necessary CHAIN READ statements to accept the data.
All variables are passed complete to their dimensioned length, such
that strings with embedded nulls are passed in their entirety.
A CHAIN WRITE must not be directly executed. Multiple CHAIN

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 189 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

WRITE statements may be used, and should only be placed as a
group after a CHAIN or SWAP statement (intervening REMs are
allowed).
CHAIN WRITE * passes all variables in the program as common. It
cannot be used with any other CHAIN WRITE statements.
CHAIN WRITE statements may not be used together with COM.

EXAMPLES
CHAIN WRITE A,B,C,X$

CHAIN WRITE *

ERRORS
Illegal function usage
Variable in CHAIN WRITE contains no data

See also
CHAIN READ, COM

CLEAR #

SYNOPSIS
Clear {all} open channel.

SYNTAX
CLEAR {#channel {,#channel}|}

DESCRIPTION
The channel expression is evaluated, truncated to an integer and used
to select the channel number (0 to 99) to clear. Multiple channels,
separated by comma may be cleared. If no #channel is given, all
opened files (Channels 0 to 99) are cleared. Record locks on the file
are removed, the file header may be updated and the system file
descriptor is released. A cleared channel is available for re-use for
another file.
The current BASIC program is said to be open on channel -1; to clear
the program channel, use CLEAR #(-1).
If an Indexed Data File is opened, both the data and companion index
file are cleared.
Clearing an output pipe causes the reading processes to receive an
EOF (end of file) at its next read operation. Printer drivers and other
scripts and pipes commonly open will terminate on the EOF.
If the file opened is a newly built Formatted Item file and at least one
item has been written, the record format is frozen and the header is
updated with the current record length and item count. If no items
have been written to a newly built file, the file is unformatted and the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 190 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

next OPEN must define the record format.
IRIS programs generate an error when a specified #channel is not
currently open.

EXAMPLES
CLEAR #5,#8,#X+2

CLEAR

ERRORS
Illegal channel number
Channel not open

See also
OPEN, Files, Channel, CLOSE

CLOSE #

SYNOPSIS
Close {all} open channel.

SYNTAX
CLOSE {#channel{,#channel }}

DESCRIPTION
The channel expression is evaluated, truncated to an integer and used
to select the channel number (0 to 99) to close. Multiple channels,
separated by comma may be closed. If no #channel is given, all
opened files (Channels 0 to 99) are closed. Record locks on the file
are removed, the file header may be updated and the system file
descriptor is released. A cleared channel is available for re-use for
another file.
The current BASIC program is said to be open on channel -1; to close
the program channel, use CLOSE #(-1).
If an Indexed Data File is opened, both the data and companion index
file are closed.
Closing a pipe causes the reading processes to get an EOF (end of
file) at its next read operation. Printer drivers and other scripts and
pipes commonly open will terminate on the EOF.
If the file opened is a newly built Formatted Item file and at least one
item has been written, the record format is frozen and the header is
updated with the current record length and item count. If no items
have been written to a newly built file, the file is closed unformatted
and the next OPEN must define the record format.
IRIS programs generate an error when a specified #channel is not
currently open.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 191 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLES
CLOSE #1

CLOSE #5,#8,#X+2

CLOSE

ERRORS
Illegal channel number
Channel not open

See also
OPEN, UniBasic Files, Channel, CLEAR

COM

SYNOPSIS
Specify Common Variables.

SYNTAX
COM {%p,}var.list { , {%p},var.list }

DESCRIPTION
The COM statement allocates space and defines precision for
variables which can be passed between programs. The form is
identical to the DIM statement, except that all variables defined by
COM are flagged as common and eligible to be passed during
CHAIN.
Precisions can be defined for the variables in the var.list by including
the optional %p or p% precision. All further variables in the var.list
will be at the last specified precision. The default precision is 2% for
IRIS, and %4 for BITS applications. The last supplied precision in a
COM or DIM statement is used as the default for all automatically
assigned variables.
All COM statements in a program must be executed before any
statement which allocates or defines a new variable (LET, DIM, IF,
etc.). Statements such as REM, ESCSET, GOTO, etc. which use no
variables may precede COM. An error is generated if a COM
statement is executed out of order.
Variables to be passed must be defined in a COM statement by each
program that is to use them. Generally, two or more programs using a
set of common variables will contain identical COM statements in
order to pass the entire set between them. A program CHAIN may
exclude certain variables in its common set, and these variables
become unassigned. Similarly, the program may add variables to the
set, and they will be allocated and initialized as done by a DIM.
Numeric precision may not be changed between programs, but strings
and arrays may be re-dimensioned to smaller sizes using COM.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 192 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CHAIN READ and CHAIN WRITE statements may not be used
together with COM.

EXAMPLES
COM A$[19],B$[1],T4$[132]

COM C$[1762]

COM A[5],T$[120],D[23,14],%3,X[17]

COM %1,A,B,%2,C,D,%3,E,F,%4

PROGRAM EXAMPLES
The following examples illustrate common variables being passed
between two programs, A and B.

Prog Statement Comment
 A 10 COM %1,A,B,%2,C,D All variables common.
 B 10 COM %1,A,B,%2,C,D
 A 10 COM Q,D[3,4],S$[10] Only S$ is common D and Q are

lost during
 B 10 COM S$[10],T CHAIN. T is added to the

common list.
 A 10 COM T,%3,U,V U is common, T and V are lost, Z

is added.
 B 10 COM %3,U,Z

ERRORS
COM statement out of order
Variable precision is not compatible
Variable precision cannot be changed
Array size exceeds initial DIMension
A string may not be re-DIMensioned

See also
CHAIN READ, CHAIN WRITE, DIM, PRECISION

CONV

SYNOPSIS
Convert binary data to decimal.

SYNTAX

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 193 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CONV mode, str.var, num.var
DESCRIPTION

The mode is any num.expr which, after evaluation is truncated to an
integer to select the operation to be performed. Mode 0 converts the
binary string to decimal, and mode 1 converts the decimal numeric
value to a binary string.
The CONV statement extracts binary information from a str.var and
returns the value in decimal into a num.var. Additionally, numeric
information in a num.var can be converted to binary and placed into a
str.var.
The str.var specifies the binary string and must define a string of one
to four bytes. The num.var is the decimal numeric variable.
The valid numeric ranges, as well as the internal storage format, are
determined by the length of the str.var given. This variable would
usually be subscripted to select the desired length, otherwise the
dimensioned length of the string would be assumed. The following
table compares the string length with the range of values that can be
stored.

str.var Size Decimal
B$[x,x] 1 byte 0 to 255
B$[x,x+1] 2 bytes 0 to 65535
B$[x,x+2] 3 bytes 0 to 16777215
B$[x,x+3] 4 bytes -2,147,483,648 to 2,147,483,647

The conversion process allows positive integers only to be represented in
1, 2, or 3 byte lengths. A negative value must be converted to a 4 byte
length to retain its negative sign. Converting a negative value to a shorter
length and back would result in a truncated positive integer different from
the original value.
The 4 byte length described here is identical to the internal format of a
double-precision integer numeric variable written to a file, and such a
value could be read as a string and converted to numeric. The 2 byte
length, however, is NOT compatible with the %1 format because it is
unsigned. Signed values could be converted using 1, 2, or 3 byte lengths
provided the program performs an adjustment for 16-bit two’s complement
notation.

PROGRAM EXAMPLE

100 REM Convert binary to decimal D
110 CONV 0,A$[1,n],D
120 IF D>R THEN LET D=D-A

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 194 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

200 REM Convert decimal D to binary
210 IF D<0 THEN LET D=D+A
220 CONV 1,A$[1,n],D

Size (n) Range (R) Adjust by (A)
1 byte -128 to 127 256 (28)

2 bytes -32768 to 32767 65536 (216)

3 bytes -8388608 to 8388607 16777216 (224)

This method causes the upper bit of each string to be considered a sign bit, just as is done
by CONV with the 4 byte length. In the case of 2 bytes, for example, the values 0 thru
32767 represent themselves, while 65535 thru 32768 represent -1 thru -32768.

ERRORS
Illegal subscript specified
Subscript exceeds DIMension

See also
PRECISIONS, STRINGS

CREATE #

SYNOPSIS
Create a new Data File.

SYNTAX
CREATE #channel, filename.expr{,{#channel,}filename.expr. . .}

DESCRIPTION
The channel is any num.expr which, after evaluation, is truncated to
an integer and used to select the channel on which to open the file for
read and write access once it has been created.
Each filename.expr may contain file attributes enclosed within < >,
and the filename to be created. Multiple strings specify creation of
several files and they will be opened on successive channel numbers.
Any new channel seen in the list will cause assignment of channels to
continue from that number.
The file attributes include the type, structure, and permissions of the
file in the form <count:len type permissions>. count specifies the
initial number of records to be allocated followed by a colon; len the
fixed-record length in bytes; type specifies the type of data file to be
created (T for tree-structured Data File, I for Formatted Item File, and
C for Contiguous Data File); and permissions specifies BITS
Attribute letters, IRIS Protections, or UNIX Permissions as three-

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 195 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

digits.
To create a standard Text File, use the BUILD statement.
The filename is any legal filename or operating system full pathname
beginning with /. If the filename is to replace an existing file on the
system, the name must be terminated with the ! character.
If the program is an IRIS program, an error is generated if the
specified chn.expr is already in use.

EXAMPLES
CREATE #3, "<100:254C PWD> PAYROLL:FILENAME!"

CREATE #R, "<1:510T644> TEMPFILE"+STR(MSC(0))

ERRORS
Illegal parameter or syntax for command
Illegal filename
File already exists; use "!" to replace
Illegal channel number specified
Channel is already OPEN and in-use

See also
BUILD, Attributes, channel, filename, files, PREALLOCATE,
IBITSFLAG

DATA

SYNOPSIS
Define Internal Program Data.

SYNTAX
DATA {str.lit | num.lit} ...

DESCRIPTION
Each str.lit or num.lit is stored within the program as simple ASCII
text. Multiple data items on the same line must be separated by
commas in the statement, but a comma cannot be the last character of
the statement.
To include commas or special characters in the form \xxx\, the data
element must be quoted.
No other statement may follow DATA on the same program line. All
text up to the end of the line is considered part of the DATA
statement.
DATA statements may appear anywhere within a program and are
ignored if executed, that is, they are treated like REM comments.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 196 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Each DATA statement may contain as many values as can be entered,
up to the size of the input buffer as defined by the environment
variable INPUTSIZE.
Numeric data items must be separated by comma, but can be in
decimal and E-notation. A comma cannot be part of a numeric item
that will be read into a num.var.
For IRIS compatibility, you may include a %p or p% declaration
before numeric items. These items will be ignored when READ into a
num.var. Since the data is stored as string (and can also be read as
such), the precision is determined at the time of the READ.

EXAMPLES
DATA 200,300,400,500,600,700.25,800,23.45

DATA "quoted string, has comma", "\215\\215\"

ERRORS
Syntax error

See also
PRECISIONS, READ, MAT READ, RESTORE

DEF FN

SYNOPSIS
Define User Function.

SYNTAX
DEF FN<letter>(num.var) = num.expr

DESCRIPTION
The FN <letter> designator must be a single letter A thru Z, such as
FND, yielding a maximum of 26 concurrently defined user functions.
Each user function must have a DEF statement executed before it can
be used. User functions may be redefined using successive DEF
statements with the same <letter> designator.
The parenthesized num.var is considered a dummy argument. The
num.expr is the expression to be evaluated whenever the function is
called. When this occurs, the actual argument supplied will be
substituted for every occurrence of the dummy argument in the given
expression. Any variable currently in use with the same name as the
dummy argument is not affected by the function call.
A user function may call another user function in its definition,
provided the called function has already been defined. User functions
may be nested in this manner up to a maximum of 8 levels.

EXAMPLES

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 197 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DEF FNA(X)=(X^3)*(X^2)*X

DEF FNC(V)=(V^4)*FNA(V) ! Nested FNA

DEF FNR(X)=SGN(X)*ABS(100*INT(X)+.5)/100

ERRORS
User defined functions nested too deep
Expression too complex for evaluation
Arithmetic error - (X/0, overflow, LOG(0) or SQR(-X))
Illegal function usage
Syntax error in DEFined function
Variable not defined
User function not defined

See also
Functions

DIM

SYNOPSIS
Allocate space for variables.

SYNTAX
DIM {%p,} var.list { {%p},var.list }

DESCRIPTION
The DIM statement allocates space and defines precision for variables
which are considered local to the current program. The form is
identical to the COM statement, except that all variables defined by
DIM are not automatically passed during CHAIN statements unless
specified using CHAIN WRITE and CHAIN READ.
Precisions can be defined for the variables in the var.list by including
the optional %p or p% precision. All further variables in the var.list
will be at the last specified precision. The default precision is 2% (2-
word floating) for IRIS, and %4 for BITS applications. The last
supplied precision in a COM or DIM statement is used as the default
for all automatically assigned variables.
If the var.list contains an str.var, in the form str.var$[num.expr], the
num.expr within subscripts is evaluated, truncated to an integer, and
used as the maximum size of the string variable in characters. Any
attempt to store data beyond this maximum results in data truncation.
String variables must appear in a DIM or COM statement before use
by any other statement. They can be re-dimensioned within the
program to a smaller size only.
If the var.list contains a num.var without subscripts, it is allocated at

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 198 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

the current default precision as a simple numeric variable.

If the var.list contains a num.var in the form num.var[num.expr], or
num.var[num.expr1,num.expr2], it is allocated at the current default
precision as a one or two dimensional array.var or mat.var
respectively. The expression within subscripts are evaluated, truncated
to integers, and used to select the size (number of elements) of the
array. Variables specifying one expression result in a one-dimensional
array (vector or list). Two expressions separated by a comma result in
a two-dimensional array (matrix). Any array used in a program
without specifically being mentioned in a DIM or COM statement is
automatically dimensioned to [10] if used as an array.var, or [10,10]
when used as a mat.var.
It is considered good programming practice to define all variables
(other than temporaries and variables to use the default precision) in a
DIM or COM statement.
The final %n executed in your program selects the default for any
run-time variable assignments. If not specified, the default precision is
%4 for BITS programs and 2% for IRIS programs.

EXAMPLES
DIM A$[19],B$[1],T4$[132]

DIM C$[1762]

DIM A[5],T$[120],D[23,14],%3,X[17]

DIM 1%,A,B,2%,C,D,3%,E,F,4%

ERRORS
Variable precision cannot be changed
Array size exceeds initial DIMension
A string may not be re-DIMensioned
Illegal subscript specified
Attempt to DIMension an existing simple variable
Strings can have only one DIMension
Subscript exceeds DIMension

See also
COM, PRECISION, STRINGS, ARRAYS, MATRICES, LET

DUPLICATE

SYNOPSIS
Make a duplicate copy of a program or file.

SYNTAX

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 199 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DUPLICATE filename.expr
DESCRIPTION

The filename.expr is any str.expr containing the source filename to be
duplicated, a space, and the destination filename for the duplicate
copy.
The Unix cp command is used to perform the duplication operation.
An exact copy of the file is created, and the process may take some
time to complete. Since the command is sent to Unix, [ESC] and
[EOBC] are disabled. To abort the operation, press the BREAK or
DEL character.
If the file is an Indexed Data File, two cp commands are performed;
one for the data portion (lower-case name), and one for the ISAM
portion (upper-case name).
If the file is a Universal Indexed Data File, two cp commands are
performed; one for the data portion (filename), and one for the ISAM
portion (filename with an .idx extension).
DUPLICATE does not check for existence of the destination
filename. If a check is desired, perform an OPEN or CALL $FINDF
first.
(Release 9.1) Can be used with encrypted files without an encryption
key.

EXAMPLES
DUPLICATE "PAYROLL PAY1QTRBKUP"

DUPLICATE "/usr/ub/23/file /u/u1/23/file"

ERRORS
Illegal pack or filename

See also
Unix ln, cp, mv commands, Filenames and Pathnames

EDIT

SYNOPSIS
Format numeric and string expressions.

SYNTAX
EDIT format str.expr, destination str.var ; var.list

DESCRIPTION
The format str.expr is any str.expr defining the format string to apply
to the list of variables in the var.list. Output is formatted according to
the rules for the String Operator: USING.
destination is any string variable to receive the formatted result.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 200 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

var.list is any list of numeric or string variables (num.var, str.var,
num.expr, str.expr) to be formatted into the destination str.var. Only
numeric data is formatted, string data is copied exactly to the
destination.
Each item in the var.list must be separated by commas.
The EDIT statement is used to format string and numeric output.
EDIT operates similar to LET USING; formatting output and storing
the result in a string variable. Unlike LET USING, EDIT allows a
list of arguments for the formatted result.

EXAMPLES
EDIT "$#,##&.##",D$;T,E,F,"TAXES",T9

EDIT A$,B$;"TOTAL DUE",Z,"BALANCE",Q,R$,T9

ERRORS
Formatted Output overflows output string

See also
String Operator USING, PRINT USING, LET USING

END

SYNOPSIS
Normal termination of a running program.

SYNTAX
END

DESCRIPTION
The END statement is used to indicate the normal termination of a
program. An END statement causes program execution to cease, and
the user is returned to BASIC Program Mode following the prompt:

Ready

Other statements may follow an END, and inclusion of an END is
optional. If a program reaches its physical end of the program and no
END statement exists, an implied END is performed.
END leaves the current program (with all variables) in the user’s
partition. If the program is an IRIS program, all channels are closed
automatically.
If the running program is a BITS program, all channels normally
remain open.
If the running program executing the END statement has additional
attributes <O> or <E>, special conditions are observed as documented
under Supplemental Protection Attributes.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 201 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLES
END

ERRORS
none

See also
STOP, SYSTEM, CHAIN, Supplemental Protection Attributes

ENTER

SYNOPSIS
Accept Variables from a CALL Statement

SYNTAX
ENTER var.list

DESCRIPTION
A subprogram accepts argument variables from a CALL statement
within a separate BASIC program. CALL <subprogram> invokes a
BASIC program as a subroutine.
The ENTER statement can be located on any line of the subprogram,
but the variables cannot be used until the ENTER statement has been
executed. This means that the ENTER statement should be at the
beginning of the program in most cases.
Only one ENTER statement is allowed, and the number and types of
variables in the statement must match the CALL statement exactly or
an error message is displayed.
The var.list may be defined as any combination of str.vars, num.vars,
mat.vars, or array.vars depending on the requirements of the
subprogram. The subprogram can only return data within arguments
that are passed as variables, subscripted numeric variables, or matrix
variables. A matrix variable in CALL or ENTER is given as a
numeric variable with empty subscripts; e.g. A3[].
If a subprogram is called with arguments, but no ENTER statement is
executed, no error will occur and the arguments will not be changed.
If a subprogram has no parameters, an ENTER statement with no
parameters can be used to detect unnecessary arguments on the
invoking CALL statement.
Called subprograms can be nested indefinitely, limited only by the
maximum process size in Unix.

EXAMPLE
(from master program) CALL PGM,B$,A,D$[4,7]

(from called subprogram) ENTER B$,J,F$

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 202 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ERRORS
ENTER statement is illegal if not in a subprogram
The ENTER statement can only be executed once in a subprogram
Number/types of arguments do not match parameter list
Parameter variable in ENTER statement has already been allocated

See also
CALL, LIB

EOFCLR

SYNOPSIS
Clear End-of-File branching.

SYNTAX
EOFCLR stn

DESCRIPTION
EOFCLR clears any special end-of-file branching in effect. Normal
error processing is resumed. If an error branch is in effect from an
ERRSET, ERRSTM, or IF ERR, it will be in control of further end-
of-file errors.

EXAMPLES
EOFCLR

ERRORS
none

See also
IF ERR, ERRSET, ERRSTM, EOFSET

EOFSET

SYNOPSIS
Enable End-of-File error branching.

SYNTAX
EOFSET stn

DESCRIPTION
EOFSET traps any further occurrence of the error, “Illegal record
number or End of File". If such an error occurs on any channel, the
program will branch to the stn given in the EOFSET statement.
EOFSET affects only this single error. Other errors are processed in

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 203 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

the current error handling mode.
IF ERR, ERRSET and ERRSTM statements are used to trap all
errors, including end-of-file. The EOFSET statement is used to
override normal error branching for this special error.
EOFSET is typically used by BITS applications when reading a text
file. Other applications may utilize this function to handle Formatted
Item or Contiguous Files.
EOFSET branching remains in effect until specifically cleared by
EOFCLR. Other error branching disable functions do not clear this
special branch.

EXAMPLES
EOFSET 1050

EOFCLR

ERRORS
No such statement number

See also
IF ERR, ERRSET, ERRCLR, ERRSTM, EOFCLR

EOPEN

SYNOPSIS
Exclusively OPEN a Data File.

SYNTAX
EOPEN #channel, filename.expr {, { #channel} filename.expr} ...

DESCRIPTION
The channel is any num.expr which, after evaluation, is truncated to
an integer and used to select the channel on which to open the file for
read and write access once it has been created.
The EOPEN statement exclusively links a selected file to a channel.
EOPEN differs from OPEN in that the request will exclusively lock
the file to the program. Other EOPEN, OPEN, or ROPEN requests
by you or other users will not be allowed.

Note: At this time, EOPEN cannot guarantee that another does not already
have the file opened, however an EOPENED file cannot be
subsequently opened by another user.
An IRIS application cannot EOPEN certain types of files such as
SAVED BASIC Programs. A special error is generated when a file
exists, but is generally unavailable.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 204 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLES
EOPEN #1,"23/MMFILE", C$

EOPEN #2,"FILE1","FILE2",#10,"FILE4"

ERRORS
File is Read Protected
No such file
File is already OPENed and Locked
Channel is already OPENed
Not a data file (Can't OPEN or replace)

See also
OPEN, ROPEN, File Attributes and Permissions, Accessing Data
Files Through a Channel

ERRCLR

SYNOPSIS
Clear Error Branching.

SYNTAX
ERRCLR

DESCRIPTION
ERRCLR clears any error-branching in effect and returns normal
error processing to the application. Normal error processing is to
abort the current running program and output the error message text:

Error in statement stn;sub-stn / Text description of error
Special end-of-file branching in effect from the EOFSET statement is
not cleared by ERRCLR.
ERRCLR is used to clear automatic branch-on-error conditions
previously set using ERRSET, ERRSTM and IF ERR.
Normal error termination does not close all opened data files.

EXAMPLES
ERRCLR

ERRORS
none

See also
Error Messages, EOFSET, ERRCLR, IF ERR, ERRSTM JUMP,
ERR, SPC, MSC, MSF

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 205 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ERRSET

SYNOPSIS
Enable Branch to statement on error.

SYNTAX
ERRSET stn

DESCRIPTION
ERRSET is used to specify a stn to receive program control upon the
occurrence of any BASIC error.
Error branching remains in effect until an ERRCLR is executed.
When the ERRSET statement is executed, any existing error
branching from an IF ERR, or ERRSTM is reset to branch to the
selected stn upon occurrence of any error.
ERRSET does not affect the state of the special EOFSET branch on
end-of-file error.

EXAMPLES
ERRSET 8000

ERRORS
No such statement number

See also
Error Messages, EOFSET, ERRCLR, IF ERR, ERRSTM JUMP,
ERR, SPC, MSC, MSF

ERRSTM

SYNOPSIS
Specify statements to execute on an error.

SYNTAX
ERRSTM any basic stmts

DESCRIPTION
The ERRSTM statement specifies a line of statements to be executed
upon the occurrence of any error.
Error statement processing remains in effect until an ERRCLR
statement is executed.
When the ERRSTM statement is executed, any existing error
branching from an IF ERR, or ERRSET is reset to perform the stmts
following ERRSTM upon the occurrence of any error. Normal

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 206 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

execution resumes at the next BASIC line, reserving all stmts
following ERRSTM for when an error occurs.
ERRSTM must be the last statement of a multi-statement line.
ERRSTM has no effect on any special EOFSET end-of-file branch
in effect.

EXAMPLES
ERRSTM PRINT "ERROR OCCURRED AT LINE:";SPC 10

ERRSTM CLOSE \ STOP

ERRSTM IF SPC 8 = 42 STOP ELSE REM

ERRORS
Syntax error

See also
Error Messages, EOFSET, ERRCLR, IF ERR, ERRSET JUMP,
ERR, SPC, MSC, MSF

ESCCLR

SYNOPSIS
Clear any ESCape branching in effect.

SYNTAX
ESCCLR

DESCRIPTION
ESCCLR removes any special ESCape branching or disabling in
effect.
Previous ESCape branching or disable set by ESCSET, ESCSTM or
ESCDIS statements is disabled, and normal ESCape termination of a
program is resumed.
The [EOBC] character may be used to override and abort any
program that has ESCape disabled, or an ESCape branch in effect.

EXAMPLES
ESCCLR

ERRORS
none

See also
ESCSET, ESCDIS, ESCSTM, IF ERR

ESCSET

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 207 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Enable branch to statement on ESCape.

SYNTAX
ESCSET stn

DESCRIPTION
ESCSET specifies a stn to receive program control upon pressing of
the ESCape key.
Escape branching remains in effect until an ESCCLR is executed.
The [EOBC] character may be used to override and abort any
program that has ESCape processing.
When the ESCSET statement is executed, any existing ESCape
branching from the ESCSTM or ESCDIS is reset to branch to the
ESCSTM stn upon the occurrence of an ESCape.
ESCCLR is used to clear automatic branch-on-ESCape and resume
normal ESCape processing. Normal ESCape processing terminates
the running BASIC program and produces a STOP at prompt on the
screen:

STOP at statement xx;yy in program name

Normal ESCape termination does not close all opened data files.
Note that ESCape’s function may be assigned to keys other than
ESCape itself, just as the ESCape key may be assigned to perform
some other function. The ESCape statements described above will act
upon any key currently defined as an [ESC].

EXAMPLES
ESCSET 8000

ERRORS
No such statement number

See also
JUMP, ERR, SPC, MSC, MSF, STOP, Input Character Processing

ESCDIS

SYNOPSIS
Disable ESCape key.

SYNTAX
ESCDIS

DESCRIPTION
The ESCDIS statement prevents unauthorized ESCape termination of

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 208 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

any BASIC program. Any pressing of the ESCape key by the user is
ignored.
ESCDIS remains in effect until an ESCSET, ESCSTM or ESCCLR
is executed.
When the ESCDIS statement is executed, any existing ESCape
branching is reset to ignore further ESCape characters.
The [EOBC] character may be used to override and abort any
program that has ESCape processing.

EXAMPLES
ESCDIS

ERRORS
none

See also
JUMP, ERR, SPC, MSC, MSF, Input Character Processing

ESCSTM

SYNOPSIS
Specify statements to execute on ESCape.

SYNTAX
ESCSTM any basic stmts

DESCRIPTION
The ESCSTM statement specifies a line of statements to be executed
upon the pressing of an ESCape key.
ESCape statement processing remains in effect until an ESCCLR
statement is executed.
The [EOBC] character may be used to override and abort any
program that has ESCape processing.
When the ESCSTM statement is executed, any existing ESCape
branching from the ESCSET or ESCDIS is reset to perform the stmts
following ESCSTM upon the occurrence of any error. Normal
execution resumes at the next BASIC line, reserving all stmts
following ESCSTM for an ESCape.
ESCSTM must be the last statement of a multi-statement line.
Note that ESCape’s function may be assigned to keys other than
ESCape itself, just as the ESCape key may be assigned to perform
some other function. The ESCape statements described above will act
upon any key currently defined as an [ESC].

EXAMPLES

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 209 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ESCSTM PRINT "ESCAPE PRESSED AT LINE";ERR(2)

ESCSTM CLOSE \ STOP

ESCSTM CLOSE \ CHAIN "MAINMENU"

ERRORS
Syntax error

See also
JUMP, ERR, SPC, MSC, MSF, Input Character Processing

EXECUTE

SYNOPSIS
Compile and Execute BASIC Statement.

SYNTAX
EXECUTE str.expr

DESCRIPTION
The str.expr must contain at least one valid BASIC statement without
a preceding stn. This statement is executed as if it were in the
program in place of the EXECUTE statement.
Multi-statement lines are not allowed inside the string. Only
statements which are allowed in immediate mode are available for
EXECUTE.
EXECUTE itself cannot be included within the str.expr. EXECUTE
is useful where the syntax of a BASIC statement itself must be made
variable. For example, allowing a user to enter a numeric expression
with INPUT and then evaluating such an expression would require
considerable program code. EXECUTE could be used by
constructing an appropriate LET statement within a string, and
allowing UniBasic to perform the evaluation.

EXAMPLES
EXECUTE "LET A = SQR(B7) * 100"

ERRORS
All possible encoding and runtime errors.

See also
Each statement and function to be included.

FOR

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 210 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Looping; repeating a group of statements.
SYNTAX

FOR num.var = initial TO final {STEP step }
DESCRIPTION

The FOR statement is used in conjunction with the NEXT statement
for repetitive statement execution. Statements between the
FOR/NEXT may be re-executed a given number of iterations. This
repetitive execution is known as a loop.
The num.var is termed the index variable and is used to control the
loop.
initial is any num.expr which, after evaluation defines the first value
of num.var for the loop. This value is stored in num.var if the loop is
to be executed (see below).
final is any num.expr which, after evaluation is stored as the final
value of num.var for the loop.
The optional step is evaluated and used as the increment for each
iteration of the loop. num.var is incremented by this value for each
iteration. If no explicit step is defined, the default step value is 1.
Looping is initiated by setting the index variable equal to the initial
value. At this point, a preliminary check is made to see if the loop
should be executed at all. If: initial > final AND step > 0, or initial <
final AND step < 0, then the loop statements are not executed and the
program resumes following the associated NEXT statement (NEXT
with same index variable). If not, execution continues with the
statement following the FOR.
Upon execution of the associated NEXT statement, the step value is
added to the index. If the new index will exceed the final value,
normal program execution resumes at the statement following the
NEXT with the index variable unchanged for BITS applications, and
set to the terminating value for IRIS applications; e.g. if the step value
is such that the index will eventually equal the final value, the loop
terminates with index = final for BITS, and index = final+step for
IRIS. In IRIS applications, index is set to the first value causing the
loop to terminate.
A step value of zero will produce an infinite loop.
A complete FOR/NEXT loop may be executed on a single line in
immediate mode:

10 FOR I=1 TO 10 \ PRINT I \ NEXT I

An error is generated if, in immediate mode, a NEXT is not included
on the line containing FOR.
FOR/NEXT loops may be nested if certain precautions are taken.
The following is an example of valid nesting:

10 FOR A=1 TO 10

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 211 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

20 FOR B=1 TO 5

30 FOR C=B+1 TO 4*A

40 REM Statements

50 NEXT C

60 NEXT B

70 NEXT A

The range of FOR/NEXT loops may not overlap. The following is an
example of invalid nesting:

10 FOR I=1 TO 10

20 FOR J=I+1 TO 20

30 REM Statements

40 NEXT I

50 NEXT J

FOR/NEXT statements may be nested to the number of levels
defined in the environment variable FORNEXTNEST minus 1.

EXAMPLES
FOR I=1 TO 3

 REM Statements

NEXT I

Initially, I is set to 1, final is set to 3 and step defaults to 1. Each
execution of the NEXT first checks if (I+1)>3. When (I+1)>3,
execution resumes following the NEXT with I=3, if the program is a
BITS program, and I=4 if the program is an IRIS program.
10 FOR I=10 TO 1 STEP -2

20 REM Statements

30 NEXT I

Initially, I is set to 10, final is set to 1, and step is set to -2. Each
execution of the NEXT first checks if (I-2)<1. When (I-2)<1, the loop
terminates, in this example with I=2. The loop is performed 5 times
for I = 10, 8, 6, 4, and 2. A BITS program terminates the loop with
I=2, whereas IRIS programs would terminate with I=0.

ERRORS
Nested FOR with the same Index variable
FOR without matching NEXT
Variable not specified

See also
NEXT, Environment Variable FORNEXTNEST

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 212 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

GOSUB

SYNOPSIS
Unconditional branch saving return point.

SYNTAX
GOSUB stn

DESCRIPTION
The GOSUB statement is used in conjunction with the RETURN
statement to provide internal program subroutines. Commonly
executed groups of statements can be used as subroutines to save user
space as well as produce a more structured program.
GOSUB, like GOTO, performs an unconditional branch to the
specified line number. Unlike GOTO, however, the statement number
performing the GOSUB is saved. Upon the execution of a RETURN
statement, normal execution would resume at the statement following
the GOSUB. GOSUB and RETURN are not paired as are
FOR/NEXT; i.e. any RETURN will return to the last GOSUB
issued.
Subroutines may be nested to the number of level defined in the
environment variable GOSUBNEST before a RETURN must be
executed.
Failure to return from all nested levels can cause an error.
See the RETURN statement for variations on returning from
subroutines.

EXAMPLES
GOSUB 1000

GOSUB START_INPUT:

ERRORS
Gosubs nested too deep
No such statement number or label

See also
GOSUBNEST, RETURN

GOTO

SYNOPSIS
Unconditional branch to a statement.

SYNTAX

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 213 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

GOTO stn
DESCRIPTION

The GOTO statement is used to unconditionally branch to another
statement within a program and resume normal execution there.
GOTO always transfers control to the first sub-statement on the
specified line, and the line must exist. For transfer to any sub-
statement on a line, see the JUMP statement.
The verb GOTO may also be entered as GO TO .
A statement that performs a GOTO itself may cause an infinite loop
terminated only by ESCape, or ESCape Override [EOBC].
In immediate mode, GOTO is used to specify the next statement to be
executed for single-step mode or CONTINUE.

EXAMPLES
GOTO 1000

GOTO BEGIN:

ERRORS
No such statement number or label

See also
JUMP, GOSUB

IF

SYNOPSIS
Conditional statement execution.

SYNTAX
IF relation {AND relation}{OR relation} {THEN} stmt {ELSE
stmt}

DESCRIPTION
The IF statement tests an arithmetic or string relation and
conditionally performs statements based on the relation being true or
false. In general, these relations are defined as:

num.expr relation num.expr
 - or -
str.expr relation str.expr
 - or -
num.expr
 - or -
str.expr

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 214 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The relation is one of the Relational Operators or Boolean Operators.
If no relation is specified, the statement is interpreted as true if the
num.expr is non-zero or str.expr is a non-null string.
The IF statement will test the given relation for validity and execute
the stmt following THEN if and only if the relation proves true. If the
relation is not true, the statement is checked for the ELSE operator. If
found, the stmt following the ELSE will be executed; otherwise, the
program continues normally.
Entry of the THEN operator is generally optional.
The stmt following THEN and/or ELSE may be any BASIC
statement or a stn alone implying a GOTO stn. The verb GOTO can
also be specifically entered, with the same result. Either THEN or
GOTO must be supplied in order to perform a GOTO.
In IRIS mode, a false IF condition continues execution with the next
statement line, instead of with the next sub-stn. When an IF is true, all
remaining statements on the line are executed. An ELSE can be used
to override this feature. Both of the following examples perform the
same function. In the first example, both statements are executed in
IRIS mode if the relation A=100 is true. If false, execution resumes
on the next line of statements.
The second example performs a GOTO the next statement if the
reverse relation is true, otherwise the ELSE is executed following
with the remaining statements on the line:

IF A=100 GOSUB 1000 \ GOTO 1000

IF A<>100 GOTO 120 ELSE GOSUB 1000 \ GOTO 1000

In BITS mode, a false IF condition continues execution with the next
sub-stmt (if any), or proceeds to the next statement line. Statements
following both the THEN and ELSE operators must be single
statements only; any backslash code \ is considered the end of the IF
statement. In order to execute a series of statements based on a
relation, the relation’s logic must be reversed and the true condition
made to branch to the next statement after the series.

IF A=100 GOSUB 1000 ELSE IF B=100 STOP ELSE 200

IF A<>100 GOTO 110 \ GOSUB 1000 \ GOSUB 2000

A blocked-IF structure provides a more convenient method of
executing several statements for both the true and false conditions for
both IRIS and BITS applications. The general form of a blocked-IF
is:

IF relation {AND relation}{OR relation} {REM Comment}
 {THEN} {REM This is a comment}
 stmts to be executed on a single line or multiple lines
 {ELSE {REM This is a comment}
 stmts to be executed on a single line or multiple lines}

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 215 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 ENDIF {REM This is a comment}
Blocked-IF statements are assumed whenever an IF statement ends
following a relation. No stmts may follow the relation excepting an
optional REM.
Inclusion of an ELSE block is optional. The THEN statement is
completely ignored and can be omitted, if desired. THEN, ELSE, and
ENDIF must be the only statements on their line (except that they
may be followed by a trailing REM comment).
Statements to be executed on the relation being true follow the IF (or
THEN) on subsequent lines. All statements up to the associated
ELSE or ENDIF are part of the true condition.
ELSE defines an optional block of stmts to execute when the
corresponding Blocked-IF was false.
ENDIF defines the end of a blocked IF.
Blocked-IFs can be nested to any level, and are indented like FOR-
NEXT loops for readability. There must be an ENDIF for every
blocked-IF in the program. The integrity of the blocked-IFs is
checked by the RUN, CHAIN, SAVE, VERIFY and CHECK
commands. Once checked, a program is flagged OK eliminating
further verification until a statement is changed within a program.

EXAMPLES
IF A*5 > B*10 THEN GOSUB 200

IF LEN(A USING A$ TO ".") >132 PRINT #3;

IF A-5 THEN 340 ELSE IF J=100 GOSUB 100 ELSE STOP

IF C$[1,1]<=Z$[10,10] AND C$<>"X" THEN 280

IF (J=10 OR C=20) AND (T=10 OR F=12) STOP

Blocked-IF:

IF (A=100 AND B=200) OR (C=200 AND D=300)

 GOSUB 1000 \ PRINT T

 IF J

 GOSUB 2200 \ WRITE #3,R;A$

 ELSE

 GOSUB 2200 \ READ #3,R;A$

 ENDIF

ENDIF

ERRORS
Arithmetic Overflow
IFs without 'ENDIF'
'ELSE' without 'IF'

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 216 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

'ENDIF' without 'IF'
See also

Operators and Expressions, Boolean operators AND OR, Arithmetic
Operators, String Operator USING, Concatenation Operators, Unary
Operators, String Operator TO, CRT Mnemonics and Expressions,
Numeric and String Expressions

IF ERR

SYNOPSIS
Specify statements to execute on an error.

SYNTAX
IF ERR error mode expr {stmt}

DESCRIPTION
IF ERR 0 is used to specify a line of statements to be executed upon
the occurrence of any error. IF ERR 1 may also be used to specify an
error branch, however a separate error number is not reserved for
CTRL+C.
When an IF ERR 0 statement is executed, any existing error
branching from a previous IF ERR 0 , ERRSET, or ERRSTM is
reset to the stmts following the IF ERR 0. Normal execution resumes
at the next BASIC line, reserving all stmts following IF ERR 0 for
error processing.
ESCape is also trapped generating a special Error code to the
application.
ESCSTM, ESCSET, EOFSET, and ESCDIS statements can be used
in addition to IF ERR.
In immediate mode, IF ERR can only be used to clear an existing
error branch. Attempting to set a new branch results in an error.
Error statement processing remains in effect until an ERRCLR or IF
ERR 0 statement is executed without any trailing stmt.
IF ERR statements must be the last statement of a multi-statement
line.

EXAMPLES
IF ERR 0 GOSUB 1000

IF ERR 0

ERRORS
Syntax error

See also
Error Messages, JUMP, ERR, SPC(8),SPC(10), MSC, MSF,

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 217 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ERRSTM, ERRCLR

INDEX #

SYNOPSIS
Indexed File maintenance statement.

SYNTAX
INDEX #channel ; mode, index, key, record, status

DESCRIPTION
The channel is any num.expr which, when truncated to an integer,
specifies an opened channel currently linked to a UniBasic Indexed
Data file.
The mode is any num.expr which, when truncated to an integer,
specifies a mode of operation for the INDEX statement. For a detailed
list of mode operations, See also: Indexed Data Files.
The index is any num.expr which, when truncated to an integer,
specifies to which Index or Directory (list of keys) the operation is
being directed.
The key is any DIMensioned str.var which must be DIMensioned to
at least the size of the Key for the specified Index.
The record is any num.var and contains (or returns) a value for the
statement mode.
The status is any num.var used to return a status value to the program.
Refer to the following pages for a list of status values and their
meanings.
Parameters may be separated by either a comma or semicolon
terminator.

EXAMPLES
INDEX #5;4,1,K$,R1,E \ IF E GOTO 1000

E=3 \ INDEX #J,1,0,K$,R1,E \ IF E GOTO 1000

ERRORS
Selected channel is not open
Illegal parameter or syntax for command
Selected data record is locked
File is not indexed or mapped
Illegal or nonexistent index number selected
Index selected is not yet initialized
Indexed file structure error or svar dim length < Key length

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 218 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

See also
Indexed Data Files, SEARCH #

Summary of INDEX Modes

Mode Operation
 0 Define and Create indices within a Contiguous Data File.
 1 Return miscellaneous index information.
 2 Search for an exact key.
 3 Search for the next highest key.
 4 Insert a new key into an index.
 5 Delete an existing key from an index.
 6 Search for the previous key (Search Backward).
 7 Unused, included for compatibility.
 8 Maintain the B-Tree insertion algorithm for an index.
 9 Temporarily same as Mode 6 - Reserved for future use.

Detailed Table of INDEX Modes

Mode Index Status Operation Performed
 0 1<d<63 For a new Indexed File, sets the key length of the

selected index to the number of bytes specified by
record.var. The maximum key length is 122 bytes.
Indices must be defined starting at one and proceed
sequentially.

 0 0 Freeze the file definition and build the ISAM portion of
the file. Total number of initial data records is specified
by the record.var.

 1 >0 Return the key length of the specified index in bytes.
 1 0 =0 Returns the record number of the First Real Data

Record. Normally zero unless the file was built using
BUILDXF or copied from an IRIS or BITS system.

 1 0 =1 Return the number of Available Records in the file. This
value is either the value of the environment variable
AVAILREC, or the value based upon the files current
size.

 1 0 =2 Allocate and return a new record for the application.
 1 0 =3 Return a record to the file that is no longer needed.

Deleted records will be re-used before the file is
extended.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 219 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 1 0 =4 Return in record.var the number of records in the file.
IRIS Applications only; Error for BITS applications.

 1 0 =5 Return in record.var the number of records in the file.
For BITS applications, performs the same operation as 4
above.

 1 0 =6 Set the First Real Data Record to the value supplied in
record.var. This option is only available during file
structuring.

 1 0 =7 Return the current number of records in use (allocated)
in the data portion of the file.

 2 Search the specified index for the exact match of the
supplied key.var. If found, return the full key in the
supplied key variable, and the associated record number
in record.var. The status.var is set to 0 if the key was
found, and 1 if the key.var was not in the index.

 3 Search the specified index for the first key whose value
logically exceeds the supplied key.var. If found,
status.var is set to 0, the full key is returned in key.var,
and the associated record number is returned in
record.var.

 4 Insert key.var into the specified index using the supplied
record.var as the associated pointer. The record should
have been previously allocated using mode 1, status = 2
above. A status.var of 0 indicates a successful operation.
If the key.var already exists in the index, a 1 is returned
as status.var.

 5 Delete the supplied key.var from the specified index. If
successful, record.var is returned as the associated
pointer, and the status.var is set to 0. A status.var of 1
indicates an unsuccessful operation; i.e., the key.var was
not found in the index. The record should be returned to
the file using mode 1, status = 3 above.

 6 Search the specified index for the first key whose value
is logically less than the supplied key.var. If found,
status.var is set to 0, the full key is returned in key.var,
and the associated record number is returned in
record.var.

 7 No operation. Reserved for future use.
 8 B-Tree algorithm maintenance. If record.var is negative,

return in record.var the current B-Tree algorithm for
index. If record.var is positive, change the insertion
algorithm to the value passed in record.var. Set to zero
(default) for random insertion, 1 for increasing insertion,
2 for decreasing insertions.

 9 Temporarily, the same as Mode 6. Reserved for future

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 220 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

use.

Table of INDEX status return values

Value Description of Status
 0 No error, the Index operation was successful.
 1 Operation was unsuccessful; i.e. key not found.
 2 End of index. Given on modes 3, 6 and 9 when the beginning or end of the

index is reached.
 3 End of data; all records are allocated. This error is only generated when the

environment variable PREALLOCATE is defined to limit the number of
data records.

 4 File has no Indices, cannot perform an Indexed File operation.
 5 Indexed file structure error; given when key length DIM is less than the

actual size of the key from an Index on Modes 2, 3, 6 and 9. Indicates a
DIMension error or structure problem, possibly a c-tree file structuring
error. Printing the value of ERR(8) will provide a more concise description
of the error.

 6 Index number not in sequence during creation. You must sequentially
define all directories.

 7 File is not a Contiguous File.
 8 File is already Indexed.
 9 Value of record is negative or too large.
 10 Illegal Index Number. Must be between 1 and 62.

INPUT

SYNOPSIS
Retrieve keyboard or channel input.

SYNTAX
INPUT {#chn.expr;} {crt.expr;} {control} {"prompt"} var.list

DESCRIPTION
The INPUT statement assigns values to variables. The values are
accepted from either keyboard (operator) input, or through a channel
(file or device).
If a chn.expr is specified, the standard input for this statement will be
satisfied from the selected channel, record and byte-displacement. If
the running program is a BITS program and chn.expr is not specified
(or the selected channel is not open), input will be taken from the
keyboard. When requesting input from a chn.expr, the crt.expr,

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 221 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

control, and "prompt" options should not be used.
If a crt.expr is specified, it is evaluated and output based upon the
information from current active term file. If no term file is active, the
crt.expr is ignored. If the crt.expr contains undefined mnemonics,
those undefined will be ignored. Typically, a crt.expr is used to
position the cursor on the screen and/or clear lines, etc. prior to the
request for input. Use of a crt.expr will suppress the normal prompt
unless a specific "prompt" is specified.
If a "prompt" is specified, the default prompt-message ? is replaced by
the literal text within quotes. A null prompt "" suppresses the output
of the prompt-message as does the inclusion of any crt.expr.
If a control is specified, the input is restricted by a character count,
length of time, or both. A special control is provided to read the
contents of the terminal's input buffer and is used by programs to read
parameters entered on a command line. Two different mechanisms
exist to invoke control features.

(mode.expr,
num.var) control with a returned response

The mode.expr is evaluated and truncated to an integer. The second
parameter must be a num.var and will be set following the INPUT as
the response.
If the mode.expr evaluates to zero, the entire contents of the input
buffer is selected as the standard input. The num.var is not set to any
value in this mode. Typically, this mode is used within a program that
can accept its input from a command line. To read the last command
line, the input must be performed prior to any other INPUT or
PRINT statements which corrupt the input buffer. Programs such as:
PORT(u), LIBR(u), QUERY(u), etc. use this mode to read the
command line into a string variable and then parse off the parameters.
If the mode.expr evaluates to a positive value, the program is
suspended for that number of tenth-seconds or until the [EOL]
character is entered terminating the input. The maximum wait time is
65535 tenth-seconds, or approximately 109 minutes. The actual
number of tenth-seconds that were spent waiting for INPUT is
returned as a positive value in num.var. If no [EOL] character
(return) is received within the specified interval, the num.var is set to
the negative of the specified tenth-second wait interval and any input
characters are passed to the INPUT var.list.
If the mode.expr evaluates to a negative value, the value is converted
to a positive number selecting the maximum number of characters to
be accepted for input. -5 causes the system to wait for the input of 5
characters. The actual number of input characters is returned in the
num.var. The [EOL] character may be used to terminate a character
limited input prior to exhausting the specified character count.

LEN / TIM control with SIGNAL response
LEN num.expr; Set num.var as the character limit

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 222 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

TIM num.expr; Wait num.var tenth-seconds for input
The num.expr is evaluated and truncated to an integer. A semicolon
must terminate the num.expr, or an error will occur.
If a LEN num.expr; is specified, the num.expr is evaluated, truncated
to an integer and set as the maximum number of characters to be
accepted for input. The [EOL] character may be used to terminate a
character limited input prior to exhausting the specified character
count.
If a TIM num.expr; is specified, the num.expr is evaluated, truncated
to an integer and set as the number of tenth-seconds to wait for input.
The maximum wait time is 65535 tenth-seconds, or approximately
109 minutes. If no input is seen within the specified interval, a system
SIGNAL is sent to the program with the actual number of characters
entered. See SIGNAL 5 to clear the message queue.
Both a TIM num.expr; and LEN num.expr; can be specified on the
same INPUT statement.
GENERAL OPERATION OF DATA INPUT
Following the parsing of the optional parameters, the program is
suspended while data is read from the standard input; usually the
terminal. Characters previously entered (and buffered) are processed
first.
Characters are echoed (for keyboard input) unless echo is disabled by
the previous entry of the [ECHO] toggle character (normally
CTRL+E), a SYSTEM 9 statement or the $ECHO CALL.
If the INPUT is not satisfied, the program is suspended until the
[EOL] character (return) is entered, the specified character limit is
reached, or a time-out occurs on timed input. When any of these
conditions occurs, the program resumes operation and begins
processing input into the variables defined in the var.list. The [ESC]
or [EOBC] characters will terminate input and abort the statement.
SYSTEM 26 and 27 alter the operation of character limited input.
Normal operation is to automatically resume execution of the
program when the limiting number of characters have been processed.
Executing a SYSTEM 27 forces character limited INPUT to require
entry of the [EOL] character (return). When the limit is reached, the
terminal's bell is sounded and extra characters (except BACKSPACE
or CTRL+X) are ignored. SYSTEM 26 resets character limited input
to operate normally, that is, resume execution when the limiting
number of characters have been processed.
No special processing is performed on the characters received. Data is
passed to the program exactly as received from the operating system.
If you are attempting to connect a system directly to IRIS or BITS,
you will need to configure the system to strip the high-order bit using
the UNIX stty command, or use CALL 60,3,str.var to toggle the
IRIS/BITS data into standard format.
When binary input (SYSTEM 14) or IOBI is enabled, all characters

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 223 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

are passed directly to the program excluding CTRL+S (XOFF) and
CTRL+Q (XON). All character input processing for [EOL], [ESC],
[BACKSPACE], etc. is suspended and the program must process all
input data.

WARNING: When using Binary Input, it is possible to lock the terminal if
your program does not provide a way to terminate itself. If you
lock a terminal, use another UniBasic port to HALT or PORT
EVICT(u) the locked program.

When a str.var is specified in the var.list, all characters are copied up
to, but not including the [EOL] character. If the input is larger than
the specified str.var, the extra input characters are discarded. If the
input does not fill up the destination str.var, a zero-byte terminator is
placed after the last character of data.
If a num.var is specified in the var.list, the input characters are
converted to numeric and stored into the num.var. An error is
generated if the input is not numeric or contains characters other than
digits + - . or E notation. If error branching is in effect, the MSC(1)
function (Last INPUT Element) may be used to determine which
input item was in error. For example:

10 ERRSET 40

20 INPUT A,B,C,D

30 END

40 PRINT "ERROR IN INPUT VARIABLE";MSC(1)

The user would enter the item or items, separating multiple items with
a comma "," or [EOL]. If too many items are entered, a non-abortive
error is generated and the extra items are ignored.
If a non-numeric value is entered for a numeric variable, the message
\Invalid numeric\? is displayed and the entire input must be re-
entered. Numeric values may be entered in scientific notation;
however, commas are not allowed within a numeric item; e.g. 1,200
must be entered as 1200. To abort the INPUT statement, press
ESCape.
BITS applications may use the INPUT statement with a channel.
INPUT # is similar to terminal INPUT, however, the above
mentioned CRT, prompt, and limit features are unavailable. The
INPUT # statement reads one line of data into the terminal’s buffer.
Processing proceeds as with normal INPUT. IRIS users read
sequential data using the standard READ statement. For example:

100 INPUT #4;D,E,F,G

To successfully load these variables, the input source (file or device)
would have to contain 4 numeric literals in the form:

number , number , number , number

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 224 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

INPUT # terminates upon the transfer of a new-line, form-feed, zero
byte, or end of input buffer. If INPUT # terminates on a form-feed, it
will be the last character of data. New-line may not be transferred as
data. Carriage returns are ignored when transferred.
Normally, the optional record expr and byte expr specifications are
not used, as line-oriented data is generally of variable length. Each
successive INPUT # starts its transfer immediately after the previous
one has been completed.

EXAMPLES
INPUT TIM 10; LEN 30; "CUSTOMER NAME >"A$

INPUT @10,23;"Press [RETURN]" T$

INPUT (-1,K) "Enter a single character "A$
INPUT "4 numbers w/ comma ? "A,B,C,D

ERRORS
INPUT of wrong type or insufficient
Syntax error
User partition space exhausted

See also
SYSTEM, $TERM, Input Character Processing, CALL $ECHO

INTCLR

SYNOPSIS
Clear program interrupt branch.

SYNTAX
INTCLR

DESCRIPTION
INTCLR restores normal operation with respect to user interrupts.
CTRL+C, SIGNAL 1, and SEND no longer automatically interrupt
the program and branch to a specific INTSET statement number.

EXAMPLES
INTCLR

ERRORS
None

See also
INTSET, SIGNAL, [INTR], SEND

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 225 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

INTSET

SYNOPSIS
Define a branch for program interrupts.

SYNTAX
INTSET stn

DESCRIPTION
INTSET sets the selected stn to receive control each time an interrupt
character is pressed or a message is waiting to be received. CTRL+C
is normally defined as an interrupt character, [INTR], but may be
changed within the term file. INTCLR removes the branching, and
further interrupt requests or messages are ignored.
A program branch is defined to transfer execution to a pre-defined
statement when either an ‘interrupt’ character is pressed or a message
is transmitted to your port via the SEND or SIGNAL statements.
The interrupt handling routine can do any processing desired and
return to the main program as if the branch never occurred. Secondary
interrupts are inhibited until the program clears the initial interrupt.
This is done using the ERR(3) function, which also yields the original
interrupted statement number. Generally, an interrupt handling routine
loops until all interrupts or messages are received. The main body of
the program is resumed using the statement:

stn JUMP ERR(3)

or
stn JUMP ERR(3);ERR(7)

The latter form is required if multi-statement lines are used within the
program.
The interrupt function should not use the ERR(3) function other than
shown above unless it is re-entrant and stacks multiple return
locations.

EXAMPLES
INTSET 1000 ! Branch on Signal, CTRL+C

ERRORS
No such statement number

See also
SEND, [INTR], SIGNAL, SEND

JUMP

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 226 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Computed GOTO unconditional branch to stn.

SYNTAX
JUMP stn {; sub-stn} {, num.var}

DESCRIPTION
The stn is any num.expr which, after evaluation is truncated to an
integer and used as the statement number to branch to. The optional
sub-stn is any num.expr which, after evaluation is truncated to an
integer and used as the sub-statement on that line. JUMP performs an
unconditional branch to the selected statement (and sub-statement).
On multi-statement lines, sub-statements are numbered starting at 1.
If the optional num.var is supplied, it will be set to the statement
number of line following JUMP. This is similar to the GOSUB
statement, as a subsequent JUMP to this variable will essentially
perform a RETURN. The num.var will is set to zero when the JUMP
is the last statement of a program.
JUMP statements are in no way affected by the RENUMB
command. Therefore, they are not an acceptable substitute for GOTO
or GOSUB when a literal stn can be used.
JUMP is best used in conjunction with system functions that supply
statement numbers, retaining the program's ability to be renumbered.

EXAMPLES
JUMP K*10

JUMP SPC(10)

JUMP ERR(1);ERR(4),J

ERRORS
No such statement number

See also
GOTO, GOSUB, SPC, ERR, INTSET, ESCSET, ERRSET

KILL

SYNOPSIS
Delete a data or program file.

SYNTAX
KILL filename.expr ...

DESCRIPTION
The filename.expr may contain a single filename or list of filenames to
be deleted. Multiple strings may each contain a single filename or

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 227 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

group of filenames separated by spaces.
If an error occurs, the statement is aborted and any remaining
filenames within the str.expr are not deleted. Furthermore, other
filename.exprs are not processed.
An application may delete a program or data file currently in use or
opened by itself or another user. The effect is to remove the entry of
the filename from the system directory preventing it from being
opened again. When the last user closes the file, the system releases
the disk space. Prior to closing, all types of access, including
extending the file is permitted.

EXAMPLES
KILL "23/ABC 23/DEF"

KILL A$,B$,C$

ERRORS
File does not exist
Read Protected File
Write Protected File

See also
DELETE, MFDEL(u), KILL(u), filename

LET

SYNOPSIS
Assign values to numeric & string variables.

SYNTAX
{LET} var = expr {(, | ;) } ...
{LET} str.var = num.expr USING str.expr {, num.expr ...}
{LET} str.var = str.var TO str.expr { (; | :) num.var}

DESCRIPTION
var is any num.var, str.var, array.var or mat.var to be assigned a
value.
expr is any expression whose result matches the type of the supplied
var.
A numeric variable num.var, array.var, or mat.var may be assigned
any numeric expression or numeric string whereas string variables
str.var may be assigned any string expression or numeric value. The
functions STR and VAL may be used to convert a numeric result to
string or vice versa to match the destination var.
The LET verb is optional, and is assumed when not entered.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 228 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Although entry of the LET verb is optional, it is printed whenever the
program is listed.
Multiple assignments may appear on a single line separated by
commas for BITS and semicolons for IRIS programs.

Z=100;Q=1;N=0;A$="TXXX" ! IRIS Applications

Z=100,Q=1,N=0,A$="TXXX" ! BITS Applications

Numeric formatting is performed within a LET statement with the
USING operator. This is functionally equivalent to the EDIT
statement.

LET D$=X USING "##,###.##"

LET E$=X USING "##,###.##",Y,Z

The TO operator allows assignment of string data to terminate upon
encountering a given str.expr. The str.expr may be a single or multiple
character string. The optional num.var returns the character position
at which assignment stopped.

LET N$="ABCDEF%GHIJKL"

LET S$=N$ TO "%":K ! IRIS Applications

LET S$=N$ TO "%";K ! BITS Applications

returns: S$="ABCDEF",K=7

When using the advanced forms for multiple assignments, choose the
following delimiting characters to match the operating system
BASICMODE and/or program type currently loaded:

Character
function IRIS BITS

String
concatenation , +

Multi-assignment ; ,
Terminator for TO : ;

EXAMPLES
LET V=1

LET T$=1/3

LET A=42;T=17;R7=91 !IRIS MULTI-LET

LET B[7]=(A*T)+(R7/4) USING "#####"

LET A$="TOTAL=",D[7]=A/T! BITS MULTI-LET

LET A$="1234565";T=A$;B$=A$ TO "45":T1

ERRORS
Syntax Error
String Expression not allowed here

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 229 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

String Expression must be used here
See also

TO Operator, USING Operator, Numeric and String Expressions,
STR, VAL

LIB

SYNOPSIS
Specify a library logical unit for callable subprograms.

SYNTAX
LIB expr

DESCRIPTION
expr is any numeric expression to represent a numbered IRIS style
logical unit number or string expression representing a unix directory
name.
A value of -1 may be used to clear a defined library logical unit.
The library unit is the first unit searched by CALL for a subprogram
file, unless the subprogram filename itself specifies a logical
pathname.
SPC 23 is used to determine the current library logical unit, however
its return value is only valid when the library logical unit is
numbered.

EXAMPLES
LIB 1

LIB "pgms"

ERRORS
None

See also
CALL, ENTER, SPC23

MAT =

SYNOPSIS
Copy an entire matrix.

SYNTAX
MAT dest mat.var = source mat.var

DESCRIPTION

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 230 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

mat.var is any numeric matrix variable name.
The dest mat.var must be at least as large as the source mat.var. In the
following example, matrix A is dimensioned as [5,5] and matrix B as
[6,6]:
MAT B=A is acceptable.

MAT A=B Is illegal since A is not large enough to contain

all of the elements in B.

The copy is performed element by element. An error or integer
truncation can occur if the precisions are not compatible. Row and
column zero are not copied. MAT = cannot be used to copy single
element arrays.

EXAMPLES
MAT T=D0

MAT T[4,4] = D9

MAT T[5]=G

ERRORS
Syntax error
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also
Numeric, Array and Matrix Variables

MAT +

SYNOPSIS
Add elements from two matrices.

SYNTAX
MAT dest mat.var = source mat.var1 + source mat.var2

DESCRIPTION
mat.var is any numeric matrix variable name.
The two matrices being added must be exactly the same dimensions
(rows and columns). The dest mat.var, if not already defined, is
dimensioned at the current default precision for the same number of
rows and columns as the source mat.var . An error or integer
truncation can occur if the precisions are not compatible. Row and

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 231 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

column zero are not added.
The same matrix variable may appear on both sides of the equation
The sum, matrix D, of matrix A and matrix B is:

D[X,Y]=A[X,Y]+B[X,Y]

for each matrix element.
EXAMPLES

MAT T=D0+A9

MAT D0=D0+J

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation

Variable not specified

Matrices have different DIMensions
Variable name not DIMensionable

See also
Numeric, Array and Matrix Variables

MAT *

SYNOPSIS
Multiply elements of two matrices.

SYNTAX
MAT dest mat.var = source mat.var1 * source mat.var2
MAT dest mat.var = (constant expr) * source mat.var

DESCRIPTION
mat.var is any numeric matrix variable name.
MAT * performs a multiplication, establishing a new matrix equal to
the product of two matrices. Scalar multiplication allows each
element of a matrix to be multiplied by a constant.
Following the rules of matrix multiplication, if we multiply matrix A
dimensioned [X,Y] by matrix B dimensioned [R,S], then the resulting
matrix will be dimensioned [X,S]. An error or integer truncation can
occur if the two precisions are not compatible. Row and column zero
elements are not multiplied.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 232 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The same matrix variable may not appear on both sides of the
equation.
Scalar multiplication causes each element of the given matrix to be
multiplied by the value of the constant expr. The constant expr. must
be in parentheses, and immediately follow the equal sign (=).

EXAMPLES
MAT D=A*B

MAT Q=X*X

MAT C=(5)*A

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also
Numeric, Array and Matrix Variables

MAT CON

SYNOPSIS
Establish a constant matrix.

SYNTAX
MAT dest array.var = CON { [subscript1 {, subscript2 }] }

DESCRIPTION
array.var is any numeric array.var or mat.var name.
Each element of the selected array.var or mat.var is set to the
constant value one. Row and column zero are not set.
The optional subscript1 and subscript2 are evaluated, truncated to
integer and used to select a new working size. The total number of
elements in the new size cannot exceed that of the old. A single
element array can be converted to a matrix or vice versa as long as
the total number of elements does not exceed the original
DIMensioned size. For example, a [4,4] matrix has 25 actual
elements and could be re-declared as CON[24].
A constant other than one can be accomplished using a combination

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 233 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

of the CON function and Scalar multiplication:
MAT A=CON \ MAT B=(5)*A \!Fill B with 5's.

Any array created by a MAT statement with a single dimensions
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT A=CON

MAT D0=CON[7,X/2]

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also
Numeric, Array and Matrix Variables

MAT IDN

SYNOPSIS
Establish an identity matrix.

SYNTAX
MAT dest array.var = IDN { [subscript1 {, subscript2 }] }

DESCRIPTION
array.var is any numeric array.var or mat.var name.
The matrix function IDN establishes an identity matrix of all zeroes
with a diagonal of ones.
Any matrix multiplied by an identity matrix of the same size results in
the original matrix. For example: If matrix A is dimensioned [3,3] and
matrix B is an identity matrix also dimensioned [3,3], the result of:
MAT C=A*B produces matrix C equal to A. Row and column zero
are not affected by IDN.
The optional subscript1 and subscript2 are evaluated, truncated to
integer and used to select a new working size for the array. The total
number of elements in the new size cannot exceed that of the old. A
single element array can be converted to a matrix or vice versa as

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 234 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

long as the total number of elements does not exceed the original
DIMensioned size. For example, a [4,4] matrix has 25 actual
elements and could be re-declared as IDN[24]. An identity array is an
array of all zeros.
Any array created by a MAT statement with a single dimensions
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT Q=IDN

MAT T=IDN[4,4]

MAT A8=IDN[X,Y]

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also
Numeric, Array and Matrix Variables

MAT INV

SYNOPSIS
Invert a matrix.

SYNTAX
MAT dest mat.var = INV(source mat.var)

DESCRIPTION
mat.var is any numeric 'square' matrix variable name.
The matrix function INV establishes one square matrix as the inverse
of another.
Only square matrices (number of rows = number of columns) may be
inverted. Both matrices must also be the same precision and
dimension. Row and column zero are not affected by INV.
The DET function supplies the determinant of the last matrix inverted
by your program, e.g. if two matrices are inverted before the DET
function is used, the determinant returned will be from the second

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 235 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

inversion.
Since numeric precision in UniBasic is accurate only to 20 significant
digits, matrix elements will be rounded accordingly.

EXAMPLES
MAT C=INV(A)

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also
Numeric, Array and Matrix Variables

MAT TRN

SYNOPSIS
Transpose a matrix.

SYNTAX
MAT dest mat.var = TRN(source mat.var)

DESCRIPTION
mat.var is any numeric matrix variable name.
The matrix function TRN is used to establish one matrix as the
transposition of another.
Transposition causes each element [X,Y] of the original matrix to be
moved to element [Y,X] of the transposed matrix. Note that this also
causes the dimension of the transposed matrix to be the reverse of the
original. For example:

Original matrix [3,4] Transposed matrix [4,3]
1 2 3 4 1 5 9

5 6 7 8 2 6 10

9 10 11 12 3 7 11

 4 8 12

An error or integer truncation can occur if the two matrix precisions
are not compatible. Row and column zero are not affected by TRN.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 236 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Any array created by a MAT statement with a single dimensions
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT C=TRN(A)

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also
Numeric, Array and Matrix Variables

MAT ZER

SYNOPSIS
Zero an entire matrix.

SYNTAX
MAT array.var = ZER { [subscript1 {, subscript2 }] }

DESCRIPTION
mat.var is any numeric array.var or mat.var name.
The matrix function ZER allows each element of a matrix to be set to
zero. Row and column zero are not set.
The optional subscript1 and subscript2 are evaluated, truncated to
integer and used to select a new working size for the array. The total
number of elements in the new size cannot exceed that of the old. A
single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original
DIMensioned size. For example, a [4,4] matrix has 25 actual elements
and could be re-declared as ZER[24].
Any array created by a MAT statement with a single dimensions
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT C=ZER

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 237 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

MAT R7=ZER[4,4]

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also
Numeric, Array and Matrix Variables

MAT INPUT

SYNOPSIS
Assign keyboard/file input to a Matrix.

SYNTAX
MAT INPUT {#chn.expr;} array.var{[subscript1 {, subscript2 }]} ...

DESCRIPTION
The optional #chn.expr is any channel expression used to specify an
input device or text file for the operation. Only BITS applications may
perform MAT INPUT #.
The array.var is any mat.var or array.var with or without subscripts.
MAT INPUT is used to assign values to an entire matrix. The values
are accepted from either keyboard (operator) input, or through a
channel (file or device for BITS applications).
The optional subscript1 and subscript2 are evaluated, truncated to
integer and used to select a new working size for the array. The total
number of elements in the new size cannot exceed that of the old. A
single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original
DIMensioned size. For example, a [4,4] matrix has 25 actual
elements and could be re-declared as array[24].
Execution of a MAT INPUT statement pauses the program after
output of a ? to your terminal. The program is then suspended and
data input is accepted. The user would enter all matrix items,
separating each item with either a comma , or [EOL] (return). MAT
INPUT does not complete until all elements have been accepted.
The array elements are assigned by rows, starting with [1,1] thru
[1,n], then continuing with [2,1] thru [2,n], etc. Row and column zero

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 238 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

are not assigned. For example, a 4 by 4 matrix might be entered as:
17,42,87,12 <-

18,14,26,14 <-

15,0,18,29 <-

34,29,86,69 <-

Using MAT INPUT from a channel is similar to terminal MAT
INPUT, except the data is read from the channel and must include
row and column zero elements. The data must be separated by either
commas or [EOL] (return), and cannot be in the format generated by
a MAT PRINT #. Only a BITS application may perform MAT
INPUT #.
Any array created by a MAT statement with a single dimensions
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT INPUT T

MAT INPUT A,B[4,10],C

MAT INPUT #3;X

MAT INPUT #2,R,20;E1,E2

ERRORS
Syntax error
Matrix has zero DIMension
Variable not specified

See also
MAT PRINT, Numeric, Array and Matrix Variables, Channel
Expression

MAT PRINT

SYNOPSIS
Print contents of an array or matrix.

SYNTAX
MAT PRINT { #chn.expr; } array.var { ; }...

DESCRIPTION
The optional #chn.expr is any legal channel expression re-directing
the output to a file or device.
Each array.var is any array.var or mat.var to be printed in ASCII
form without subscripts. Each variable may be followed by either a

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 239 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

comma (,) or a semicolon (;). A comma will cause the matrix variable
preceding it to be spaced using comma fields. These are generally 20
characters long, but can be changed by setting the environment
variable TABFIELD. A semicolon will cause minimal spacing
between elements. Elements are normally preceded by a space or "-",
indicating negative or positive, and will be followed by one space.
When all items in a matrix row have been output, two blank lines are
output to produce double spacing between rows.
Row and column zero elements are only printed for MAT PRINT in
immediate mode and when the data is directed through a channel.
If a channel is specified to MAT PRINT, output is attempted to that
channel. If the selected channel is not open, output is sent to the
terminal.

EXAMPLES
MAT PRINT A

MAT PRINT I,J

MAT PRINT X;Y;Z;

MAT PRINT #3,T;H1,S1

ERRORS
Syntax error
Matrix has zero DIMension
Variable not specified

See also
Numeric, Array and Matrix Variables, Channel Expression.

MAT RDLOCK #

SYNOPSIS
Read an array, matrix or string with locking.

SYNTAX
MAT RDLOCK #chn.expr; var.list...

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file
from which to read data.
MAT RDLOCK # transfers data into any var, mat.var, array.var or
str.var. The operation is similar to a READ # statement, except that
an entire array or matrix is transferred; including row and column
zero elements. If the specified var is a string, its entire specified
length is transferred including zero-byte terminators.
If the variable in the list is an array.var, an optional subscript1 and

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 240 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

subscript2 may be specified. If given, these are evaluated, truncated to
integer and used to select a new working size for the array. The total
number of elements in the new size cannot exceed that of the old size.
A single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original
DIMensioned size. For example, a [4,4] matrix has 25 actual
elements and could be re-declared as array[24].
Any array created by a MAT statement with a single dimensions
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.
If the variable in the list is a simple num.var, the transfer size is
controlled by the DIMensioned size and precision.
If the variable in the list is a str.var, its size may be controlled by
subscripts. The transfer size is rounded up to an even number of
bytes. Either an even or odd subscript may be specified. The address
for the start of the transfer within the str.var is not changed. If an odd
number of bytes is specified in the subscript (such as svar[2,2]), the
size is rounded up to an even number of bytes resulting in the transfer
of 2 bytes into svar[2,3] in this example. All characters are
transferred including zero-bytes.
If the application is an IRIS program, the supplied (or current) byte
displacement is rounded up to an even byte position within the file.
MAT RDLOCK transfers data and unconditionally locks the record..
The data record remains locked until a non-locking operation is
performed by that same program to the same channel. While a record
is locked, other users will be unable to access the record. MAT
RDLOCK# is identical to MAT READ# omitting the trailing
semicolon. See the MAT READ# statement for details on the transfer
of data to different types of files.

EXAMPLES
MAT RDLOCK #3,R1,100;A

MAT RDLOCK #C,R;A$

ERRORS
Syntax error
Selected Channel is not OPEN

See also
Numeric, Array and Matrix Variables, Channel Expression, MAT
READ, Numeric Variable Precision

MAT READ

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 241 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Read an array, matrix, or string from DATA.
SYNTAX

MAT READ array.var{[subscript1 {, subscript2 }]}...
MAT READ str.var ...

DESCRIPTION
The array.var is any numeric array.var or mat.var. A str.var is any
string variable name. You may mix array.vars and str.vars in a single
MAT READ statement.
MAT READ attempts to transfer data into each array.var, mat.var or
str.var listed in the statement. Transfer of each array.var or mat.var
element terminates at a comma (,) or at the end of the DATA
statement. The format of the data is left to the user. Attempting to
read string data into a numeric variable produces the error DATA of
wrong type (numeric/string).
MAT READ transfers data sequentially from DATA statements until
the entire matrix has been assigned. Row and column zero are not
read.
See the READ and DATA statements for other rules governing
reading from DATA statements.
Any array created by a MAT statement with a single dimensions
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT READ A[2,2], B$

MAT READ B$, J

ERRORS
Matrix has zero DIMension
Variable not specified

See also
Numeric, Array and Matrix Variables, READ, DATA

MAT READ #

SYNOPSIS
Read array, matrix or string from a channel.

SYNTAX
MAT READ #chn.expr; var list...{;}

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 242 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

from which to read data.
The var list is any list of variables: num.var, array.var, mat.var or
str.var.
MAT READ transfers data into any var, mat.var, array.var or str.var.
The operation is similar to a READ # statement, except that an entire
array or matrix is transferred; including row and column zero
elements. If the specified var is a string, its entire specified length is
transferred including zero-byte terminators.
If the variable in the list is an array.var, an optional subscript1 and
subscript2 may be specified. If given, these are evaluated, truncated to
integer and used to select a new working size for the array. The total
number of elements in the new size cannot exceed that of the old size.
A single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original
DIMensioned size. For example, a [4,4] matrix has 25 actual
elements and could be re-declared as array[24].
Any array created by a MAT statement with a single dimension
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.
If the variable in the list is a simple num.var, the transfer size is
controlled by the DIMensioned size and precision.
If the variable in the list is a str.var, its size may be controlled by
subscripts. The transfer size is rounded up to an even number of
bytes. Either an even or odd subscript may be specified. The address
for the start of the transfer within the str.var is not changed. If an odd
number of bytes is specified in the subscript (such as svar[2,2]), the
size is rounded up to an even number of bytes resulting in the transfer
of 2 bytes into svar[2,3] in this example. All characters are
transferred including zero-bytes.
The optional semicolon (;) terminator is only available for IRIS
applications eliminating the automatic record-lock applied to the
supplied record in the chn.expr. Applications may also utilize MAT
RDLOCK # for operations with locking, and MAT READ # for non-
locking transfers.
If the application is an IRIS program, the supplied (or current) byte
displacement is rounded up to an even byte position within the file.
If the transfer is to a Formatted Item file, the item type may be String
or Binary for any str.var in the list, or Binary or Numeric for any
numeric variable. The byte displacement specifies the starting item for
the transfer. If not specified, item zero is assumed. No conversion
takes place during the transfer of a binary item. It is the program's
responsibility to maintain the correct precisions of numerics being
MAT READ# from the file.
If the transfer is to a Contiguous or Tree-structured Data file, the byte
displacement specifies the starting byte within the supplied record.
Zero is assumed if no byte displacement is given. If the program is an

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 243 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

IRIS program, any given byte displacement is rounded up to an even
value prior to transfer. Attempting to MAT READ# at byte
displacement one, automatically rounds up to two, for example.
If the transfer is to a text file, the entire string is read and no
conversions of returns to new-lines is performed. Each transfer will
read a fixed number of bytes. When printing text data that was MAT
READ#, append a semicolon (;) to the PRINT statement to prevent
the insertion of automatic return/line-feeds.
Each item transferred causes the byte displacement to be incremented
by the adjusted byte size of the item in the var.list. Strings are sized
by the algorithm (INT((d+1)/2)*2), where d is the DIMensioned or
subscripted size. num.vars, arrays and matrices are sized as: (R+1) *
(C+1) * (size of P) where R is the number of rows, C is the number of
columns, and P is the number of bytes occupied by precision P.

EXAMPLES
MAT READ #3,R1,100;A,B$,C[12]

MAT READ #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not OPEN

See also
Numeric, Array and Matrix Variables, Channel Expression, MAT
WRITE#, READ#, Numeric Data, Numeric Variable Precision,
Formatted Item Files, Contiguous Files, Text Files

MAT WRITE #

SYNOPSIS
Write array, matrix or string to a channel.

SYNTAX
MAT WRITE #chn.expr; var list...{;}

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file
from which to write data.
The var list is any list of variables: num.var, array.var, mat.var or
str.var.
MAT WRITE # transfers data from any var, mat.var, array.var or
str.var to the file opened on the supplied chn.expr. The operation is
similar to a WRITE # statement, except that an entire array or matrix
is transferred; including row and column zero elements. If the
specified var is a string, its entire specified length is transferred

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 244 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

including zero-byte terminators.
If the variable in the list is an array.var, an optional subscript1 and
subscript2 may be specified. If given, these are evaluated, truncated to
integer and used to select a new working size for the array. The total
number of elements in the new size cannot exceed that of the old size.
A single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original
DIMensioned size. For example, a [4,4] matrix has 25 actual
elements and could be re-declared as array[24].
Any array created by a MAT statement with a single dimension
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.
If the variable in the list is a simple num.var, the transfer size is
controlled by the DIMensioned size and precision
If the variable in the list is a str.var, its size may be controlled by
subscripts. The transfer size is rounded up to an even number of
bytes. Either an even or odd subscript may be specified. The address
for the start of the transfer within the str.var is not changed. If an odd
number of bytes is specified in the subscript (such as svar[2,2]), the
size is rounded up to an even number of bytes resulting in the transfer
of 2 bytes into svar[2,3] in this example. All characters are
transferred including zero-bytes.
The optional semicolon (;) terminator is only available for IRIS
applications eliminating the automatic record-lock applied to the
supplied record in the chn.expr. Applications may also utilize MAT
WRLOCK # for operations with locking, and MAT WRITE # for
non-locking transfers.
If the application is an IRIS program, the supplied (or current) byte
displacement is rounded up to an even byte position within the file.
If the transfer is to a Formatted Item file, the item type may be String
or Binary for any str.var in the list, and Binary or Numeric for any
numeric variable. The byte displacement specifies the starting item for
the transfer. If not specified, item zero is assumed. No conversion
takes place during the transfer of a binary item. It is the programs
responsibility to maintain the correct precisions of numerics being
MAT READ from the file.
If the transfer is to a Contiguous or Tree-structured Data file, the byte
displacement specifies the starting byte within the supplied record.
Zero is assumed if no byte displacement is given. If the program is an
IRIS program, any given byte displacement is rounded up to an even
value prior to transfer. Attempting to MAT WRITE at byte
displacement one, automatically rounds up to two, for example.
If the transfer is to a text file, the entire string is written and no
conversions of returns to new-lines is performed. Caution must be
exercised to prevent the writing of zero-bytes which terminate a text
file. Use MAT WRITE# with subscripts such as [1,LEN(str.var)].

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 245 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Each item transferred causes the byte displacement to be incremented
by the adjusted byte size of the item in the var.list. Strings are sized
by the algorithm (INT((d+1)/2)*2), where d is the DIMensioned or
subscripted size. num.vars, arrays and matrices are sized as: (R+1) *
(C+1) * (size of P) where R is the number of rows, C is the number of
columns, and P is the number of bytes occupied by precision P.

EXAMPLES
MAT WRITE #3,R1,100;A,B$,C[12]

MAT WRITE #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not open
Write Protected File

See also
Numeric, Array and Matrix Variables, Channel Expression, MAT
READ#, WRITE#, Numeric Data, Numeric Variable Precision,
Formatted Item Files, Contiguous Files, Text Files

MAT WRLOCK #

SYNOPSIS
Write an array, matrix or string with locking.

SYNTAX
MAT WRLOCK #chn.expr; var.list...

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file
from which to write data.
MAT WRLOCK # transfers data from any var, mat.var, array.var or
str.var to the file opened on the supplied chn.expr. The operation is
similar to a WRITE # statement, except that an entire array or matrix
is transferred; including row and column zero elements. If the
specified var is a string, its entire specified length is transferred
including zero-byte terminators.
If the variable in the list is an array.var, an optional subscript1 and
subscript2 may be specified. If given, these are evaluated, truncated to
integer and used to select a new working size for the array. The total
number of elements in the new size cannot exceed that of the old size.
A single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original
DIMensioned size. For example, a [4,4] matrix has 25 actual
elements and could be re-declared as array[24].

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 246 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Any array created by a MAT statement with a single dimension
assumes a second dimension of one. For example, MAT C= ZER[15]
and MAT C = ZER[15,1] are equivalent.
If the variable in the list is a simple num.var, the transfer size is
controlled by the DIMensioned size and precision.
If the variable in the list is a str.var, its size may be controlled by
subscripts. The transfer size is rounded up to an even number of
bytes. Either an even or odd subscript may be specified. The address
for the start of the transfer within the str.var is not changed. If an odd
number of bytes is specified in the subscript (such as svar[2,2]), the
size is rounded up to an even number of bytes resulting in the transfer
of 2 bytes into svar[2,3] in this example. All characters are
transferred including zero-bytes.
If the application is an IRIS program, the supplied (or current) byte
displacement is rounded up to an even byte position within the file.
MAT WRLOCK # transfers data and unconditionally locks the
record. The data record remains locked until a non-locking operation
is performed by that same program to the same channel. While a
record is locked, other users will be unable to access the record.
MAT WRLOCK# is used by BITS applications and is identical to an
IRIS MAT WRITE# omitting the trailing semicolon.
See the MAT WRITE# statement for details on the transfer of data.

EXAMPLES
MAT WRLOCK #3,R1,100;A

MAT WRLOCK #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not open
Write Protected File

See also
Numeric, Array and Matrix Variables, Channel Expression, MAT
READ#, WRITE#, Numeric Data, Numeric Variable Precision,
Formatted Item Files, Contiguous Files, Text Files

MODIFY

SYNOPSIS
Change filename or attributes/permissions.

SYNTAX
MODIFY filename.expr

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 247 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DESCRIPTION
The filename.expr is any string expression containing a source
filename to be operated upon, and either new attributes or destination
filename.
The source filename specifies the file to be changed. The destination
filename, if included, selects a new name or location for the source
filename. MODIFY utilizes the UNIX mv command to rename or
relocate the source filename. Commands in the following form are
passed to the system:

mv source destination

mv SOURCE DESTINATION (If file Indexed)

For an Indexed Data File, two commands are issued; lower-case for
the data portion, and uppercase for the ISAM portion.
If the file is a Universal Indexed Data File, two cp commands are
performed; one for the data portion (filename), and one for the ISAM
portion (filename with an .idx extension).
If the source filename contains a lu or directory specifier, these must
also precede the destination filename or the source filename is
relocated to the current working directory.
attribute string may be expressed as a 2-digit IRIS protection code, 3-
digit Unix permission, or as a set of attribute letters. Either the IRIS
or Unix types may also include Supplemental Protection Attribute
letters preceding the numeric protection digits.
(Release 9.1) Can be used with encrypted files without an encryption
key.

EXAMPLES
MODIFY "2/FILE 23/OLDFILE"! Move the file

MODIFY "PAYROLL <77>"

A$= "JUNK" \ MODIFY A$+"<E666>"

ERRORS
File does not exist
File is Read Protected
File already exists; use '!' to replace

See also
Filenames and Pathnames, File Attributes, Protection and
Permissions, Using IRIS Protections, Using Unix Permissions, BITS
Attributes, Supplemental Protection Attributes

NEXT

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 248 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Continuation of FOR Loop Statement.

SYNTAX
NEXT num.var

DESCRIPTION
num.var is any numeric variable previously used as the index variable
for a FOR statement.
The NEXT statement is used to indicate the logical end of a program
loop using FOR/NEXT.
The NEXT statement must have been preceded by execution of a
FOR statement defining the parameters of the loop. Nested
FOR/NEXT loops are paired based on the num.var used as the index
variable.
Upon execution of the NEXT, the loop’s step value is added to the
index. If the new index exceeds the loop’s final value, normal program
execution resumes at the statement following the NEXT; otherwise,
the index value is updated by the step and execution reverts back to
the statement following the associated FOR. If a step was not
specified on the associated FOR statement, one is assumed.
When a loop terminates in IRIS applications, the index variable
contains the first value not used within the loop. BITS applications
terminate a loop with the last value actually used as a loop value.
In immediate mode, a NEXT statement is only executable on a multi-
statement beginning with FOR, i.e.:

FOR I=1 TO 10 \ PRINT I \ NEXT I

EXAMPLES
NEXT J7

ERRORS
NEXT without a matching FOR

See also
FOR, FORNEXTNEST

ON

SYNOPSIS
Conditional branch on value of expression.

SYNTAX
ON num.expr GOTO stn list
ON num.expr GOSUB stn list

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 249 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DESCRIPTION
The num.expr is any numeric expression which, after evaluation is
truncated to an integer n. The program will then branch to the nth stn
in the given stn list. If no stn corresponds to n, then execution
continues with the statement following the ON.
GOTO and GOSUB work precisely as their singular counterparts.
Branching will be to the first sub-statement of the statement number
given, and the statement must exist.

EXAMPLES
ON Q GOTO 200,300,400,500,600

ON (SGN(A)+2) GOTO 300,450,1000 ! Neg, Zero, Pos

ON (A/100) GOSUB 600,750,840,950

ERRORS
No such Statement Number
GOSUBS nested too deep

See also
GOTO, GOSUB, GOSUBNEST

OPEN #

SYNOPSIS
Open a File for Read and Write Access.

SYNTAX
OPEN #channel, filename.expr { ,#channel } ...

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an
integer and used to select a channel number.
filename.expr is any str.expr containing a filename (including a path)
to be opened for read and write access to the program.
The OPEN statement links a selected file or device to the specified
channel. The file must already exist on the system or an error is
generated.
Multiple str.expr's may be specified to open several files on successive
channel numbers. Any new channel number (#channel) in the
filename list will cause assignment of channels to continue from that
number.
In IRIS applications, if the specified channel is already in use, a
CLOSE statement must be performed prior to an OPEN.
Most files to which a user has access may be opened. The same file

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 250 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

may be simultaneously opened by other users, and may be opened on
more than one channel. If a file is already opened for exclusive access
via EOPEN by another process, an error is generated. IRIS
applications may not OPEN a saved BASIC program for access.
OPEN will link the selected file for read/write access and update each
file’s last access date.
A file may not be OPEN if it, or its directory does not have read
permission for the user requesting access. If the file is read-only to the
user, an implied ROPEN is performed and only read operations are
allowed.
A BITS application may OPEN a file on a channel that is already
opened for a different file. An implied CLOSE is performed prior to
opening the selected file.

EXAMPLES
OPEN #1,"12/DATAFILE","FILE2",#4,"/usr/path/AR.CHECK"

OPEN #3,"$LPT",L$+A$!EXPRESSION IS LU+FILENAME

OPEN #D,""

ERRORS
File does not exist
Not a Data File, cannot OPEN or Replace
File is in use and Locked
Channel is already OPENed and in use

See also
CLOSE, ROPEN, EOPEN, Filenames and Pathnames, Directories
and Paths, Channel, LUST

PAUSE

SYNOPSIS
Suspend Program Operation.

SYNTAX
PAUSE delay

DESCRIPTION
The delay is any numeric expression which, after evaluation is
truncated to an integer and used to specify a delay in program
operation. The delay is limited to an integer between 0 and (232)-1
representing the number of tenth-seconds to delay.
This is the most accurate method of pausing the execution of a
program. Other methods, such as finite program loops, will be
affected by the current usage of the system and most likely yield

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 251 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

varying results.
The program is unconditionally suspended for the number of tenth-
seconds specified in delay. An [ESC] without ESCape branching or
[EOBC] terminates a pause. If the application has an INTSET
defined, the [INTR] (CTRL+C) or [SIGNAL] (CTRL+B) will
terminate the pause and perform the branch.

EXAMPLES
PAUSE 30

PAUSE FNA(Q7)

PAUSE A*10

ERRORS
Function argument of Statement mode out of range

See also
SIGNAL 3, HZ Environment Variable

PORT

SYNOPSIS
Attach and control other ports.

SYNTAX
PORT port, mode, status var { , (command str | acnt | return value)}

DESCRIPTION
port is any num.expr which, after evaluation is truncated to an integer
and used to select a port number to attach and effect a command.
mode is any num.expr which, after evaluation is truncated to an
integer and used to select an operation for port. There are 4 modes:
Mode Operation Performed.
 0 Attach selected port
 1 Place an attached port in command mode
 2 Transmit a command string to an attached port
 3 Return an attached port’s operational status
status is any num.var used to return the exception status of the
operation. The meaning of the status depends upon the mode selected.
command str is any str.var used for mode 2 to send the command to
the specified port.
acnt is any num.expr which, after evaluation is truncated to an integer
and used to select a different account for the attached port when using
mode 0. The account should be expressed as G*256+U, where G and

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 252 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

U are the desired group and user numbers respectively. It’s use is
restricted: a group manager may attach only accounts within his own
group, root may attach any account. All other users may only attach
their own account. The Group and User numbers must be in the range
0 to 255. If not specified, the group and user id of the program
executing the attach is set.
return value is any num.var used to return the operation status of the
specified port for mode 3.
The PORT statement allows a port to be attached to a program. Once
attached, commands may be transmitted to the port for normal
processing, and the current status or state of the attached port can be
controlled and monitored. If the attached port has a keyboard, it may
be used as any other normal terminal. However, commands
transmitted will override any current keyboard operation.

Mode 0—Attach Selected Port

A PORT Mode 0 statement must be issued once for each port being
attached. Once attached, the port remains so until signed-off (sending a
BYE command or executing SYSTEM 0 to the port).
PORT Mode 0 begins by attempting to attach the port. If the port is
already running under UniBasic, the attach operation is complete and
successful.
If the port is not currently signed onto UniBasic, a background process is
created as the supplied port number. It assumes the caller’s environment
and current working directory. It then becomes a unique process linked to
the supplied port number. This port is then available for CALL $TRXCO
commands, PORT, SEND, RECV, and SIGNAL statements from any
other UniBasic user as well as the program performing the initial PORT
mode 0.
When sending commands to a port which is connected to a terminal and
keyboard, you must ensure that port is already running UniBasic before
sending commands. Otherwise, a phantom port is created for the supplied
port number. If a user later attempts entry into UniBasic on a terminal
designated as being the same port number, entry into UniBasic will be
rejected if PORT or PORTS is defined for that port number.

Note: It is impossible to create a phantom port from a child program.

Upon completion, the status variable is set to indicate:
0 Successful, port is now attached.
1 The selected port is already logged-on to the system and in-use.
2 All available ports are already in use. In some configurations, the

allowed number of concurrent users is set less than the actual

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 253 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

number of ports configured. This indicates that either another port
or phantom port must be signed-off, or the number of concurrent
users increased on your license.

3 Illegal account number selected. The selected group or user number
is out of the range 0-255.

Mode 1—Place an Attached Port in Command Mode

PORT Mode 1 sends an ESCape Override Character [EOBC] to the
selected port, terminating any running program and placing the port into
command mode.
Upon completion, the status variable is set to indicate:
0 Successful, the selected port is now in command mode.
1 The select port is not attached.

Mode 2—Transmit Command String to Attached Port

PORT Mode 2 requires that a command str be supplied following the
status variable. The string data in command str is then transmitted to the
selected port. This command str may contain any legal command input for
a terminal. It’s entire length may not exceed the port’s input buffer size as
defined by the environment variable INPUTSIZE. This is generally 256
characters. Any command, such as NEW, LIST, BYE, RUN, etc., may be
transmitted, as well as program statements. If a terminal is connected to
the attached port, the command str is echoed as it is processed on the
attached port. An attached port connected to a terminal may also receive
commands from its keyboard.
A command.str cannot be transmitted unless the attached port is in an
'input ready' state. A PORT Mode 3 status check is suggested prior to
sending a command.
Upon completion, the status variable is set to indicate:
0 Successful, command transmitted and accepted.
1 The selected port is not attached.
2 The selected port is not in an ‘input ready’ state.

Mode 3—Return Attached Port’s Operational Status

PORT Mode 3 requires that a return value be supplied following the
status variable. This variable will receive a value indicating the port’s
operational status. A PORT Mode 3 should always precede any mode 2
command transmission to check for 'input ready'. It may also be used to
monitor the current state of the attached port.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 254 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

0 Successful, operational status returned.
1 The selected port is not attached.
The value returned as the operational status consists of a mode, an 'Input
Ready' flag, and an 'Output in Progress' flag.
This value may be divided into its respective parts as follows:
Assume X = value returned by PORT mode 3.

IF X>32767 THEN 'Input Ready' on attached port.

The 'Input Ready' flag must be removed from the value prior to testing
the 'Output in Progress' flag, since both input and output may be in
progress.

IF X>32767 THEN X=X-32768 \! Remove flag.

IF X>16383 AND X<32768 THEN 'Output in Progress'

The attached port’s current mode can be determined by:
LET M=X % 16 \! Retrieve mode.

Mode Current State
0 Idle. At command mode or logged-off.
1,2 Command input or execution.
3 Run. Program execution in progress.
4,5 List. Program listing in progress.
6 Statement execution in immediate mode.
7 Get. Program being loaded from text file.
8 Initial Run. Becomes mode 3.
9,10 Enter. Program statement entry using ENTer.

EXAMPLES
PORT 8,0,S \ IF S STOP ! ATTACH & CHECK STATUS

PORT P,1,S \ IF S STOP ! ABORT & GET READY

PORT P*2,2,E,C$[50] \ IF E STOP ! SEND COMMAND

PORT X,3,Y,Z \ IF Y STOP ! GET CURRENT MODE&STAT

ERRORS
Function Argument or Statement Mode out of range

See also
CALL $TRXCO, SWAP, SPAWN, Environment Variables: PORT,
PORTS and INPUTSIZE, Port Numbering & Phantom Ports, Launching
UniBasic ports at startup

PRINT

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 255 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Output ASCII to screen, file or device.

SYNTAX
PRINT {#chn.expr;} { USING format } var.list

DESCRIPTION
PRINT may be abbreviated by the single character ;.
The optional #chn.expr is any legal channel expression selecting an
open channel to re-direct output.
The optional USING format is str.expr including a valid USING
Operator allowed for numeric formatting.
The var.list consists of variables, literals, or expressions; numeric or
string. Each item in the var.list must be separated by either a comma
(,) or a semicolon (;). A comma performs a TAB to the next comma
field before output of the next item. This is generally 20 characters
long, but may be changed by the setting of the environment variable
TABSIZE. A semicolon prevents additional spacing in the output.
Numerics are output preceded by a '-' or space indicating negative or
positive, and followed by one space (The STR function may be used
to omit leading and trailing spaces). Strings are output exactly as
stored, from the supplied starting position terminating at the first zero-
byte terminator. No preceding or trailing spaces are output.
When all items in the var.list are output, a new-line is output to
advance the terminal to the next line (or mark end of line in a text
file). This can be suppressed by using a comma or semicolon as the
last character in the PRINT statement. In the case of a comma, a TAB
is still performed.
The USING operator formats numeric data for columnar output. It
may also be used to imbed commas, asterisk check fill, floating dollar
signs and other special output formats. It must be after any chn.expr
and before the var.list, and only one is allowed per statement. For
additional information, see the string operator USING.
An output column counter (base zero) is maintained for each terminal
holding the current character position on the output line. This counter
is reset anytime the [EOL] is output (usually a return) or a @0,y
cursor positioning operation is performed.
The TAB function is used to skip the terminal to a specific column. Its
form is:

TAB (num.expr)
The num.expr must be a positive value in the range 0 to 255 or an
error will be generated. The value is truncated to an integer and set to
zero if it is greater than 255 and less than 32768. A TAB to a position
less than the current position is ignored. A TAB is performed by
generating the required number of spaces to skip to the desired
position.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 256 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

After all items in the var.list are placed into the terminal buffer, it is
flushed immediately. No SIGNAL 3,0 is required to start output, and
is ignored if executed.
If a chn.expr is specified for PRINT, the output is redirected to the
selected channel. If the channel is not open, output is transmitted to
the terminal. This allows a program to selectively output to the
terminal or a printer by including an OPEN of the printer pipe on the
selected channel. A separate output column counter is maintained for
each channel opened, so that the TAB and comma operator will
operate on applications doing both screen and file output operations.
PRINT # is generally used to output to a text file, or pipe such as a
line printer. The most common form used for output to a line printer
is:

PRINT #chn.expr; var.list
The optional record, byte displacement and time-out specifications of
a chn.expr are normally unused, as line-oriented data is generally of
variable length. Each successive PRINT # continues its transfer
immediately following the previous, unless a new record or byte
displacement is specified.

EXAMPLES
PRINT "AVAILABLE";TAB(40);A*100;"$";Z

;@0,23;’CL’;"Error in Program";

PRINT #K; USING T$;X,Y,Z,Z/10

ERRORS
Function Argument is out of range
Write Protected file

See also
TAB Function, Numeric and String Expressions, TABSIZE, Channel
Expression, STR Function, String operator USING

RANDOM

SYNOPSIS
Seed random generator for RND function.

SYNTAX
RANDOM num.expr

DESCRIPTION
The num.expr is evaluated, truncated to a positive integer and used to
seed the system’s pseudo-random number generator. Seeding implies
that a sequence is selected and initiated based on the value supplied.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 257 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Each value from 1 to 65535 will select a unique pseudo-random
sequence for the RND function. A seed value of zero selects a further
random sequence based upon the current system time, yielding 36000
different sequences.
Typically, a non-zero seed value is used during program debugging,
causing the RND function to yield the same sequence of numbers
with each successive run. Once the program is completed, a
RANDOM 0 is issued to produce better random selection.

EXAMPLES
RANDOM 5

RANDOM 0

RANDOM ((N*100)/E^2)

ERRORS
Arithmetic Overflow
Function argument or Statement Mode out of range

See also
RND function

RDLOCK #

SYNOPSIS
Read and unconditionally lock a record.

SYNTAX
RDLOCK #chn.expr; var.list...

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file
from which to read data.
RDLOCK # transfers data into any var, mat.var, array.var or str.var.
If the variable in the list is an array.var, an optional subscript1 and
subscript2 may be specified. If given, these are evaluated, truncated to
integer and used to select a single element. If no subscripts are
supplied, only the first element is transferred.
If the variable in the list is a simple num.var, the transfer size is
controlled by the DIMensioned size and precision.
If the variable in the list is a str.var, its size may be controlled by
subscripts. All characters are transferred including zero-bytes.
RDLOCK transfers data and unconditionally locks the record. The
data record remains locked until a non-locking operation is performed
by that same program to the same channel. While a record is locked,
other users will be unable to access the record.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 258 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

RDLOCK# is identical to READ# omitting the trailing semicolon.
See the READ# statement for details on the transfer of data to
different types of files.

EXAMPLES
RDLOCK #3,R1,100;A

RDLOCK #C,R;A$

ERRORS
Syntax error
Channel is not Opened

See also
READ#

RDREL #

SYNOPSIS
Read a relative 512-byte block from a file.

SYNTAX
RDREL # chn.expr; str.var

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file
from which to read data. The chn.expr must include a record which is
used to define the relative block within the file to read. The byte
displacement and time-out expressions are ignored and unnecessary.
The str.var is any string variable DIMensioned at least 512 bytes. A
starting subscript may be supplied as long as the DIMensioned size is
at least 512 bytes larger than the supplied subscript.
RDREL uses the supplied record as a relative 512 byte block pointer
into the file. For example, record 0 specifies the first 512 bytes in the
file, record 1, the second 512 bytes, etc.
Record -1 may be used to load the first 512 bytes of the file. This
includes the header and possibly part of record 0. Some headers (of
formatted item files) may be larger than 512 bytes and may not be
read in entirety. To retrieve header information in a truly machine
independent fashion, it is recommended that CALL 127 be used to
unpack the information. RDREL # of record -1 is used to change
header information by conversion and other utilities.
RDREL is generally used to copy files or otherwise read portions of
files not accessible with a normal READ# statement. Processing of
the data is left completely up to the user.

EXAMPLES

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 259 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

RDREL #7,K;A$! READ A BLOCK

RDREL #7,K+1;A$[513] ! APPEND A SECOND BLOCK

ERRORS
Channel Not Opened
llegal Record or End of File

See also
WRREL#

READ

SYNOPSIS
READ variables from DATA statements.

SYNTAX
READ var.list

DESCRIPTION
The var.list contains any num.var, array.var, mat.var or str.var names.
An array.var or mat.var with subscripts specifies only that single
element. Omission of a subscript selects only the first element.
READ begins transferring data sequentially from the lowest
numbered DATA statement found in the program. Subsequent READ
statements resume transfer at the next element of the DATA
statement. After all of the items in a given DATA statement have been
read, reading continues with the next highest numbered DATA
statement. When all DATA statements have been read, any
subsequent READ will produce the error Out of Data. The RESTOR
statement can be used at any time to start reading from a specific
DATA statement.
READ attempts to transfer data into each variable listed in the
var.list. Transfer of a variable terminates at a comma (,) or at the end
of the DATA statement. The format of the data is left to the user. You
may not transfer string data into any numeric variable. Generally,
string items need not be enclosed in quotes (" "), but can be if desired.
Quotes will be necessary if it is desired to include a comma inside a
string item.

EXAMPLES
READ A,B,D[10],A[4,4]

READ A$

ERRORS
Out of Data
String Variable is not Dimensioned

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 260 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Illegal Subscript Supplied
Data of wrong type (numeric/string)

See also
DATA, RESTOR, MAT READ, String Data and Literals, Numeric,
Array and Matrix Variables, Variable Names

READ #

SYNOPSIS
Read array, matrix or string from a channel.

SYNTAX
READ #chn.expr; var list...{;}

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file
from which to read data.
READ # transfers data into any var, mat.var, array.var or str.var.
If the variable in the list is an array.var or mat.var, only the first
element ([0] or [0,0]) is read. Subscripts may be used to select any
individual element to be transferred. The number of bytes transferred
is based upon the variable's dimensioned size. The transfer is
performed according the rules for a num.var.
If the variable in the list is a simple num.var, the transfer size is
controlled by the DIMensioned size and precision.
If the variable in the list is a str.var, its size may be controlled by
subscripts. The entire size is then transferred including zero bytes.
When no subscript, or a single subscript, is specified, IRIS programs
increment the total number of bytes transferred. When reading from a
contiguous formatted file only, READ will stop at the first null byte in
a record, preserving the existing data within the string variable.
The optional semicolon (;) terminator is used by IRIS applications to
eliminate the automatic record-lock applied to the supplied record in
the chn.expr. BITS applications utilize RDLOCK # for operations
with locking, and READ # for non-locking transfers.
If the running program is an IRIS program, the following steps are
performed prior to transfer:

1. If the variable to be transferred is a num.var, array.var, or
mat.var, the supplied (or current) byte displacement is
rounded up to an even byte position within the file.

2. If a full str.var is supplied (single or no subscript), its size is
incremented by one to account for an extra null byte (A null
will be forced into the last position following the transfer).
Finally, if the transfer is from a text file, an error is generated

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 261 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

if any num.var is supplied.
If the transfer is to a Formatted Item file, the item type may be String
or Binary for any str.var in the list, and Binary or Numeric for any
num.var, array.var, or mat.var. The byte displacement specifies the
starting item for the transfer. If not specified, item zero is assumed.
No conversion takes place during the transfer of a binary item. It is
the program's responsibility to maintain the correct precisions of
numerics being READ from the file.
If the transfer is to a Contiguous or Tree-structured Data file, the byte
displacement specifies the starting byte within the supplied record.
Zero is assumed if no byte displacement is given, and IRIS programs
round up the byte displacement if odd on a numeric variable transfer.
If the transfer is from a text file (IRIS Programs only), data is read up
to and including the next new-line character in the file. The new-line
is converted and stored in the string as a \215\ for compatibility. A
null string is returned when the end of a text file is reached.
Each item transferred causes the byte displacement to be incremented
by the adjusted byte size of the item in the var.list. Strings are sized
by the algorithm (INT((d+1)/2)*2), where d is the DIMensioned or
subscripted size. num.vars, arrays and matrices are sized as: (R+1) *
(C+1) * (size of P) where R is the number of rows, C is the number of
columns, and P is the number of bytes occupied by precision P.

EXAMPLES
READ #3,R1,100;A,B$,C[12]

READ #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not open

See also
Numeric, Array and Matrix Variables, Channel Expression,
WRITE#, MAT READ#, RDLOCK#, Numeric Data, Numeric
Variable Precision, Formatted Item Files, Contiguous Files, Text Files

RECV

SYNOPSIS
Receive communication message.

SYNTAX
RECV port, (string | value1, value2) {, delay }

DESCRIPTION
port is any num.var to receive the sender's port number, or -1 if no

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 262 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

messages are waiting for your port.
string is any str.var up to 512 bytes in length to receive a string
message.
value1 and value2 are any two num.vars to receive 2 numeric
messages. If the second parameter is a num.var, two numeric
variables must be specified. Their two values are then received. The
two variables need not be the same precision.
The optional delay is any numeric expression which, after evaluation
is truncated to an integer to specify a delay period (in tenth-seconds)
during which the program awaits a message. If zero, or not included,
no pause is invoked, but any currently waiting message will be
received. Any message appearing during a specified delay allows
RECV to accept the transmitted data and resume program execution
immediately. If no message appears during the entire delay, port is set
to -1.
If the program has an INTSET branch enabled, any message sent to
your port will cause a branch to the selected statement. The interrupt
handling routine can then perform a RECV to receive the message.
RECV is identical in operation to SIGNAL 2.

EXAMPLES
RECV P,A,B,600 ! Wait 60 seconds

RECV P,A$

ERRORS
Arithmetic Overflow

See also
SIGNAL, SEND, INTSET

REM

SYNOPSIS
Non-executed Program Comments.

SYNTAX
REM any ASCII characters

DESCRIPTION
The REM statement allows the placement of comments within a
program. A REM statement is ignored during execution, but may be
referenced within the program.
When REM statements are entered, all characters following the REM
up to the [EOL] (usually return) are considered the comment. This
includes leading and trailing spaces and control characters.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 263 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

A ! may be used to abbreviate the verb REM during entry. During
listing, REM is listed if it is the first statement of the line, otherwise !
is displayed. When a REM statement is processed during program
execution, the statement is ignored. Branching (GOTO, GOSUB,
etc.) to REM statements is acceptable with little program overhead.
Note that, since all characters following a REM are considered part of
the REM, the REM is always the last statement on it’s line.

400 PRINT A \ REM OUTPUT TOTAL \ GOTO 200

Line 400 outputs the value of A and continues with the next program
line. The "GOTO 200" is considered to be part of the comment.

EXAMPLES
REM Request input of customer name

GOSUB 1000 ! Go receive response

ERRORS
none

RESTOR

SYNOPSIS
Reset DATA pointer for READ Statement.

SYNTAX
RESTOR {stn}

DESCRIPTION
RESTOR may also be entered as RESTORE.
RESTORE resets the DATA statement pointer to the first data item
of the first DATA statement in the program, just as when the program
started.
Including an optional stn sets the pointer the first data item of the first
DATA statement encountered at or past that stn.
If no further DATA statements are found, the pointer will be set to
return an "Out of DATA" error during the next READ.

EXAMPLES
RESTOR

RESTORE 2200

ERRORS
No such statement number
Out of Data

See also

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 264 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DATA, READ

RETURN

SYNOPSIS
Return from prior GOSUB subroutine call.

SYNTAX
RETURN {(+ | -) increment }

DESCRIPTION
The optional increment is any num.expr which, after evaluation is
truncated to an integer to specify an offset forward or backward (+ or
-) from the normal RETURN.
The RETURN statement is used with GOSUB and indicates the end
of a program subroutine.
A normal RETURN (or RETURN +0) resumes execution at the
statement following the matched GOSUB. A value of +1 would
branch to the second statement following the GOSUB (the first
statement past a normal RETURN). A value of -1 would branch to
the statement of the GOSUB itself.
BITS programs treat GOSUB and RETURN as line rather than
statement oriented functions. A normal RETURN resumes execution
at the next line of a program; that is subsequent statements on the
same line as the GOSUB are ignored. -1 is used to re-execute the line
containing the GOSUB and +1 skips the line following. A special
RETURN + 0 returns within a multi-statement line to the statement
following the GOSUB, if any. Typical BITS applications performing
GOSUB on multi-statement lines use RETURN +0 for an error
condition, and normal RETURN {+ - } as normal exits.

EXAMPLES
RETURN

RETURN +1

ERRORS
RETURN without prior GOSUB

See also
GOSUB, GOSUBNEST

REWIND #

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 265 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Reset a file to the first data byte.
SYNTAX

REWIND # channel {, ...}
DESCRIPTION

channel is any num.expr which, after evaluation is truncated to an
integer and used to select a channel number.
Multiple #channel designations are permitted separated by comma.
The REWIND statement resets the selected channel's current file
position to the beginning of the file. The position is reset to record 0,
byte displacement 0. If the next file transfer does not specify a record
or byte displacement, the transfer will start at the first data byte of the
file.
The effect of REWIND is to reset the current file position as when
the channel was initially opened. REWIND is typically used with
Text Files accessed sequentially.
A REWIND operation is ignored when issued to a channel linked to a
pipe.
REWIND is identical in operation to SETFP #channel, 0, 0 ;

EXAMPLES
REWIND #T, #7, #(J*2)

ERRORS
Channel Not Opened

See also
Text Files, SETFP#

ROPEN #

SYNOPSIS
Open a file for Read-Only access.

SYNTAX
ROPEN #channel, filename.expr { ,#channel } ...

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an
integer and used to select a channel number.
filename.expr is any string expression containing a pathname, or
filename to be opened for read-only access to the program.
The ROPEN statement links a selected file or device to the specified
channel. The file must already exist on the system or an error is
generated.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 266 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Multiple filename.expr's may be specified to open several files on
successive channel numbers. Any new channel number (#channel) in
the filename list will cause assignment of channels to continue from
that number.
In IRIS applications, if the specified channel is already in use, a
CLOSE statement must be performed prior to an ROPEN .
Most files to which a user has access may be opened. The same file
may be simultaneously opened by other users, and may be opened on
more than one channel.
A file may be opened for read-only using ROPEN even if it is already
opened for exclusive access via EOPEN. IRIS applications may not
ROPEN a saved BASIC program for access.
ROPEN will link the selected files for read-only access without
updating its last access date. In addition, a file opened for read-only
may read records locked by other applications making this statement
especially valuable for reports and general inquiries.
A file may not be ROPEN if it, or its directory does not have read
permission for the user requesting access.
A BITS application may OPEN a file on a channel that is already
opened for a different file. An implied CLOSE is performed prior to
opening the selected file.

EXAMPLES
ROPEN #1,"DATAFILE","FILE2",#4,"AR.CHECK"

ROPEN #3,"$LPT",L$+A$!EXPRESSION IS LU+FILENAME

ERRORS
File does not exist
Not a Data File, cannot OPEN or Replace
Channel is already OPENed and in use

See also
CLOSE, EOPEN, Filenames and Pathnames, Directories and Paths,
Channel

SEARCH

SYNOPSIS
Search string for sub-string.

SYNTAX
SEARCH source, target, location

DESCRIPTION
source and target are any str.exprs.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 267 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

location is any num.var to contain the byte position of the target
within the source, or zero if not found.
source is searched for the first occurrence of target. If found, location
is set to the character position of the located substring. If not found, a
zero is returned. If the source being searched is a single str.var, it may
include a starting subscript if desired, and searching begins at the
selected position. Note however that any position returned will be
relative to this starting position.
When performing multiple SEARCH operations on a single string, it
is best to initialize a num.var to 1; adjusting for each located identical
sub-string.

290 LET J=1

300 SEARCH T$[J],"H-",R

310 IF R THEN LET J=(J+R)-1

Here, location is adjusted for the offset caused by a starting subscript.
If the substring is not found, location is returned as zero. The
adjustment needed for any given starting subscript 'A' can be defined
as:

actual position in string = starting subscript + location - 1
SEARCH performs a 7-bit comparison on both strings. This means,
for example, that a \15\ code is considered equal to a \215\ code.
Searching terminates when a null byte is encountered in the source
str.expr. Entry of the verb SEARCH followed by a # character is
interpreted as an ISAM file SEARCH statement and treated as such.

EXAMPLES
SEARCH P$+A$,".",K

SEARCH A$[J],"TIME",K \ J=J+K-1

ERRORS
String expression must be used here

See also
CALL $STRING, CALL 44, CALL 56

SEARCH #

SYNOPSIS
Indexed File maintenance statement.

SYNTAX
SEARCH #channel , mode , index ; key, record , status

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 268 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

integer, and used to select an opened channel currently linked to an
Indexed Data file.
The mode is any num.expr which, when truncated to an integer,
specifies a mode of operation for the SEARCH statement. For a
detailed list of mode operations, see Indexed Data Files.
The index is any num.expr which, when truncated to an integer,
specifies which Index or Directory (list of keys) the operation is being
directed.
The key is any DIMensioned str.var which must be DIMensioned to
at least the size of the Key for the specified Index.
The record is any num.var and contains (or returns) a value for the
statement mode.
The status is any num.var used to return a status value to the program.
Refer to the following pages for a list of status values and their
meanings.
Parameters may be separated by either a comma or semicolon
terminator.

EXAMPLES
SEARCH #5,4,1;K$,R1,E \ IF E GOTO 1000

E=3 \ SEARCH #J,1,0;K$,R1,E \ IF E GOTO 1000

ERRORS
Selected channel is not open
Illegal parameter or syntax for command
Selected data record is locked
File is not indexed or mapped
Illegal or nonexistent index number selected
File is write protected
Index selected is not yet initialized
Indexed file structure error or svar dim length < Key length

See also
Indexed Data Files, INDEX #, AVAILREC, BUILDXF,
PREALLOCATE, ERR()

Summary of SEARCH # Modes

Mode Operation
 0 Define and Create indices within a Contiguous Data File.
 1 Return miscellaneous index information.
 2 Search for an exact key.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 269 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 3 Search for the next highest key.
 4 Insert a new key into an index.
 5 Delete an existing key from an index.
 6 Search for the previous key (Search Backward).
 7 Unused, included for compatibility.
 8 Maintain the B-Tree insertion algorithm for an index.
 9 Temporarily same as Mode 6 - Reserved for future use.

Detailed Table of SEARCH # Modes

Mode Index Status Operation Performed
 0 1<d<63 For a new Indexed File, sets the key length of the

selected index to the number of bytes specified by
record.var. The maximum key length is 122 bytes.
Indices must be defined starting at one and
proceed sequentially.

 0 0 Freeze the file definition and build the ISAM
portion of the file. Total number of initial data
records is specified by the record.var.

 1 >0 Return the key length of the specified index in
bytes.

 1 0 =0 Returns the record number of the First Real Data
Record. Normally zero unless the file was built
using BUILDXF or copied from an IRIS or BITS
system.

 1 0 =1 Return the number of Available Records in the
file. This value is either the value of the
environment variable AVAILREC, or the value
based upon the files current size.

 1 0 =2 Allocate and return a new record for the
application.

 1 0 =3 Return a record to the file that is no longer
needed. Deleted records will be re-used before the
file is extended.

 1 0 =4 Return in record.var the number of records in the
file. IRIS Applications only; Error for BITS
applications.

 1 0 =5 Return in record.var the number of records in the
file. For BITS applications, performs the same
operation as 4 above.

 1 0 =6 Set the First Real Data Record to the value
supplied in record.var. This option is only

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 270 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

available during file structuring.
 1 0 =7 Return the current number of records in use

(allocated) in the data portion of the file.
 2 Search the specified index for the exact match of

the supplied key.var. If found, return the full key
in the supplied key variable, and the associated
record number in record.var. The status.var is set
to 0 if the key was found, and 1 if the key.var was
not in the index.

 3 Search the specified index for the first key whose
value logically exceeds the supplied key.var. If
found, status.var is set to 0, the full key is
returned in key.var, and the associated record
number is returned in record.var.

 4 Insert key.var into the specified index using the
supplied record.var as the associated pointer. The
record should have been previously allocated
using mode 1, status = 2 above. A status.var of 0
indicates a successful operation. If the key.var
already exists in the index, a 1 is returned as
status.var.

 5 Delete the supplied key.var from the specified
index. If successful, record.var is returned as the
associated pointer, and the status.var is set to 0. A
status.var of 1 indicates an unsuccessful
operation; i.e., the key.var was not found in the
index. The record should be returned to the file
using mode 1, status = 3 above.

 6 Search the specified index for the first key whose
value is logically less than the supplied key.var. If
found, status.var is set to 0, the full key is
returned in key.var, and the associated record
number is returned in record.var.

 7 No operation. Reserved for future use.
 8 B-Tree algorithm maintenance. If record.var is

negative, return in record.var the current B-Tree
algorithm for index. If record.var is positive,
change the insertion algorithm to the value passed
in record.var. Set to zero (default) for random
insertion, 1 for increasing insertion, 2 for
decreasing insertions.

 9 Temporarily, the same as Mode 6. Reserved for
future use.

Table of SEARCH # status return values

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 271 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Value Description of Status
 0 No error, the Index operation was successful.
 1 Operation was unsuccessful; i.e. key not found.
 2 End of index. Given on modes 3, 6 and 9 when the beginning or

end of the index is reached.
 3 End of data; all records are allocated. This error is only generated

when the environment variable PREALLOCATE is defined to
limit the number of data records.

 4 File has no Indices, cannot perform an Indexed File operation.
 5 Indexed file structure error; given when key length DIM is less

than the actual size of the key from an Index on Modes 2, 3, 6 and
9. Indicates a DIMension error or structure problem, possibly a c-
tree file structuring error. Printing the value of ERR(8) will
provide a more concise description of the error.

 6 Index number not in sequence during creation. You must
sequentially define all directories.

 7 File is not a Contiguous File.
 8 File is already Indexed.
 9 Value of record is negative or too large.
 10 Illegal Index Number. Must be between 1 and 62.

SEND

SYNOPSIS
Transmit a message to another port.

SYNTAX
SEND port, (string | value1, value2)

DESCRIPTION
port is any num.expr which, after evaluation is truncated to an integer
selecting a UniBasic port number to receive a message transmission.
string is any str.expr up to 512 bytes in length to transmit to the
selected port.

- or -
value1 and value2 are any two num.exprs to transmit to the selected
port.
If the second parameter is numeric, two numeric expressions must be
specified. Their two values are then transmitted. The two variables
need not be the same precision.
It is up to the program on the receiving port to execute the appropriate

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 272 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

RECV or SIGNAL 2 statement to receive the type (string/numeric)
of data transmitted. If that program has an INTSET branch enabled,
SEND will cause an interrupt to occur in it.
SEND is identical in operation to SIGNAL 1.

EXAMPLES
SEND 12,22,33

SEND P,A$

ERRORS
Illegal Port Number selected
Communication Buffer is full

See also
RECV, SIGNAL, Communications File, INTSET

SETFP #

SYNOPSIS
Set file position for sequential access.

SYNTAX
SETFP # chn.expr ;

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file
to reposition. A semicolon must terminate the chn.expr.
SETFP specifies a new file position on a channel for the next
sequential access READ, WRITE, etc. not specifying a record or
byte displacement. If the next transfer specifies its own record and
byte displacement position, the former position is overridden. The
byte displacement specification is optional and, if not included, will
default to byte zero of the selected record.
For item files, only the record specification is relevant, as byte
position will be affected by the file’s record format when the transfer
begins. SETFP is normally used by BITS applications, since IRIS
sequential transfers are record and not byte oriented.
SETFP to record 0, byte displacement 0 is identical in operation to a
REWIND.

EXAMPLES
SETFP #6,R,I;

SETFP #5,0,0; ! Same as REWIND #5;

ERRORS
Channel Not Opened

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 273 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Illegal Record or End of File
See also

REWIND#, READ#, WRITE#, Formatted Item Files, Contiguous
Data Files, Indexed Data Files, Tree-Structured Data Files, Channel
Expression

SIGNAL

SYNOPSIS
Transmit/Receive messages and pause.

SYNTAX
SIGNAL mode {optional parameters}
SIGNAL 1, port, (string | value1, value2)
SIGNAL 2, port, (string | value1, value2) {, delay }
SIGNAL 3, delay
SIGNAL 5, port, value1, value2 {, delay }
SIGNAL 6, type, value1, value2

DESCRIPTION
The mode is evaluated, truncated to integer, and used to specify the
desired operation for SIGNAL.

Mode Operation Performed
 1 Transmit a message to another port number.
 2 Receive a pending message sent to this port number.
 3 Pause the program a specific amount of time.
 4 unused.
 5 Receive System SIGNAL for Input time-out.
 6 Clear all messages waiting for this port number.

port is any num.expr which, after evaluation is truncated to an integer
selecting a UniBasic port number for transmission. port must be any
num.var if the mode specifies reception of a message.
string is any str.expr when transmitting data, or str.var dimensioned
up to 512 characters when receiving string data from another port.
value1 and value2 are any num.exprs when transmitting data, or
num.vars when receiving numeric data from another port. If the
second parameter is numeric, two numeric expressions must be
specified. Their two values are then transmitted. The two variables
need not be the same precision.
The optional delay for SIGNAL 2 or 5 is any num.expr which, after

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 274 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

evaluation is truncated to an integer to specify a delay period (in
tenth-seconds) during which the program awaits a message. If zero, or
not included, no pause is invoked, but any currently waiting message
is received. Any message appearing during a specified delay allows
SIGNAL to accept the transmitted data and resume program
execution immediately. If no message appears during the entire delay,
port is set to -1.
type is any num.expr which, after evaluation is truncated to an integer
selecting the type of signals to be cleared for mode 6.

The [SIGNAL] input character (usually CTRL+B) transmits a
message of 2 numeric zeros or a null string to your current port
number. This message is retrieved using RECV or SIGNAL 2.

Mode 1 - Transmit a message to another port

The string expression up to 512 bytes in length, or 2 num.expr values are
placed into the communication buffer for transmission to the selected port.
Messages may be transmitted to your current port number, or any port
number that is logged on. An IRIS error 62 is returned if the destination
port is invalid.
Messages are FIFO (First in, First out). Messages include those transmitted
using SEND, SIGNAL 1, and CALL $TRXCO.
If numeric data is transmitted, full floating point precision (6-word Base
10000) is transmitted. When numeric values are received with SIGNAL 2,
they are converted to the precision of the supplied value1 and value2
num.vars.
An error is generated if the communication buffer is full, or an illegal port
number is specified. Messages transmitted to a port not signed into a
UniBasic process are discarded, and no error is generated.
Messages awaiting a port are deleted when that port ends its session
(BYE, SYSTEM 0, terminated SPAWN or UniBasic -F commands).

Mode 2 - Receive messages sent to your port

A scan is performed for the oldest SIGNAL 1 or SEND message
transmitted to your port number. If found, port is set to the port number of
the sender. If no messages are waiting, port is set to -1.
The received message is copied into string or value1 and value2 as
specified. It is the programs' responsibility to select the same format
(str.var or 2 num.vars) used by the sender. The sender's port number is
returned in the supplied port variable. Typically, an application designer
chooses one format for all message transmission and reception.
If delay is specified and no message is waiting, the program is paused for

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 275 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

the specified number of tenth-seconds. If any message is transmitted
during the delay, the pause is terminated allowing immediate reception. A
-1 is returned in port if no message is received within the delay period.
The [SIGNAL] input character (usually CTRL+B) transmits a message of
2 numeric zeros or a null string to your current port which may be
retrieved using SIGNAL 2.
All messages may be cleared by performing repeated SIGNAL 2
statements until port is returned with -1, or by issuing a SIGNAL 6.
If the program has an INTSET in effect, transmission of a message by
another port or [SIGNAL] character performs an interrupt branch.
Messages awaiting a port number are deleted when that port number ends
its session (BYE, SYSTEM 0, terminated SPAWN or UniBasic -F
commands).

Mode 3 - Pause Program Operation

The program is unconditionally suspended for the number of tenth-seconds
specified in delay. An [ESC] without ESCape branching or [EOBC]
terminates a pause. If the application has an INTSET defined, the [INTR]
(CTRL+C) or [SIGNAL] (CTRL+B) will terminate the pause and perform
the branch.
If delay is zero, the statement is ignored and no pause is performed. The
maximum pause time is approximately (232)-1 tenth-seconds.

Mode 5 - Receive System Signal

A scan is made for the oldest system message directed to your port
number. If no system message is waiting, port is set to -1.
If a system message is waiting, port is set to -2, value1 is set to the type of
system message, and value2 returns specific information.
The only system message currently implemented is for INPUT timed-out.
This occurs when an application performs an INPUT TIM, and the input
times-out without response from the keyboard. port is set to -2, value1 is
set to 0, and value2 is set to the number of characters entered prior to time-
out.
Programs performing an INPUT TIM should immediately follow with a
SIGNAL 5 to check the sense of the timed input and prevent overflowing
the communication buffer. If port returns -1, a response was entered within
the prescribed time limit.

Mode 6 - Clear all outstanding signals

All user messages, system messages or both may be cleared using

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 276 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SIGNAL 6. The type selects the messages to be cleared from the system:
Type Function Performed
 -1 Remove all user messages; SIGNAL 1, SEND.
 -2 Remove all system messages.
 -3 Remove both user and system messages.

SIGNAL 6 may be used to clear the message queue for this port number
. Messages are automatically deleted when a port ends its session (BYE,
SYSTEM 0, terminated SPAWN or UniBasic -F commands).

EXAMPLES
SIGNAL 1,P,A,B*100

SIGNAL 2,P,A,B,300 !Wait 30 seconds

SIGNAL 3,30 !Pause 3 seconds

SIGNAL 5,P,A,B

SIGNAL 6,-3,A,A

ERRORS
Illegal Port Number selected
Function Argument or Statement Mode out of range
Communication buffer is full

See also
SEND, RECV, PAUSE, INTSET, INPUT TIM, SPC(6), MSC(0), Port
Numbering and Phantom Ports, Message Queues

SPAWN

SYNOPSIS
Launch a background BASIC program.

SYNTAX
SPAWN filename.expr {, port num.var }

DESCRIPTION
The filename.expr is any legal str.expr containing the filename or
pathname of a BASIC program.
SPAWN performs a Unix fork() creating another process to run the
BASIC program. This child process inherits the current environment
and current working directory. All channels are closed, and no COM
or CHAIN WRITE variables may be passed.
SPAWN is simpler than the PORT or CALL $TRXCO functions to
launch a phantom port into a BASIC program. It is especially suited
for launching background reports, spoolers and other programs

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 277 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

communicated with using SEND, RECV or SIGNAL.
When the program terminates to command mode or BASIC program
mode from STOP, non-trapped error, END, CHAIN "", or
SYSTEM 0/1, the process terminates releasing the port.
SPAWN locates an unused port number scanning backward from the
value of the environment variable MAXPORT (default 999).
The optional port num.var is returned with the port number assigned
to the background program. SEND and SIGNAL, as well as CALL
$TRXCO and PORT statements may be used to communicate with a
port initiated by SPAWN as long as the running program is not
terminated to command mode or BASIC program mode.

EXAMPLES
SPAWN "1/SPOOLER"

SPAWN A$,K ! Start program, get port number

ERRORS
System is out of Channels - Notify Manager (No available port
located)

See also
CALL $TRXCO, SEND, RECV, PORT, SIGNAL, Port Numbering
and Phantom Ports, MAXPORT

STOP

SYNOPSIS
Terminate program into DEBUG mode.

SYNTAX
STOP {str.expr}

DESCRIPTION
The STOP statement terminates a running program and is
functionally identical to the SUSPEND statement.
str.expr is an optional string expression to be displayed.
The STOP statement terminates a program and returns the user to
BASIC program mode.
The STOP statement is usually used to indicate an error condition or
some other abnormal mode of program termination. A STOP
statement, non-trapped [ESC] or [EOBC] (usually CTRL+D) causes
program execution to cease. The program is left in the partition
(unless Supplemental Attributes <E> or <O> are enabled), channels
remain open, and variables retain their values. The user is returned to
BASIC program mode with the message:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 278 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

STOP at statement stn ; sub-stn in: program

stn is the statement number containing the STOP, sub-stn is the
statement within the line, and program is the filename of the current
BASIC program.
If the running program was started by SWAP, the various levels are
displayed:

STOP at statement 1400; 1 in: program2

SWAP at statement 2400; 2 in: program1

This example indicates that a STOP occurred in program2, which was
swapped to from program1.
Other statements may follow a STOP in the program.

EXAMPLES
100 STOP

220 STOP "Irrecoverable error, contact support"

ERRORS
String Expression must be used here

See also
Supplemental Program Attributes, END, CHAIN, SYSTEM,
SUSPEND

SUSPEND

SYNOPSYS
Terminate program into DEBUG mode.

SYNTAX
SUSPEND {str.expr}

DESCRIPTION
The SUSPEND statement is functionally identical to the STOP
statement.
str.expr is an optional string expression to be displayed.
The SUSPEND statement is usually used to indicate an error
condition or some other abnormal mode of program termination. A
SUSPEND statement, non-trapped [ESC] or [EOBC] (usually
CTRL+D) causes program execution to cease. The program is left in
the partition (unless Supplemental Attributes <E> or <O> are
enabled), channels remain open, and variables retain their values. The
user is returned to BASIC program mode with the prompt:

SUSPEND at statement stn ; sub-stn in: program

stn is the statement number containing the SUSPEND, sub-stn is the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 279 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

statement within the line, and program is the filename of the current
BASIC program.
If the running program was started by SWAP, the various levels are
displayed:

SUSPEND at statement 1400; 1 in: program2

SWAP at statement 2400; 2 in: program1

This example indicates that a SUSPEND occurred in program2,
which was swapped to from program1.
Other statements may follow a SUSPEND in the program.

EXAMPLES
100 SUSPEND

220 SUSPEND "irrecoverable error, contact support"

ERRORS
String Expression must be used here

See also
Supplemental Program Attributes, END, CHAIN, SYSTEM, STOP

SWAP

SYNOPSIS
Pause & execute another BASIC program.

SYNTAX
SWAP {mode,} filename.expr

DESCRIPTION
mode is any num.expr which, after evaluation is truncated to an
integer to select channel and common variable pass-along into the
SWAP program. If mode is omitted, mode 2 is assumed.
SWAP suspends execution of the current program, saves all open
channels and variables, using the Unix fork() function to create
another identical UniBasic process. This child (swapped) process
inherits the current environment, variables, open channels, and
current working directory from the parent (calling process).
The selected filename.expr is loaded following the same rules as
CHAIN. Common variables declared using COM or CHAIN
WRITE statements following the SWAP statement, and open
channels passed to the child process are processed according to the
mode as follows:

Mode Function Performed
 0 Close all open files in the child. Do not pass any common

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 280 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

variables, i.e. ignore COM and CHAIN WRITE.
 1 Pass all open channels to the child, and process the common

variables according to the rules for COM or CHAIN
WRITE.

 2 (default) Close all open files for the child, but process any
common variables according to the rules for COM or
CHAIN WRITE.

The parent is the initial process (UniBasic) launched from the shell or
automatically during login to the system. It is also the name given to a
copy that is currently waiting for a child to complete.
The child is each identical process created by the SWAP statement
using the Unix fork(). The child inherits a complete copy of the
current process including program, variables, open files, current
working directory and windows. The parent is suspended while the
child runs. When a child terminates, the parent continues
automatically, unaware of the events of the child. To prevent the loss
of type-ahead, the parent replaces its type-ahead buffer with the
actual type-ahead left by the child .
A child can itself be considered a parent if it performs a SWAP
statement. SWAP statements may nest until memory is exhausted, or
the Unix Process Table overflows. A unique relationship exists
between the parent and child processes. Variables, File Positions and
Window Tracking all flow forward from parent to child, however no
information is passed back to the parent upon termination of a child.
Any screen operations performed by a child are unknown to the
parent. If a child process is performing screen I/O, the application
should make use of Windows. Each child process should create and
delete a window for its screen I/O. Failure to properly manage process
levels performing screen I/O results in an incorrect Window Tracking
Map when the parent resumes execution.
When a child inherits open files, Unix uses the same entries in the
system open file table. A child can change its copy of the current
pointers as well as add or remove locks on records. These operations
may confuse the parent. Also, since the child is a different process, it
will be blocked from reading a record locked by the parent .
For example, if the parent reads 5 records sequentially, the child may
read 5 additional records in proper order. Upon termination of the
child, the parent may read another 5 records in sequential order. The
parent's UniBasic channel table is not updated for the operations of
the child. The CHF/CHN functions will not match the Unix pointers
for sequential access. If all file access by the parent uses a
Record/Byte position, there is no need for concern.
When the SWAP program terminates using END, SYSTEM, or
CHAIN "", its process is killed, and the calling program resumes
execution at the statement immediately following the SWAP. To the
caller, it appears as if the SWAP statement never occurred.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 281 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

If a non-trapped [ESC], [EOBC] (usually CTRL+D) or STOP
statement occurs, the swapped program is terminated to BASIC
program mode to allow debugging. Execution of a termination
statement while in debug mode (END, SYSTEM, or CHAIN ""),
terminates the swap level and resumes execution in the calling
program. In debug mode, the FILES command displays open
channels and SWAP levels.
Data may be passed from a swapped program back to the calling
program using temporary files, or by placing it into the type-ahead
buffer using CALL $INPBUF. Data may not be transferred to the
calling program using common variables.
Important: a child program can communicate with other ports using
CALL 98, etc., and assumes the same port # as the parent. However a
child cannot create (log-on) a new phantom port because the
phantom, being a mirror image of the child, exits when its running
program exits.

EXAMPLES
SWAP "23/PROGRAM3"

SWAP 0,A$

ERRORS
File does not exist
Function Argument or Statement Mode out of range

See also
CALL $SWAPF, CHAIN READ, CHAIN WRITE, STOP, END,
CHAIN, SPAWN, FILES, HOT-KEY, Using Dynamic Windows,
WINDOW

SYSTEM

SYNOPSIS
System functions & commands.

SYNTAX
SYSTEM (mode {, parameters}) {; ...}

DESCRIPTION
mode is any str.expr which is to be passed directly to Unix for
execution in a sub-shell, or num.expr which, after evaluation is
truncated to an integer to select an internal special operation.
mode may also be any num.expr which, after evaluation is truncated
to an integer and used to specify the operation to be performed. Some
modes require a second parameter which is any num.expr which, after
evaluation is truncated to an integer. The parameters are separated by
the mode using a comma.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 282 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Multiple SYSTEM modes may be invoked separating each with a
semicolon.
When mode is any str.expr, it is passed directly to Unix. This Unix
command can be used to launch another application, or perform a
system commands such as mv, cp, etc. If an optional status var
follows, the stat_loc that is returned from wait(2) (see Unix
Programming Reference Manual) is stored. Any changes to a
terminal's stty settings are restored to its original setting upon return
to UniBasic.
Following execution of the system command by the operating system,
the program resumes operation.
If the system command performs any output, your screen will be
compromised unless a new Window was opened prior to, and closed
after, the SYSTEM command.

Mode Operation Performed
 0 Terminate a UniBasic session (BYE command). You may

also terminate other users by including a port number as an
additional parameter. The general form: SYSTEM 0,N
terminates port N.

 1 Clear the port’s program partition (issue a NEW command),
and stop the program.

 4 Un-assign all non-common variables. All dimensioned
str.vars, array.vars, and mat.vars, as well as simple
num.vars are unassigned. This allows re-dimensioning of
partition space as long as all variables to be used are re-
assigned.

 5 Un-assign all variables. Same effect as SYSTEM 4, except
common variables (COM and CHAIN WRITE) are also
affected.

 6 Select baud rate. This mode requires the special form:
SYSTEM 6, N where N is a new baud rate.

 8 Enable terminal echo. Each character input will be echoed
by the system to the terminal.

 9 Disable terminal echo. Each character input is received by
the system, but not echoed to the terminal. This feature
allows for password or other secretive input.

 12 Enable Tab mode. Not supported at this time.
 13 Disable Tab mode. Not supported at this time.
 14 Enable Binary Input mode. All characters input are directly

accepted as data. This includes [EOL] (usually return),
requiring the use of character limited INPUT. While in
Binary Input mode, ASC returns data in true internal format
without high-bit toggling.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 283 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 15 Disable Binary Input mode. Normal character processing is
resumed.

 16 Enable Binary Output mode. Each character output will be
full 8-bit data with no parity generation by the system.
Every possible character from 0 thru 3778 may be output.
While in Binary Output mode, CHR will not toggle the
supplied argument to provide true Binary output capability.

 17 Disable Binary Output mode.
 18 Enable limited IRIS compatibility mode. Certain statements

are affected by SYSTEM 18 mode, causing them to
function in an IRIS-compatible fashion. This mode affects
system operation less, and is therefore less IRIS-compatible,
than setting BASICMODE=IRIS.

 19 Disable limited IRIS compatibility mode.
 20 Enable Trace mode. See Trace Mode.
 21 Disable Trace mode.
 22 Set a program breakpoint. See Program Breakpoints.
 23 Clear a program breakpoint.
 26 Automatic limited input. Causes character limited input to

terminate when the specified number of characters have
been entered. Affects INPUT statement.

 27 Disable Automatic limited input. Causes character limited
input to require an [EOL] (usually return) to be entered,
even after the specified limit has been reached. Entry of
each extra character sounds the terminal bell until [EOL] is
entered.

 28 Get value of Environment Variable. This function requires
the special form: SYSTEM 28, str.var where str.var initially
contains the name of an environment variable. If found, its
value is overwritten in the string, otherwise the str.var is
unchanged. Note: Most environment variables are in upper-
case characters.

 34 (Release 8.1.8) Enables a mode that converts all lowercase
input characters to uppercase characters. This mode is
carried across CHAIN and SWAP statements.

 35 (Release 8.1.8) Disables the mode that converts lowercase
to uppercase characters.

100 (Release 9.1) Add new keys to the current key list, modify
existing keys or delete the key list. Key names are case
insensitive and can contain any printable ASCII character
except for single or double quotation marks. Key names
beginning with "SYS_" are reserved for special purposes
and must not be used for application key names.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 284 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Format of the statement is
SYSTEM 100,"keyname","passphrase","cipher"
where
"keyname" is a string expression that specifies the key
name.
"passphrase" is a string expression that specifies the
passphrase.
"cipher" is the name of the encryption algorithm. The
recommended ciphers are "AES-128" and "AES-256".
Keys can be deleted from the current key list by using:
SYSTEM 100,"keyname","",""
The entire current key list can be deleted by using "" as the
key name.
SYSTEM 100,"","",""

101 (Release 9.1) Is used to generate a key file string image
that contains all of the keys from the current key list (except
those that begin with "SYS_"). The format is:
SYSTEM 101,S$

"S$" is any string variable.

102 (Release 9.1) Restores encryption keys from the key file
(see UBKEYFILE).

Each port is returned to its normal operational modes (8, 13, 15, 17,
19, 21, 23, and 26) when a program is completed or aborted. CHAIN,
SWAP, or SPAWN statements set modes 19, 21, and 23, clearing
limited IRIS mode, trace and breakpoint.

EXAMPLES
SYSTEM "ls -l >filename"

SYSTEM 14;16;

ERRORS
Function Argument or Statement Mode out of range

See also
TRACE, Trace Mode, Program Breakpoints, BYE, NEW, IO
Mnemonics, Using Dynamic Windows

TRACE

SYNOPSIS
Enable statement trace debugging.

SYNTAX

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 285 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

TRACE (ON { #channel }| OFF)
DESCRIPTION

Trace mode is used when it is desirable to observe the statement
number program flow without performing single steps. SYSTEM 20
or TRACE ON enables tracing; SYSTEM 21 or TRACE OFF turns
trace off. These statements may be used in immediate mode, or
imbedded within specific code segments of a program. For each
statement executed, the statement number stn and sub-statement
number sub-stn (statements on the same BASIC line) is printed.
The TRACE ON statement can be followed by an optional channel
number for redirecting trace output to a file or driver.
The channel number that is given must be opened prior to executing
the TRACE statement. If the channel is subsequently closed, trace
output defaults to the terminal. The following information is output
during trace mode:

TR - statement number ; sub-statement number (BITS)

[statement number] (IRIS)

In BITS mode, “TR -" indicates trace mode is enabled and the next
stn and sub-stn to be executed are displayed. In IRIS mode, a new-
line is performed, and the stn only is displayed within []. The
execution of the statement then proceeds. Output from a PRINT is
displayed following the trace information.
Tracing is automatically disabled when another program is loaded
using CHAIN, SWAP, or SPAWN.

EXAMPLES
TRACE ON

TRACE OFF

TRACE ON #5

ERRORS
Syntax error
Channel not opened
File is Write-protected

See also
SYSTEM 20, SYSTEM 21

UNIT

SYNOPSIS
Access & control current working directory.

SYNTAX

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 286 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

UNIT directory, mode {, return}
DESCRIPTION

directory is any str.expr containing or returning a Unix pathname.
mode is any num.expr which, after evaluation is truncated to an
integer to select the desired operation.
The optional return is any num.var used to return information about a
directory for certain modes.

Mode Operation Performed
 3 Returns the number of the available blocks in the specified

file system.
 5 Change the current working directory to the selected

pathname.
An error occurs if the selected pathname is illegal or protected.

EXAMPLES
A$="/usr/ub/2" \ UNIT A$,5

UNIT "sys",3,B ! B returns number of available blocks

ERRORS
Illegal Pack or Filename

See also
Directories and Pathnames

UNLOCK #

SYNOPSIS
Unlock any locked records on a channel.

SYNTAX
UNLOCK # channel {, # channel ...}

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an
integer and used to select a channel number.
Any record locked by your program on the specified channel becomes
unlocked. No error is generated if no record has been locked. A record
locked by another user cannot be unlocked.
Generally, UNLOCK is only used in special circumstances, such as
having one file open on two channels. In this case, UNLOCK can be
used to prevent the program from locking itself out of a record.
In IRIS applications, the statement WRITE # channel ;; is identical to
UNLOCK #.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 287 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLES
UNLOCK #5, #K, #K+1

ERRORS
Channel Not Opened

See also
WRITE #, Record Locking

WINDOW

SYNOPSIS
Maintain Dynamic Windows.

SYNTAX
WINDOW (ON | OFF | CLOSE | CLEAR)
WINDOW (OPEN | MODIFY) parameters following on next line:
 @ulc,ulr; (SIZE ncol,nrow; | TO @lrc, lrr;) {USING str.expr}

DESCRIPTION
@ specifies a crt.expr in the form of a Cursor Address. ulc is any
num.expr which, after evaluation is truncated to an integer to select
the Upper Left Column for the Window. ulr is any num.expr which,
after evaluation is truncated to an integer to select the Upper Left
Row. Following the crt.expr must be a semicolon.
SIZE selects the size of a Window in columns and rows. TO specifies
the size using a crt.expr in the form of a Cursor Address of the last
character position in the Window. Either form may be used. If SIZE
is used, ncol is any num.expr which, after evaluation is truncated to an
integer to select the number of columns. nrow is any num.expr which,
after evaluation is truncated to an integer to select the number of
rows. If TO is specified, lrc is any num.expr which, after evaluation is
truncated to an integer to select the Lower Right Column for the
Window. lrr is any num.expr which, after evaluation is truncated to an
integer to select the Lower Right Row. Following the crt.expr must be
a semicolon.
The optional USING str.expr is any string expression to be centered
and printed as the title of a Window. The size must be less than the
number of columns in the Window, or it is truncated. The inclusion of
USING specifies that a graphical border is to be placed around the
Window. The str.expr may be a null-string for a box without heading.
The specification of a graphical border reduces the usable space in the
Window by one row, and column on the top, bottom and each side.

Note: Before using Windows, the default term file must be defined correctly
for number of rows, columns, and mnemonics. The environment

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 288 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

variable WINDOWS must be defined for the total number of open
windows to be used by the application. See Using Dynamic Windows
and Terminal Translation $TERM files.

Window Tracking is normally off so that console commands and Unix
functions operate on a full screen. Whenever a program terminates,
Window Tracking is turned off. If a program is terminated by [ESC],
[EOBC], STOP, or Breakpoint, debugging is permitted and Windows
remain open, otherwise all Windows are cleared. In either case,
Tracking is disabled and screen data may be corrupted.
WINDOW ON enables Window Tracking and should precede any
other WINDOW function. The Window Tracking Map is initialized
by clearing the screen. Subsequent WINDOW ON statements are
ignored. By default, a WINDOW ON is performed automatically
whenever a clear-screen is sent in run mode on PC/ANSI monitors
(crt_type :23) to simulate protected fields.
WINDOW OFF temporarily disables Window Tracking. Further
screen operations are not updated in the Window Tracking Map, and
access outside the current Window is allowed. If Window Tracking
was on and protected fields are used, they won't be protected once
Window Tracking is turned off. WINDOW OFF may be used to
improve screen performance in programs not using Windows. It is a
good idea to combine a clear-screen operation with a change in
Window Tracking status.
WINDOW OFF and ON may also be used when secondary Windows
(other than the first full-screen) are opened, and access to the full
screen is desired. When Tracking is turned off, cursor access is to the
full screen. When Tracking is again turned on, the cursor is re-
positioned to the last tracked position. Turning Tracking off to modify
data outside the screen should be limited to the display of errors or
messages in a common area. Any other screen modification is not
tracked and, if SWAP is used, the parent is unaware of these changes.
WINDOW OPEN creates a new Window with the supplied
parameters. If Tracking is not on, an implied WINDOW ON is
performed. All crt.expr are relative to upper left corner of a Window
and all data is forced within its boundaries. MSC(33) and MSC(34)
will reflect the inside limits of the Window, and MSC(42) will be
incremented to reflect the number of open Windows. Scrolling occurs
only on the bottom line of the window.
WINDOW MODIFY is used to change the size of the current
Window based upon the supplied parameters. Functions MSC(33)
and MSC(34) are updated to reflect the current size. The size of a
Window may be changed as many times as desired but it cannot
extend beyond the original parameters specified to WINDOW
OPEN. If the Window must be enlarged, perform a WINDOW
CLOSE, followed by another WINDOW OPEN. WINDOW
MODIFY may be used to create your own borders, to modify the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 289 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

border created by WINDOW OPEN, or implement a series of panes
inside a Window that can be accessed randomly.
WINDOW MODIFY merely redefines the writable region inside a
window. The window itself is not actually closed and re-opened. No
underlying data is revealed or hidden by this statement.
WINDOW CLOSE deletes the current Window repainting the
original underlying data. MSC(33) and MSC(34) now reflect the size
of the previous Window and MSC(42) is decremented. A Window
must always be deleted at the same parent / child level it was created.
For example, you perform a WINDOW OPEN in program A, then
CHAIN to program B, which in turn performs a SWAP or [Hot-Key]
swap to program C (a child of B). If program C opens any windows,
then WINDOW CLOSE should be performed before returning
control to program B.
WINDOW CLEAR clears all Windows back to Window Zero and
clears the screen. Underlying data from each opened Window is not
displayed.

Note: Because of the nature of the parent and child mentioned above,
always delete a Window from the same program it was created to
correctly maintain the Window Tracking Map.

EXAMPLES
WINDOW ON

WINDOW OPEN @5,5; TO @60,20; USING "Help"

WINDOW OPEN @0,0; SIZE 80,24;

WINDOW MODIFY @7,7 TO @62,18;

WINDOW OFF

WINDOW CLOSE

WINDOW CLEAR

ERRORS
No term file loaded
WINDOWS Environment Variable not defined or zero
CRT X,Y coordinate out of range
No more Windows to Close; check MSC(4)
Window Tracking is not on

See also
Using Dynamic Windows, Hot-Key, CALL $SWAPF, SWAP

WRITE #

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 290 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Write array, matrix or string from a channel.

SYNTAX
WRITE #chn.expr; var list...{;}

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file
from which to read data.
WRITE # transfers data from any var, mat.var, array.var or str.var to
the file opened on the selected chn.expr.
If the variable in the list is an array.var or mat.var, only the first
element ([0] or [0,0]) is written. Subscripts may be used to select any
individual element to be transferred. The number of bytes transferred
is based upon the variable DIMensioned size. The transfer is
performed according the rules for a num.var.
If the variable in the list is a simple num.var, the transfer size is
controlled by the DIMensioned size and precision.
If the variable in the list is a str.var, its size may be controlled by
subscripts. When no subscript, or single subscript, is specified, IRIS
programs increment the total number of bytes transferred to account
for an extra null byte. In BITS applications, no increment is
performed and the entire supplied size is transferred including zero-
bytes.
The optional semicolon (;) terminator is used by IRIS applications to
eliminate the automatic record-lock applied to the supplied record in
the chn.expr. BITS applications utilize RDLOCK # for operations
with locking, and READ # for non-locking transfers.
In IRIS applications, the statement WRITE # channel ;; is identical to
UNLOCK #.
If the running program is an IRIS program, the following steps are
performed prior to transfer:

1. If the variable to be transferred is a num.var, array.var, or
mat.var, the supplied (or current) byte displacement is
rounded up to an even byte position within the file.

2. If a full str.var is supplied (single or no subscript), its size is
incremented by one to account for an extra null byte. If two
subscripts are supplied, no increment is performed. From
this, the maximum size is determined. The str.var is scanned
for the first zero-byte. Data is written from the string,
stopping at the maximum size or following the first zero-
byte. If the write terminated prior to the maximum size, the
file pointers are adjusted as if the maximum size was written.
Finally, if the transfer is from a text file, an error is generated
if any num.var is supplied.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 291 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

If the transfer is to a Formatted Item file, the item type may be String
or Binary for any str.var in the list, and Binary or Numeric for any
num.var, array.var, or mat.var. The byte displacement specifies the
starting item for the transfer. If not specified, item zero is assumed.
No conversion takes place during the transfer of a binary item. It is
the program's responsibility to maintain the correct precisions of
numerics being written to the file.
If the transfer is to a Contiguous or Tree-structured Data file, the byte
displacement specifies the starting byte within the supplied record.
Zero is assumed if no byte displacement is given, and IRIS programs
round up the byte displacement if odd on a numeric variable transfer.
If the transfer is to a text file (IRIS Programs only), data is written up
to and including the first zero-byte in the string. The file position is
then decremented pointing at the zero-byte for subsequent write
operations.
Each item transferred causes the byte displacement to be incremented
by the adjusted byte size of the item in the var.list. Strings are sized
by the algorithm (INT((d+1)/2)*2), where d is the DIMensioned or
subscripted size. num.vars, arrays and matrices are sized as: (R+1) *
(C+1) * (size of P) where R is the number of rows, C is the number of
columns, and P is the number of bytes occupied by precision P.

EXAMPLES
WRITE #3,R1,100;A,B$,C[12]

WRITE #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not open
Selected record is locked
File is Write Protected

See also
Numeric, Array and Matrix Variables, Channel Expression, READ#,
MAT WRITE#, WRLOCK#, Numeric Data, Numeric Variable
Precision, Formatted Item Files, Contiguous Files, Text Files

WRLOCK #

SYNOPSIS
Write and unconditionally lock a record.

SYNTAX
WRLOCK #chn.expr; var.list...

DESCRIPTION

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 292 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The # chn.expr is any legal channel expression selecting an open file
to read data from.
WRLOCK # transfers data from any var, mat.var, array.var or str.var
into the file opened on chn.expr.
If the variable in the list is an array.var, an optional subscript1 and
subscript2 may be specified. If given, these are evaluated, truncated to
integer and used to select a single element. If no subscripts are
supplied, only the first element is transferred.
If the variable in the list is a simple num.var, the transfer size is
controlled by the DIMensioned size and precision.
If the variable in the list is a str.var, its size may be controlled by
subscripts. All characters are transferred including zero-bytes.
WRLOCK transfers data and unconditionally locks the record. The
data record remains locked until a non-locking operation is performed
by that same program to the same channel. While a record is locked,
other users will be unable to access the record.
WRLOCK# is identical to WRITE# omitting the trailing semicolon.
See the WRITE# statement for details on the transfer to different
files.

EXAMPLES
WRLOCK #3,R1,100;A

WRLOCK #C,R;A$

ERRORS
File is Write Protected
Selected Record is Locked
Channel is not Opened

See also
WRITE#, RDLOCK#

WRREL #

SYNOPSIS
Write a relative 512-byte block to a file.

SYNTAX
WRREL # chn.expr; str.var

DESCRIPTION
chn.expr is any legal channel expression that selects an open file to
which to write data. The chn.expr must include a record which defines
the relative block to write within the file. The byte displacement and

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 293 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

time-out expressions are ignored and unnecessary.
The str.var is any string variable DIMensioned at least 512 bytes. A
starting subscript may be supplied as long as the DIMensioned size is
at least 512 bytes larger than the supplied subscript.
WRREL uses the supplied record as a relative 512 byte block pointer
into the file. For example, record 0 specifies the first 512 bytes in the
file, record 1, the second 512 bytes, etc.
Record -1 may be used to write the first 512 bytes of the file. This
includes the header and possibly part of record 0. Some headers (of
formatted item files) may be larger than 512 bytes and may not be
written in entirety. To retrieve header information in a truly machine
independent fashion, it is recommended that CALL 127 be used to
unpack the information. WRREL # of record -1 is used to change
header information by conversion and other utilities.
WRREL is generally used to copy files or otherwise write portions of
files not accessible with a normal WRITE# statement. Processing of
the data is left completely up to the user.

EXAMPLES
WRREL #7,K;A$! WRITE A BLOCK

WRREL #7,K+1;A$[513] ! APPEND A SECOND BLOCK

ERRORS
Channel Not Opened
Illegal Record or End of File
Write Protected File

See also
RDREL#

User CALLS
This section documents the standard "C" language CALL statements included with all
versions of UniBasic. Some systems may include additional CALL statements added by
your supplier for specific applications.
To add or change User calls requires the UniBasic Development Package. The
development system includes a README file explaining existing CALLs and how to
add and remove CALLs.

CALL $ATOE

SYNOPSIS
Convert ASCII to EBCDIC.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 294 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNTAX
CALL (77 | $ATOE), str.var

DESCRIPTION
CALL $ATOE converts a supplied ASCII string to EBCDIC.

EXAMPLES
CALL $ATOE, A$

CALL 77, A$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
CALL, ASCII Characters, CALL $ETOA, CALL 53

CALL $AVPORT

SYNOPSIS
Find available port number.

SYNTAX
CALL $AVPORT, port {, starting {, ending } }

DESCRIPTION
port is any num.var to return the first available port number. -1 is
returned when no available port number is found.
starting is any optional num.expr which, after evaluation, is
truncated to an integer, and used to specify the first port number to
search. If omitted, the search begins at Port 0.
ending is any num.expr which, after evaluation, is truncated to an
integer, and used to specify the last port number to search. If
omitted, the maximum port number as defined by the environment
variable MAXPORT (default 999) is assumed. An ending
expression can only be specified if a starting value was given.
EXAMPLES
CALL $AVPORT, G !Get first Port

CALL $AVPORT, G, 32 !Get available phantom

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 295 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

User CALL parameters out of order
See also

CALL, PORT, PORTS, MAXPORT

CALL $CALLSTAT

SYNOPSIS
Get name of CALLing program.

SYNTAX
CALL $CALLSTAT, str.var

DESCRIPTION
Str.var is a string variable the receives the name of the program that
CALLed the current program or “” if the current program was not
started by a CALL statement.

EXAMPLE
CALL $CALLSTAT,F$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
none

CALL $CKSUM

SYNOPSIS
Calculate checksum on a file.

SYNTAX
CALL $CKSUM, filename, start, end, result {, status}

DESCRIPTION
filename is any str.var containing a filename or pathname to a file to
which you have read-permission. The file is opened and read to
compute a checksum on its data. The checksum computed is machine
independent.
start is any num.expr which, after evaluation, is truncated to an
integer and used to specify the starting word address in the file for the
computation. Zero specifies the start of the file.
end is any num.expr which, after evaluation, is truncated to an integer
and used to specify the last word address in the file for the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 296 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

computation. (-1) specifies the current physical end of the file.
result is returned with the computed checksum.
status is optionally returned with a completion status as determined
by the CALL. The following exception status is reported:

Status Description
 0 Operation was successful
 1 filename is not a string
 3 start is negative
 5 end is negative (cannot checksum memory)
 6 start is larger than end.
 8 filename not found

EXAMPLES
CALL $CKSUM, "program", 0, -1, A, B

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
none

CALL $CLU

SYNOPSIS
Change the current logical unit.

SYNTAX
CALL $CLU, lu.num {,status}

DESCRIPTION
lu.num is a value specified for logical unit number, pack name, or
Unix directory name. If lu.num is passed as -1, change the current
logical unit to the default working directory.
status is optionally returned with a completion status as determined
by the CALL. The following exception status is reported:

Status Description
 0 Operation was successful
 1 Invalid logical unit number
 2 Logical unit number not found

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 297 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLE
CALL $CLU,1,S

CALL $CLU,N

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
CLU Command

CALL $DATE

SYNOPSIS
Verify and reformat a date.

SYNTAX
CALL $DATE, source, destination, length, status

DESCRIPTION
source is any str.expr containing a date in the form of MMYY,
MMDDYY, or MMDDYYYY.
destination is any str.expr containing a returned date in the form of
YYMM, YYMMDD, or YYYYMMDD, depending on the length. If
the environment variable EUROPEAN is set, the form of YYDDMM
or YYYYDDMM is returned, depending on the length.
length is any num.expr for the length of the destination date. Valid
lengths are 4, 6, and 8.
status is an exception value returned to caller providing completion
status of the desired operation. A status value of zero (0) indicates
valid date. A status value of one (1) indicates an invalid date.

EXAMPLE
CALL $DATE,S$,D$,L,E

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
CALL 24

CALL $ECHO

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 298 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Set or clear terminal echo.

SYNTAX
CALL (78 | $ECHO), mode

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an
integer and used to select the operation for $ECHO.

Mode Function Performed
 0 Disable terminal echo.
 1 Enable terminal echo.
 2 Toggle terminal echo.

Terminal echo is the process whereby each character entered to the
terminal is displayed on the screen. When echo is disabled, input is
still processed by the system, but is not visible on the screen.

EXAMPLES
CALL $ECHO,0 !Turn off terminal to get password

CALL $ECHO,1 !Re-enable echo

CALL 78, 1

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
IRIS IO Mnemonics, SYSTEM 8/9, CALL 44

CALL $ENV

SYNOPSIS
Change the value of an environment variable.

SYNTAX
CALL $ENV , varname$, value$

DESCRIPTION
varname$ is the variable name to be changed.
value$ is the new value to be given varname$.
CALL $ENV places the string varname$ = value$ into the
environment of your process. Any environment variables can be
added or changed, with the exception of the following UniBasic

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 299 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

parameters which are not changeable:
ALTCALL BCDVARS FORNEXTNEST GOSUBNEST
INPUTSIZE ISAMBUFS ISAMFILES ISAMSECT
LUST NUMLINES PORT PORTS
PROGSIZE TERM VARSIZE WINDOWS

EXAMPLES
CALL $ENV,"SCOPEPROMPT","@"

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
Installing UniBasic, UniBasic Environment Variables

CALL $ETOA

SYNOPSIS
Convert EBCDIC to ASCII.

SYNTAX
CALL (76 | $ETOA), str.var

DESCRIPTION
The str.var specifies a string of EBCDIC characters to be converted to
ASCII.

EXAMPLES
CALL $ETOA,A$!Convert the string

CALL 76,A$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
CALL $ATOE, CALL 53

CALL $FINDF

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 300 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Lookup a file on the system.

SYNTAX
CALL (96 | $FINDF), filename, status

DESCRIPTION
filename is any str.expr containing a filename or full pathname to
lookup.
status is any num.var used to return a flag. If the supplied filename is
found, a non-zero status is returned. A zero indicates that the supplied
filename does not exist.

EXAMPLES
CALL $FINDF, "23/filename", K

CALL $FINDF, "/usr/bin/UniBasic", j

CALL 96, "14/FILENAME", K

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
LUST, Filenames and Pathnames, CALL 127, CALL $RDFHD,
CALL $RENAME

CALL $INPBUF

SYNOPSIS
Place data into type-ahead buffer.

SYNTAX
CALL $INPBUF, str.expr

DESCRIPTION
The supplied str.expr is copied (appended) to the contents of the
current type-ahead buffer.
$INPBUF may be used to pass data from a child process back to the
parent when using SWAP statements or [Hot-Key] swapping.
CALL $STRING may be used to drain the contents of the type-ahead
buffer.

EXAMPLES
CALL $INPBUF, A$!Copy data to type-ahead

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 301 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CALL $INPBUF, A$ + "\215\"

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
WINDOW, Windows and Output Considerations, SWAP, CALL
$STRING

CALL $LOCK

SYNOPSIS
Lock an opened file.

SYNTAX
CALL $LOCK, channel, mode, status

DESCRIPTION
channel is any num.expr which, after evaluation, is truncated to an
integer, and used to select an opened data file channel.
mode is any num.expr which, after evaluation, is truncated to an
integer, and used to specify the operation. A zero value unlocks the
file, and non-zero is used to lock the file.
status is any num.var used to return a successful or exception status as
follows:

Status Description
 0 Operation successful
 1 Illegal Channel Number
 2 Channel not open
 6 File is already Locked
 7 File is not locked

$LOCK is similar to EOPEN. The selected file is locked to prevent
other users from opening the file. $LOCK will not provide locks
against other users who already have the file opened.
$LOCK is rejected if the file is already locked by another user using
$LOCK or EOPEN.

EXAMPLES
CALL $LOCK, 1, 1, E ! lock

CALL $LOCK, 1, 0, E ! unlock

ERRORS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 302 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Illegal or unimplemented user CALL number or name
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
EOPEN

CALL $LOGIC

SYNOPSIS
Perform Logical Operations.

SYNTAX
CALL (88 | $LOGIC), operator, variable1, variable2, result

DESCRIPTION
operator is any num.expr which, after evaluation, is truncated to an
integer and used to specify the operation for $LOGIC:

1 AND
2 OR
3 XOR
4 NOT

variable1 and variable2 select two identical types of variables to
perform an operation upon.
result must be the same type as the supplied variable1 and variable2,
and will hold the resulting data from the operation.
If the supplied variables are numeric, they are truncated to unsigned
integers (shorts) to perform the operation. String variables are
processed a byte at a time until the DIMensioned length of the
shortest argument passed is reached.
An AND operation results in a 1 bit when the corresponding bit of
both variables is 1.
An OR operation results in a 1 bit when either of the corresponding
bits is 1, or when both are 1.
An XOR (exclusive OR) results in a 1 bit when only one of the
corresponding bits of both variables is 1.
A NOT operation only requires variable1. variable2 must be
specified for syntactical reasons (use the same variable), but is not
used. NOT results in a 1 bit if the bit of variable1 is zero, and results
in 0 if the bit is 1.
Entire strings (including zero bytes) can be operated upon using

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 303 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

$LOGIC. To copy a string in its entirety, AND the string to itself. To
fully zero fill (zero byte) a string, XOR it with itself.

X Y X AND Y X OR Y X XOR Y NOT Y
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1
1 1 1 1 0

EXAMPLES
CALL $LOGIC, 1, A$, A$, B$! AND 2 strings

CALL $LOGIC, 1,A[0],32768,J! Is value negative

CALL 88, 1, A$, A$, B$! AND 2 strings

ERRORS
Illegal or unimplemented user CALL number or name
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
CALL 59

CALL $NCRC32

SYNOPSIS
Calculate 32-bit CRC Checksums.

SYNTAX
CALL $NCRC32, result, string {,initialcrc}

DESCRIPTION
A 32-bit CRC checksum value is calculated for the characters in the
string variable string and returned in the numeric variable result. The
result variable should be a 3% or 4% numeric variable to avoid
overflow. The checksum includes the entire DIMed size of string
unless subscripts are used. A checksum can be calculated across
multiple strings by specifying the previous accumulated checksum as
the optional third parameter initialcrc.

EXAMPLES
CALL $NCRC32, C, A$[1,10] ! CRC of first 10 characters

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 304 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CALL $NCRC32, C, B$, C ! Add CRC of B$ to previous CRC

ERRORS
Illegal or unimplemented user CALL number or name
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
CALL $LOGIC

CALL $RDFHD

SYNOPSIS
Read file header information.

SYNTAX
CALL (97 | $RDFHD), lu, rec, file, act, typ, siz, stat, cst, inc, fcd ,
fla, hdr

DESCRIPTION
lu may be either a str.expr or num.expr used to select the logical unit
to be searched. If lu is a str.expr, any Unix pathname may be
specified.
rec is any num.var. It is evaluated, truncated to an integer, and used to
select the record number in the directory to be read. Entry zero is
always the filename '.' (directory). If the specified entry rec is empty,
then the next entry is read automatically until a valid entry is located,
or the end of the directory is reached. When the end of the directory is
reached, rec is returned with the value (-1).
Following the $RDFHD call, rec is incremented by one so that
successive calls may be performed without program adjustment.
Therefore, the returned rec is always one greater than the entry in the
directory corresponding to the returned information.
file must be any str.var (DIMensioned at least 15 bytes) to receive the
name of the file from the directory entry.
act is any num.var used to return the Unix user number. This
information is not in IRIS format. Only the user's number is returned,
not the group number or the privilege.
typ must be any num.var used to return the files IRIS type:

Type Description
 0 Directory P

 1 System
program S

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 305 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 2 BASIC
program B

 24 Text file T
 25 Formatted file F
 26 Contiguous file C

 30 Peripheral
driver $

siz must be any num.var used to return the files current size in blocks.
stat must be any num.var used to return the current files status word.
Zero is always returned.
cst must be any num.var used to return the current cost in dimes. Zero
is always returned.
inc must be any num.var used to return the current income in dimes.
Zero is always returned.
fcd must be any num.var used to return the files creation age
expressed in hours since the base system year as returned by the
function SPC(20).
fla must be any num.var used to return the files last access date
expressed in hours since the base system year as returned by the
function SPC(20).
hdr must be any num.var used to return the files inode (Header block)
block number.

EXAMPLES
CALL $RDFHD,0,R,N$,A,T,S,S1,C,I,D,L,H

IF (R < 0) END ! END OF DIRECTORY

CALL 97,0,R,N$,A,T,S,S1,C,I,D,L,H

ERRORS
Illegal or unimplemented user CALL number or name
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order
Read Protected File

See also
CALL 127, CALL $RENAME, CALL $FINDF

CALL $RENAME

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 306 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Rename a File or Program.
SYNTAX

CALL $RENAME, lu , oldfilename, newfilename, channel, status
DESCRIPTION

lu is any num.expr which, after evaluation is truncated to an integer
and used to specify the logical unit containing the file to be renamed.
To select the current working directory, specify (-1) for lu. Any value
set in lu is used as a default when the supplied oldfilename does not
contain a directory specifier.
oldfilename is any str.expr used to select the filename to be modified.
If the filename is in the form lu/filename, the supplied name overrides
the value passed in lu.
newfilename is any str.expr used to specify the new filename for the
supplied oldfilename.
channel is any num.expr which is ignored.
status is any num.var used to return an exception status from
$RENAME as follows:

Status Description
 0 Operation was successful, file renamed.
 1 Operation was not successful.

$RENAME uses the Unix mv command.
EXAMPLES

CALL $RENAME,1,"3/FILENAME","3/FILE1",99,A

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
MODIFY, CALL $FINDF, CALL $RDFHD

CALL $STRING

SYNOPSIS
Miscellaneous string functions.

SYNTAX
(a) CALL (82 | $STRING), mode, string
(b) CALL (82 | $STRING), mode, string, number
(c) CALL (82 | $STRING), mode, number, string

DESCRIPTION

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 307 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

mode is any num.expr which, after evaluation is truncated to an
integer to specify the operation of $STRING.

Mode Format Operation Performed
 1 a Convert all characters to upper-case.
 2 a Convert all characters to lower-case.
 3 b Convert single character to ASCII.
 4 c Convert ASCII value to single character.
 5 a Read the Input/Output buffer.
 6 b Convert 2-characters to binary.
 7 c Convert binary to 2 ASCII characters.

string is any str.var if the resulting operation returns string data, or
any str.expr if the resulting operation returns numeric information.
number is any num.var if the resulting operation returns numeric data,
or any num.expr if the resulting operation returns string information.
During case conversion, modes 1 and 2, only alphabetic letters are
modified. All other characters remain unchanged.
mode 3 converts the single character pointed to by the supplied
subscripted string to an ASCII value between 0 and 255, and returns
the value in number. The value returned is toggled from internal to
IRIS 8-bit format. The application should utilize IRIS style ASCII
(above 128) for printable characters.
mode 4 converts the supplied number into an ASCII character into the
supplied position in the string. If the value is greater than 255, the
modulus 256 value is converted (x % 256). The value is toggled from
IRIS to internal format. The character at the position immediately
following the specified position in string is zeroed.
mode 5 is used to read the contents of the terminals Input/Output
buffer (Type-ahead data placed into the buffer by CALL $INPBUF is
not accessible). All characters up to the first [EOL] (usually return)
are placed into string. This option permits a program to read
parameters on the same line as the program name, such as:

#RUN REPORT 132 DISPLAY

CALL $STRING must precede any PRINT or INPUT statements
within the program, or the contents of the buffer will have been
modified.
mode 6 is used to convert 2 adjacent characters at the starting position
in string to a 16-bit integer returned in number. The formula used is:

First character * 256 + second character
mode 7 converts number into 2 ASCII characters using the formula:
First char = number / 256, and second char = number % 256. No
additional null character is stored.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 308 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLES
CALL $STRING,5,A$! Read Buffer

CALL 82,5,A$! Read Buffer

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
CALL 29, CALL 30, CALL 43, CALL 44, CALL 56, CALL 57,
CALL 60

CALL $SWAPF

SYNOPSIS
Control Hot-Key swapping.

SYNTAX
CALL $SWAPF, mode {, executive program name}

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an
integer to select the function performed whenever the [Hot-Key] is
pressed during INPUT. Pressing a [Hot-Key] has no effect until an
INPUT statement is reached.

Mode Description
 0 Disable the Dynamic [Hot-Key] operation.
 1 SWAP on Dynamic [Hot-Key] with channels OPEN with

normal common variables as contained in COM statements.
 2 SWAP on Dynamic [Hot-Key] with normal common

variables as contained in COM statements.
 3 SWAP on Dynamic [Hot-Key] with channels OPEN and no

common variables.
The optional executive program name is any str.expr defining a
program to SWAP to whenever the [Hot-Key] is pressed, and the
mode is non-zero. This can be any BASIC program pathname up to
62 characters in length.
The default values assigned by the system, if a CALL $SWAPF is
not issued, is mode 1, executive program name is sys/exec.
An error is generated if a [Hot-Key] is pressed and the specified
executive program name does not exist.

EXAMPLES
CALL $SWAPF,0 !Disable Hot-key this program

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 309 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CALL $SWAPF,2,"AR.CUST" ! To Cust maint, no files

ERRORS
Error detected in/by user CALL routine

See also
WINDOW, [HOT-KEY], Windows and Output Considerations

CALL $TIME

SYNOPSIS
Get date and time.

SYNTAX
CALL (99 | $TIME), string

DESCRIPTION
string is any str.var, DIMensioned at least 22 bytes, to return the
current date and time using the Unix function localtime(). If you are
receiving an incorrect time, check your environment to be sure that
you have included the TZ (Time-zone) environment variable if
required. Please refer to your system documentation for information
on the function localtime.
CALL $TIME may not be used to reset the system time. That
function must be performed using the Unix date command from the
root password.
Date format returned is:

Mon dd, year HH:MM:SS IRIS applications

dd Mon Year HH:MM:SS BITS applications.

EXAMPLES
CALL $TIME, T$ \ PRINT T$

CALL 99, A$

ERRORS
Error detected in/by user CALL routine

See also
MSF(0), MSF(3)

CALL $TRXCO

SYNOPSIS
Phantom port control.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 310 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNTAX
CALL (98 | $TRXCO), port, command, {, status {, priority }}

DESCRIPTION
port is any num.expr which, after evaluation is truncated to an integer
and used to select the port number for this operation.
command is any str.expr which selects a command to be sent to the
specified port. The supplied command is copied into the specified
port’s type-ahead buffer to be processed the next time port is awaiting
input. The command may be any system command or prompt
response for a running program. Multiple commands, separated by
\215\ may be included in the command string.
The optional status is an exception value returned to the caller
providing completion status of the desired operation:

Status Description
 0 Successful operation; command transmitted.
 1 port is not a numeric expression.
 2 Specified port is out of range.
 3 Specified port is not running UniBasic.
 4 Specified port is the user's own port.
 5 command is not a valid str.expr.
 6 unix fork() operation failed, or port is not ready for

input.
 7 Specified port has input already in progress.

The optional priority is any num.expr which, after evaluation is
truncated to an integer and used as the system priority for the
command transmitted. The valid range is from 1 to 7. The supplied
value is converted to a Unix value for the nice() function changing the
process priority.
$TRXCO begins by attempting to attach the port. If the port is
already running UniBasic, the command is copied into the port’s type-
ahead buffer. A carriage return is appended to the string supplied.
If the port is not currently running a UniBasic process, a background
process is created as the supplied port number. It assumes the callers
login, .profile configurations, environment and current working
directory. It then becomes a unique process linked to the supplied port
number. This port is then available for CALL $TRXCO commands,
PORT, SEND, RECV, and SIGNAL statements from any other
UniBasic user as well as the program performing the initial CALL
$TRXCO.
When sending commands to a port which is connected to a terminal
and keyboard, you must ensure that port is within UniBasic before
sending commands. Otherwise, a phantom port is created for the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 311 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

supplied port number. If a user later attempts entry into UniBasic on a
terminal designated as the same port, entry will be rejected.
If the program is an IRIS program and the command consists of a
single \334\ character, the current job on the port is logged off. If any
other character, such as \215\ follows the \334\, the current job on the
port is aborted and the port is placed in command mode. A \334\
always aborts any running command on the port even if the port has
Error or Escape branching in effect.
Always pause at least 2 seconds between subsequent $TRXCO calls
to the same or different ports. This permits the receiving port time to
respond and avoids an overflow of the inter-process communication
buffer.
It is impossible to create a phantom port from a child program. See
the SWAP statement for details.

EXAMPLES
A$="LIBR [$LPT] 1/ @ ^ \215\BYE\"

CALL $TRXCO,10,A$,E,2 !LIBR Low priority

IF E STOP ! Error trying to start LIBR

CALL 98,10,A$,E,2 !LIBR Low priority

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
PORT, Port Numbering and Phantom Ports, Environment Variables:
PORTS & PORT Environment Variables, Launching UniBasic Ports
at Startup, CALL $AVPORT

CALL $VOLLINK

SYNOPSIS
Create a Polyfile volume.

SYNTAX
CALL (91 | $VOLLINK), channel, master chan, vol, stat, param

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an
integer and used to select an open channel containing a built
contiguous file to be converted into a polyfile volume.
If channel is negative, only parameters are returned in the param
array.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 312 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

master chan may be any num.expr which, after evaluation is truncated
to an integer and used to select an open channel containing the master
volume of a polyfile.
vol may be any num.expr which, after evaluation is truncated to an
integer and used to select an operation:

Volume Operation
 = 0 Create the vol opened on channel as the master volume.

The polyfile flag is set in the files header, and record
zero is available to the application.

status is any num.var used to return an exception status from
$VOLLINK.
param is any num.array DIMensioned as array[n] where n is at least
10.
If status is returned as a non-zero value, then an error occurred.

Status Description
 1 Illegal channel number
 16 Volume vol is not defined.

As implemented in UniBasic, $VOLLINK can only be used
following initial creation of the contiguous file to define the master
volume. Attempts to define additional volumes or receive full status
information is not available at the time of this writing.

EXAMPLES
CALL $VOLLINK,5,5,0,S,E ! Structure Volume 0

CALL 91,5,5,0,S,E ! Structure Volume 0

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
Indexed Data Files

CALL 15

SYNOPSIS
Pack and Unpack Numeric Strings.

SYNTAX
CALL 15, source , dest

DESCRIPTION
source is any str.var used as the source string. If dimensioned greater

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 313 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

than dest, a pack is performed. If dimensioned less, an unpack is
performed.
dest is any str.var used to contain the destination string. Receives data
following pack/unpack.
CALL 15 permits strings containing only numeric digits (0 thru 9) to
be packed or unpacked into four-bit nibbles (two digits per byte). The
packed string is then half the length of the original string. Generally,
this call is used to reduce file size when numeric-only keys are used.
In addition to digits, the characters “+,-.” and space are valid for
packing. The following table depicts each digit’s packed
representation:

CHAR PACKED CHAR PACKED
 + 0001 , 0010
 - 0011 . 0100
Space 0101 0 0110
 1 0111 2 1000
 3 1001 4 1010
 5 1011 6 1100
 7 1101 8 1110
 9 1111

EXAMPLES
CALL 15,A$,B$

CALL 15,B$,A$

ERRORS
String Expression must be used here
Error detected in/by user CALL routine

See also
CALL 20/21, CALL 45/46

CALL 18/19

SYNOPSIS
Pack and Unpack Radix 50.

SYNTAX
CALL 18, ascii ,
packed ! Pack a string

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 314 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CALL 19, packed ,
ascii , {flag} ! Unpack a string

DESCRIPTION
ascii is any str.var containing ASCII characters to be packed into
Radix 50. Packing permits 3 characters to be stored into 2-byte
positions reducing a strings length by 33%.
packed is any str.var DIMensioned at least 66% of the size of the
ascii and contains packed Radix 50 characters.
Radix 50 packing allows 3 bytes of string information to be packed
into 2 physical bytes of storage using the formula:

(C1*40+C2)*40+C3 where C is a character’s pack value..
A 40-character (508) subset is utilized for this type of packing. Lower
case letters will be converted to upper case automatically. The
resulting packed string is 66% the length of the ascii string.
flag is any optional num.var used to specify whether to remove
trailing spaces following an unpack. If the flag is omitted or zero, then
ascii will be space-filled past the end of data and up to its
dimensioned length.
The following table depicts each valid radix 50 character and its
packed representation:

CHAR/PACK CHAR/PACK CHAR/PACK CHAR/PACK
 0 01 A 11 K 21 U 31
 1 02 B 12 L 22 V 32
 2 03 C 13 M 23 W 33
 3 04 D 14 N 24 X 34
 4 05 E 15 O 25 Y 35
 5 06 F 16 P 26 Z 36
 6 07 G 17 Q 27 , 37
 7 08 H 18 R 28 - 38
 8 09 I 19 S 29 . 39
 9 10 J 20 T 30 SP 00

EXAMPLES
DIM A$[100],B$[66]

CALL 18,A$,B$!PACK

CALL 19,B$,A$,1 !UNPACK TRIM TRAILING SPACES

ERRORS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 315 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

String Expression must be used here
Not enough parameters passed to CALL

See also
CALL 48/49

CALL 20/21

SYNOPSIS
Pack/Unpack Numeric Strings.

SYNTAX
CALL 20, source, dest ! Pack
CALL 21, source, dest ! Unpack

DESCRIPTION
When using CALL 20, source is any str.var containing only numeric
digits to be packed into BCD data, 2 digits per byte. dest is any str.var
DIMensioned at least 50% of the DIM of source to receive the
packed data.
When using CALL 21, source is any str.var containing a previously
CALL 20 packed string variable to be converted back to ASCII
digits. The resulting un-packed data is placed into the string variable
dest. The DIMension of dest must be at least twice the DIM of
source.
The following table depicts each digits packed representation:

DIGIT PACKED DIGIT PACKED
 0 0001 5 0110
 1 0010 6 0111
 2 0011 7 1000
 3 0100 8 1001
 4 0101 9 1010

EXAMPLES

A$="0123456787778877878"

CALL 20,A$,B$! PACK

CALL 21,B$,A$! UNPACK

ERRORS
Error detected in/by user CALL routine

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 316 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Not enough parameters passed to CALL
String Expression must be used here

See also
CALL 15, CALL 45/46

CALL 22/23

SYNOPSIS
Check for Numeric /Arithmetic Field.

SYNTAX
CALL 22, string
CALL 23, string

DESCRIPTION
string is any str.expr which is to be checked for numeric or arithmetic
data.
CALL 22 scans the selected string to ensure that it contains no non-
numeric bytes. Acceptable characters are the digits 0 thru 9 only,
however, a null string is accepted. An error is generated if any non-
numeric character is encountered, or if the parameter passed is not a
string variable.
CALL 23 scans the selected string to ensure that it contains a valid
arithmetic field. Characters accepted are the digits 0 thru 9, a
maximum of one period (decimal point), and a prefixed sign (+ or -).
At least one digit must be present, except in the case of a null string,
which will be accepted. An error will be generated if any invalid
character is detected or the parameter passed is not a string variable.

EXAMPLES
CALL 22,"12345"

CALL 23,"+1234.55"

ERRORS
Error detected in/by user CALL routine
String Expression must be used here

See also
CALL $STRING, CALL 29, CALL 30, CALL 43, CALL 44,
CALL 56, CALL 57, CALL 60

CALL 24

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 317 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Verify Date Inputs.

SYNTAX
CALL 24, date {,result {, result flag {,mode}}}

DESCRIPTION
date is any str.var containing a date to be verified. Many different
date formats are supported. Valid date formats are:
1) xxx dd,
{19}yy

2) dd xxx
{19}yy 3) mm/dd/yy

4) mm.dd.yy 5) mm.dd.yyyy 6) mm/dd/yyyy
xxx is a month name of three characters or more, such as "JAN",
"APR", "AUGUST", etc. dd is the day of the month, and yy or yyyy is
the year. Any separator may be used between the fields with form 3
and 4 above as long as the same character is used, i.e. 12.22.88, or 12-
22-88.
If the environment variable EUROPEAN is set, dates in forms 3 and
4 are assumed to be day month year.
If the date is valid, date is rearranged to the form 'yymmdd' or
'yyyymmdd', as determined by the optional mode parameter, without
separators. If invalid, an error is generated.
The optional mode is any num.expr which, after evaluation is
truncated to an integer and determines the number of digits returned
to represent the year. A two digit year, i.e. "yymmdd", is returned if
mode is unspecified or zero. A four digit year, i.e. "yyyymmdd", is
returned if mode is non-zero.
The optional result is any str.var which, if included, receives the
rearranged date leaving date unaffected.
The optional result flag is any num.var which, if included, receives
the status of the verify operation; 0 for valid date, and 1 for an invalid
date.
CALL 24 is also used to convert dates for input to CALL 25.

EXAMPLES
LET A$="JAN 23, 1990"

CALL 24,A$,B$,F \ IF F THEN STOP

ERRORS
Error detected in/by user CALL routine
String Expression must be used here

See also
CALL 25, CALL 27, CALL 28, CALL $TIME

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 318 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CALL 25

SYNOPSIS
Convert to Julian Date.

SYNTAX
CALL 25, {flag,} date {, result date {, status }}

DESCRIPTION
flag is any optional num.expr used to specify the type of date format
for input and output. If flag is not specified, zero is assumed. Flags
are:

flag Input Date Output
Date

Comment

 0 yymmdd yyddd year and day of year; e.g. 98365
 1 yymmdd ddddd days since January 1, 1968
 2 yymmdd yyyyddd 4 digit year and day of year; e.g.

1998365
 4 yyyymmdd yyddd 2 digit year and day of year; e.g.

98365
 5 yyyymmdd ddddd days since January 1, 1968
 6 yyyymmdd yyyyddd 4 digit year and day of year; e.g.

1998365
date is any str.var in post CALL 24 form, i.e. YYMMDD. If date is
valid, it is rearranged to the selected Julian date form. If invalid, an
error is generated.
The optional result date is any str.var which, if included, receives the
converted date leaving date unchanged.
The optional status is any num.var which, if included, receives the
error status; 0 for valid date, and 1 for invalid date.
CALL 27 is used to convert Julian dates back to printable dates.

EXAMPLES
CALL 25,A$,B$,S \ IF S STOP

ERRORS
Error detected in/by user CALL routine
String Expression must be used here.

See also
CALL 24, CALL 27, CALL 28

CALL 27

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 319 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Convert from Julian to Printable Date.

SYNTAX
CALL 27, {flag,} jul date {, result date {, status }}

DESCRIPTION
flag is any optional num.expr used to specify the type of date being
passed to and returned from CALL 27. If flag is not specified, zero is
assumed. Flags are:

flag Input Date Output
Date

Comment

 0 yyddd mm/dd/yy year and day of year; e.g. 98365
 1 ddddd mm/dd/yy days since January 1, 1968
 2 yyyyddd mm/dd/yy 4 digit year and day of year; e.g.

1998365
 4 yyddd mm/dd/yyyy 2 digit year and day of year; e.g.

98365
 5 ddddd mm/dd/yyyy days since January 1, 1968
 6 yyyyddd mm/dd/yyyy 4 digit year and day of year; e.g.

1998365
jul date is any str.var in Julian date form generated by CALL 25. If
the date is valid, jul date is rearranged to "MM/DD/YY" or
"MM/DD/YYYY" form. If invalid, an error is generated. The
environment variable DATESEP is used as the separation character,
and EUROPEAN specifies date conversion to the format:
"DD/MM/YY" or "DD/MM/YYYY".
result date is any optional str.var which, if included, receives the
converted jul date and jul date is unchanged.
The optional status is any num.var which if included, receives the
error status; 0 for valid jul date, and 1 for invalid jul date.

EXAMPLES
CALL 27,A$,B$,S \ IF S STOP

ERRORS
Error detected in/by user CALL routine
String Expression must be used here.

See also
CALL 24, CALL 25, CALL 28

CALL 28

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 320 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Convert to Printable Date.

SYNTAX
CALL 28, date {,result date {, status {,mode}}}

DESCRIPTION
date is any str.var containing a date in post CALL 24 form, i.e.
"YYMMDD" or "YYYYMMDD". Date is converted to standard
"MM/DD/YY" or "MM/DD/YYYY" output format as determined by
the optional mode parameter.
An error is generated if the parameter is not a string variable
dimensioned at least 8 bytes, or if date is invalid. If the environment
variable EUROPEAN is set, the date is converted to the form
"DD/MM/YY" or "DD/MM/YYYY" as determined by the optional
mode parameter. The environment variable DATESEP is used as the
separation character.
The optional mode is any num.expr which, after evaluation is
truncated to an integer and determines the input and output date
formats for the CALL. If mode is not specified, zero is assumed.
Modes are:

mode Input Date Output Date
 0 yymmdd mm/dd/yy
 1 yyyymmdd mm/dd/yy
 4 yymmdd mm/dd/yyyy
 5 yyyymmdd mm/dd/yyyy

The optional result date is any str.var which, if included, receives the
rearranged date leaving date unchanged.
The optional status is any num.var which, if included, receives the
error status; 0 for valid date, and 1 for invalid date.

EXAMPLES
CALL 28, A$

ERRORS
Error detected in/by user CALL routine

See also
CALL 24, CALL 25, CALL 27

CALL 29

SYNOPSIS
Edit numeric Field.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 321 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNTAX
CALL 29, string, mask, result

DESCRIPTION
string is any str.var which contains data to be edited.
mask is any str.expr used as a field mask to edit the data supplied in
string. This may consist of any combination of the following
characters:

A Fixed length alphabetic (A-Z). The current source byte
must be alphabetic.

N Fixed length numeric (0-9). The current source byte
must be numeric.

X Variable length alpha-numeric (any character). The
current source byte may be any character.

V Variable length alphabetic. The current source byte can
be alphabetic. If not, comparison continues with the next
mask byte.

Z Variable length numeric. The current source byte can be
numeric. If not, comparison continues with the next
mask byte.

/ Field separator. The current source byte may be any one
of "/", ".", or "-".

. Decimal point. The current source byte must be a ".",
unless followed by "V" or "Z" in the mask.

- Minus sign. The current source byte must be "-", unless
this is the first byte of the mask. If so, comparison
continues with the next mask byte.

Any other character that appears in the mask must appear in the
source string in the corresponding position.
result is any str.var defined to receive the edited string.
CALL 29 verifies that a given string conforms to the specifications of
another string, termed a mask. The edit is performed by comparing
the string with the mask , byte by byte.
The following table illustrates some typical editing examples:

MASK EFFECT
-ZZZ.ZZ Allows a number between -999.99 and 999.99

with a maximum of 2 fractional digits.
ANA NAN This mask is used for the Canadian Postal Code.

The source string length must be 7 bytes, with a
space in the fourth position. Each letter and
digit must be in its fixed place.

NZZZ.NZ Allows a minimum of 1 digit before and after
the decimal, and a maximum of 4 before and 2

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 322 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

after. The decimal point must exist. Note that
"0.0" is allowed.

VVVNZZ Source "A45" results in edit of "A045".
In a sequence of fixed and variable length numeric edit characters
("N" and "Z"), the fixed length character must appear before the
variable length character.
In numeric fields, an edit results in left zero-filling of the field.
An error will occur if:

• Any parameter is not a string variable.
• Source does not conform to mask.
• Destination string dimension is too small.
• Same string used for source and destination.

EXAMPLES
CALL 29,S$,M$,D$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
String Expression must be used here

See also
EDIT, USING

CALL 40

SYNOPSIS
Initialize access to User Message Files.

SYNTAX
CALL 40, channel, filename

DESCRIPTION
channel is any num.expr which, after evaluation, is truncated to an
integer and used to specify an unused channel number for temporary
use to OPEN the message file. Once opened, the channel is then
cleared and free for use by the program. A channel which is not
currently in use should be selected or it will be closed automatically.
filename is any str.expr specifying a filename or pathname to a user
error message file to which you have read-permission. User error-
message files conform to the structure defined in Error Message File.
CALL 40 works in conjunction with the ERM function to read user
messages from a disk file. The CALL selects the file to be used for all

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 323 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

further ERM functions. By issuing secondary CALL 40 statements,
one may use different message files for different application packages
or even within the same program.
The error message file is a text file with each message beginning with
the desired message number (must have a message 0 defined as "No
such Message Number), a colon, and the text (up to 80-characters).

EXAMPLES
CALL 40,3,"0/AR.MESSAGES"

PRINT ERM(12) ! Print Message 12

ERRORS
Not enough parameters passed to CALL
String Expression not allowed here
String Expression must be used here

See also
Error Message File, ERM

CALL 43

SYNOPSIS
Convert to Upper/Lower Case

SYNTAX
CALL 43, mode, string {, position }}

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an
integer and used to select one of the following operations:

Mode Operation Performed
 1 = Convert all letters to upper case.
 2 = Convert first letter only to upper case.
 3 = Convert first letter of each word to upper case.
 4 = Convert all letters to lower case.
 5 = Convert first letter and any single 'I' to upper case.
 6 = Convert all letters to lower case, and any single 'I' to

upper case.
string is any str.var to be converted. The conversion takes place
within the specified string.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 324 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The optional position is any num.expr which, after evaluation, is
truncated to an integer and used to specify the starting character
position in string.

EXAMPLES
CALL 43,1,A$,5

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
String Expression must be used here

See also
CALL 60, CALL $STRING

CALL 44

SYNOPSIS
Miscellaneous String Functions & ECHO.

SYNTAX
CALL 44, mode, { target, string, position, {step} }

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an
integer to select one of the following modes of operation:

Mode Operation Performed
 0 Compare target to string.
 1 Search string for first occurrence of target.
 2 Search string for first non-occurrence of target.
 3 Swap target. Reverses position of all bytes.
 4 Disable terminal echo.
 5 Enable terminal echo.

target is any str.var used in modes 0 thru 2 as the 'search for' string. In
mode 3, target is the string to be swapped.
string is any str.var in modes 0 thru 2 to be searched for the target
string.
position is any num.var which, after evaluation, is truncated to an
integer to select the starting character position for search (mode 1 and
2). Returns position of target string, or zero if not found. Mode 0
causes position to return comparison status as follows:

-2 = string logically less than target

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 325 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

-1 = string shorter than target
0 = target and string exactly equal
1 = target shorter than string
2 = target logically less than string

The optional step is any num.expr which, after evaluation, is truncated
to an integer and used as a counter for search (modes 1 and 2). Causes
comparison to be performed every step bytes in search string. Default
= 1.
CALL 44 is be used for string searching, comparison, and swap. A
step counter is optional and provides for searching a string at 2, 3, or
whatever byte intervals. Search or comparison is full eight-bit and
terminates on null byte.
In addition, CALL 44 may be used to enable or disable terminal
echoing of input characters.

EXAMPLES
CALL 44, A$, B$, P

CALL 44,4 !Disable Echo

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
CALL $ECHO, IO Mnemonics, SYSTEM, CALL $ECHO, CALL
56, SEARCH

CALL 45/46

SYNOPSIS
Pack/Unpack Numeric Strings.

SYNTAX
CALL 45, {flag,} source, dest {,status}
CALL 46, source, dest

DESCRIPTION
flag is any num.expr which, after evaluation is truncated to an integer
and used to select an optional mode for CALL 45. A zero (or omitted)
invokes a packing operation. A value of 1 provides for unpacking
operations within CALL 45.
source is any str.var which is to be operated upon (pack or unpack).
dest is any str.var to contain the resulting operation (pack or unpack).

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 326 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The optional status is any num.var used to return an exception status
from CALL 45. Zero is returned for a successful operation, 1
indicates an error. If status is not supplied, a normal BASIC error is
generated if a conversion error occurs.
CALL 45 and CALL 46 permit strings containing only numeric digits
(0 thru 9) to be packed or unpacked into four-bit nibbles (two digits
per byte). The packed string is then half the length of the original
string. Generally, this call is used to reduce file size when numeric-
only keys are used.
In addition to digits, the characters ",-./" and space are valid for
packing. The following table depicts each digit’s packed
representation:

CHAR PACKED CHAR PACKED
Space 0001 2 1000
 , 0010 3 1001
 - 0011 4 1010
 . 0100 5 1011
 / 0101 6 1100
 0 0110 7 1101
 1 0111 8 1110

 9 1111

EXAMPLES
CALL 45,0,A$,B$,F \ IF F STOP !PACK

CALL 45,1,B$,A$,F \ IF F STOP !UNPACK

CALL 46,B$,A$!UNPACK

ERRORS
Error detected in/by user CALL routine

See also
CALL 20/21, CALL 15

CALL 47

SYNOPSIS
Perform Miscellaneous Functions.

SYNTAX
CALL 47, mode, return

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 327 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an
integer to select the operation for CALL 47.
return is any num.var used to return information, or any num.expr
used to pass information to CALL 47.

Mode Operation Performed
 0 Pop top of GOSUB stack, place return statement

number in return. Returns zero if no GOSUB pending.
Same as MSC(3) and SPC(14) functions.

 1 Push statement number in return onto GOSUB stack.
Similar to GOSUB statement, without branching.

 2 not supported. results in error.
 3 Return current TERM type in return. Same as MSC(32)

and SPC(13) functions.
 4 Disable terminal echo.
 5 Enable terminal echo.

EXAMPLES
CALL 47,1,2300 !Push onto GOSUB stack

ERRORS
Error detected in/by user CALL routine
GOSUBS Nested too deep
No such statement number

See also
IO Mnemonics, SYSTEM, CALL $ECHO, SPC, MSC, GOSUB,
RETURN

CALL 48/49

SYNOPSIS
Pack/Unpack Radix 50 Characters.

SYNTAX
CALL 48, ascii , packed
CALL 49, packed , ascii

DESCRIPTION
The ascii is any str.var containing ASCII characters to be packed into
Radix 50. Packing permits 3 characters to be stored into 2-byte
positions reducing a strings length by 33%.
The packed is any str.var DIMensioned at least 66% of the size of the

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 328 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ascii and contains packed Radix 50 characters.
Radix 50 packing allows 3 bytes of string information to be packed
into 2 physical bytes of storage using the formula:
(C1*40+C2)*40+C3 where C is a character’s pack value.

A 40-character (508) subset is utilized for this type of packing. Lower
case letters will be converted to upper case automatically. The
resulting packed string is 66% the length of the ascii string.
The following table depicts each valid radix 50 character and it’s
packed representation:

CHAR/PACK CHAR/PACK CHAR/PACK CHAR/PACK
 , 01 7 11 H 21 R 31
 - 02 8 12 I 22 S 32
 . 03 9 13 J 23 T 33
 0 04 A 14 K 24 U 34
 1 05 B 15 L 25 V 35
 2 06 C 16 M 26 W 36
 3 07 D 17 N 27 X 37
 4 08 E 18 O 28 Y 38
 5 09 F 19 P 29 Z 39
 6 10 G 20 Q 30 SPACE 00

EXAMPLES
CALL 48,A$,B$! PACK

CALL 49,A$,B$! UNPACK

ERRORS
Not enough parameters passed to CALL
String Expression must be used here

See also
CALL 18/19

CALL 53

SYNOPSIS
ASCII/EBCDIC Conversion.

SYNTAX

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 329 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CALL 53, string, {flag}
DESCRIPTION

string is any str.var to be converted to/from ASCII and EBCDIC.
The optional conversion flag is any num.expr which, after evaluation,
is truncated to an integer. If omitted or zero, string is converted from
EBCDIC to ASCII. If one, then string is converted from ASCII to
EBCDIC.
The entire ASCII character set is convertible back and forth from
ASCII to EBCDIC. There are many EBCDIC characters, however,
which have no ASCII counterpart. These characters will be converted
to nulls if encountered.

EXAMPLES
CALL 53,A$! CONVERT TO ASCII

CALL 53,A$,1 ! CONVERT TO EBCDIC

ERRORS
Data of wrong type (numeric/string)

See also
CALL $ETOA, CALL $ATOE

CALL 56

SYNOPSIS
External Subroutine to Provide String Searching

SYNTAX
CALL 56, {flag,} string {,start}, target, position {,occur {,searchstep
{,targetstep }}}

DESCRIPTION
The optional ignore-null flag is any num.expr which, after evaluation
is truncated to an integer. If omitted or zero, the search terminates at a
null in the search string. 1 = search past null to dimensioned length.
string is any str.var to be searched.
The optional start is any num.expr which, after evaluation is truncated
to an integer and used to specify the starting character position in
string. ABS(start) indicates the position. If start is negative, a
backwards search is performed.
target is any str.expr specifying the substring to locate in string.
position is any num.var used to returns the character position of target
within string. If not found, position returns -1.
The optional occur is any num.expr which, after evaluation is

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 330 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

truncated to an integer and used to specify a search count. If occur is
positive, string is searched for the occur occurrence of target . If
negative, string is searched for the ABS(occur) non-occurrence of
target .
The optional searchstep and targetstep are any num.expr which, after
evaluation are truncated to integers and used to specify a 'step size'. If
either option is used, CALL 56 steps through the appropriate string
by the specified number of characters. For example, if searchstep is
set to 5, then CALL 56 looks for a match at every fifth character of
the string, starting at the offset specified in start. If start = 1, then the
offsets used for a match would be string[1], [6], [11], etc. Note that in
order to use searchstep, occur must be specified. Similarly, in order to
use targetstep, both occur and searchstep must be specified.

EXAMPLES
CALL 56,1,A$,I+1,T$,P,3 !3rd occurrence at I+1

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also
SEARCH, CALL 44, CALL 43

CALL 59

SYNOPSIS
Numeric BIT Manipulation.

SYNTAX
CALL 59, mode, arg1, arg2 (,flag}

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an
integer to specify one of the following operations:

Mode Operation Selected
 0 Reset (zero) bit number arg1 in variable arg2 . flag

returns bit arg1 before reset.
 1 Set bit number arg1 in variable arg2 to one. flag returns

bit arg1 before set.
 2 Test bit number arg1 in variable arg2 . flag returns zero

if the bit is zero or 215-arg1 if the bit is one.

 3 AND variable arg1 to variable arg2 and store result in
arg2 . A logical AND produces a one in each bit

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 331 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

position set in both arg1 and arg2 .
 4 OR variable arg1 to variable arg2 and store result in

arg2 . A logical OR produces a one in each bit position
set in either arg1 or arg2 or both.

 5 XOR variable arg1 to variable arg2 and store result in
arg2 . A logical XOR (exclusive OR) produces a one in
each bit position set in either arg1 or arg2 but not in
both.

 6 Complement (NOT) variable arg1 and store result in
variable arg2 . Each one bit is set to zero and vice-versa.

arg1 is any num.var used to select one binary argument to the CALL.
arg2 is any num.var used to select a second binary argument to the
CALL.
The optional flag is any num.var used to return information from the
CALL.
CALL 59 provides bit manipulation on integer variables in the range
0 thru 65535 (1777778). One-word arithmetic and logical operations
are also provided.
The following table illustrates the effect of the logical operations:

X Y X AND Y X OR Y X XOR Y NOT Y
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1
1 1 1 1 0

EXAMPLES
CALL 59,M,A,B,F

ERRORS
Not enough parameters passed to CALL
Data of wrong type (numeric/string)
Illegal Parameter or Syntax for Command
Function Argument or Statement Mode out of range

See also
CALL $LOGIC

CALL 60

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 332 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Miscellaneous String Functions.

SYNTAX
CALL 60, {mode,} string ...

DESCRIPTION
mode is any num.var which, after evaluation, specifies an optional
mode of operation for the CALL. If omitted, zero is assumed.

Mode Operation Performed
 0 Perform upper case conversion on all lower case letters.
 1 Null the entire string (as in CALL 57).
 2 Set the high-order bit of each data byte to one, excluding

nulls. This is generally used when data is read from
other operating systems. UniBasic internally stores all
ASCII characters with their top bit zero to force them in
the range 0008 to 1778.

 3 Toggle all high-order bits of each character except for
zero bytes and nulls (0008 and 2008). This mode is used
when data is brought to UniBasic from IRIS, BITS or
other high-bit string operating systems.

string is any str.var to be operated upon.
Multiple strings are permitted by CALL 60. Also, the occurrence of a
numeric value resets the mode of operation for the following strings
until another numeric value is specified.

EXAMPLES
CALL 60,1,A$,B$,C$!NULL THE STRINGS

CALL 60,A$,B$!UPPER CASE

CALL 60,1,A$,2,B$,3,C$

ERRORS
Error detected in/by user CALL routine
User CALL parameters out of order

See also
CALL $STRING, CALL 29, CALL 30, CALL 43, CALL 44,
CALL 56

CALL 65

SYNOPSIS
Sort Keys in a String.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 333 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNTAX
CALL 65, status, number, length, sort, work

DESCRIPTION
status is any num.var to receive a return status from the sort
operation:

Status Description
 0 Successful sort operation.
 1 Parameter Error.
 2 number or length was passed as zero.
 3 sort string is too small; less than number * length.
 4 work string is too small; less than length + 8.

number is any num.var which, after evaluation, is truncated to an
integer to specify the number of strings to be sorted.
length is any num.var which, after evaluation, is truncated to an
integer to specify the length of each string.
sort is any str.var containing keys to be sorted.
work is any temporary work string DIMensioned to a minimum of
length + 8.
The sort string may contain any number of fixed-length binary fields
to be sorted. Sorting is based upon the supplied length of each item,
up to number of items.
The resulting sorted string is returned in the str.var sort.

EXAMPLES
CALL 65,E,100,10,A$,W$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
none

CALL 72/73

SYNOPSIS
Gather / Scatter Variables.

SYNTAX
CALL (72 | 73) , string, var.list

DESCRIPTION

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 334 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

string is any str.var from which to gather or scatter data. Its size must
be large enough to load from or store to all of the variables in the
var.list.
var.list is any list of str.vars, num.vars, array.vars, or mat.vars to be
gathered from or scattered to. Only single elements of an array.var or
mat.var may be specified. An entire matrix or array is not copied by
supplying its variable name.
CALL 72 is used to gather a group of variables in the var.list and
copy their contents (binary) into string.
CALL 73 scatters data from string into each variable in the var.list
using a binary copy.
CALL 72/73 may be used with mixed class data (BCD/Base 10000),
but numeric data in string must be of Base 10000. When numeric
variables are gathered, BCD variables are automatically converted to
their Base 10000 equivalent. During scatter, variables are then stored
into the type of the variable in the var.list.
CALL 72/73 are typically used by applications designed prior to
COM and CHAIN READ/CHAIN WRITE. Data would be gathered
and written to a temporary file. Following a CHAIN, the data would
be read and scattered into the appropriate variables in the new
program.

EXAMPLES
CALL 72,2,A$[31,34],P !CONVERT 2%

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also
none

CALL 126

SYNOPSIS
Convert Decimal to Octal.

SYNTAX
CALL 126, value, (string | number)

DESCRIPTION
value is any num.expr which, after evaluation, is truncated to an
integer to specify a decimal value to be converted. value must be in
the range 0 to 231-1.
string is any str.var to receive the octal equivalent in ASCII form,

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 335 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

right-justified. The string variable should be DIMensioned at least 12
to hold the result. The first position receives the sign, which are: space
for positive, and "-" for negative. The remaining 11 positions receive
the right-justified octal value with leading spaces.
If number is specified, it must be any num.var to receive the numeric
value of octal equivalent.

EXAMPLES
CALL 126,a,a$

CALL 126,B,B

ERRORS
Not enough parameters passed to CALL
Data of wrong type (numeric/string)

See also
none

CALL 127

SYNOPSIS
Convert Directory Information.

SYNTAX
CALL 127, directory, array, filename { , mode , information ,
encryption }

DESCRIPTION
directory is any str.var, DIMensioned at least 14 bytes, containing a
BITS directory entry (used only for mode 0 BITS Conversion
Package).
array is any num.array variable DIMensioned for at least 25 entries
at 2% or larger, used to return unpacked information about a file.
Information returned is accessed by the element:

[0] Account group (0-255).
[1] Account user (0-255).
[2] Attribute word as a numeric value Mode 0 only.
[3] File type (0-9), represents “O$BACTSI”.
[4] First disk address.
[5] Record length in bytes. For non-UniBasic files, A[3]=0,

returns 512 for text files and 65534 for non-text file.
[6] File size in blocks (represents both halves of an indexed file).
[7] Creation date in the form MMDDYY.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 336 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

[8] Last access date in the form MMDDYY.
[9] Relative sector offset; Mode 0 only.
[10] Size of record map in sectors (INDX files Mode 0 only).
[11] Number of indices (Index files only).
[12] System time at last access in hours.
[13] Secondary attribute word as a numeric value; Mode 0 only.
[14] Logical unit number, as currently installed; Mode 0 only.
[15] DIRECTORY sector number; Mode 0 only.
[16] Word displacement into DIRECTORY sector; Mode 0 only.
[17] Unix Protection bits; Mode 1 only.
[18] Number of items per record; Mode 1 only.
[19] Revision of UniBasic at time file was created; Mode 1 only.
[20] First Real Data Record as built; Mode 1 only.
[21] Byte offset to Record 0; size of header; Mode 1 only.
[22] Returns the files creation time in hours-since-BASEDATE.

Record length in element A[5] is 512 bytes for a non-UniBasic text
file and 65534 for a non-UniBasic file of type A[3]=0. The first block
of the file is examined and is only considered text if all bytes are
<0x80.
filename is any str.var specifying a file in mode 1, or to return an
unpacked name for mode 0. The filename should be DIMensioned at
least 31 characters (64 characters recommended). Returned in
filename is the actual 14-character name. Supplemental attributes are
returned in bytes 15-29; <PRWdsEOxFQUgabKY>. Lower-case
letters refer to BITS attributes which are only returned when mode 0
is used on a BITS directory unpack.
mode is any num.expr which, after evaluation is truncated to an
integer and used to specify the operational mode for the CALL. If
omitted or 0, then a BITS DIRECTORY entry in directory is
unpacked. Mode 1 is used to locate and return information about the
file contained in filename. Mode 1 is used exclusively for QUERY
and SCAN files. Mode 0 is used by the BITS Conversion Package.
information is any optional array.var used to return information about
an Indexed or Formatted Item File. It must be DIMensioned as
information[128,1].
If the file is Indexed, information returns the following information:

information[0,0] Record length in bytes for file.
information[0,1] Current actual active record count.
information[X,0] Key length for Directory X.
information[X,1] Active Keys in Directory X **.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 337 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

** Most systems do not maintain the current key counts in Indexed
files to increase performance of insertion and deletion operations, so
this value is returned as zero. The information[] array is valid from 1
to the number of Indices returned in array[11].
If the file is a Formatted Item file, information returns the following
information:

information[X,0] Item Type
information[X,1] Item length in bytes.

(Release 9.1) encryption is any optional array.var used to return
information about the Encrypted File. It must be DIMensioned as
encryption[128,2].
If used, encryption returns the following information, where "X" is
the segment number:

encryption[X,0] Segment fill type.
encryption[X,1] Segment item number.
encryption[X,2] Segment length in bytes.

The end of the array is marked by a segment definition with a length
of zero. The seqment fill type has the following meaning.

0 Seqment cannot be read without a valid
encryption key.

1 Segment is zeroed if read without a key ("Z").
2 Segment is space filled if read without a key

("S").
2 Segment is asterisk filled if read without a key

("*").
EXAMPLES

A$="DATAFILE"

CALL 127,D$,A,A$,1,T

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
File does not exist

See also
CALL $FINDF, CALL $RDFHD

Supplied Utilities
Your installation media includes a set of system utilities to assist the developer in
application debugging, file maintenance, and system status.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 338 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The supplied utilities are documented as one of the following types:
System BASIC utilities, documented using upper-case names, are written in BASIC and
may be viewed in source form. Most are supplied to simulate the familiar IRIS and BITS
system processors. Utilities written in BASIC are only available during a UniBasic
session.
Compiled 'C' OBJECT programs, documented using lower-case names, are written in
'C' and compiled to native binary on each platform supported by Dynamic Concepts.
These utilities, as with UniBasic itself, are not generally portable between machines.
Utilities are launched in either command mode or directly within the Unix shell. Utilities
written in BASIC are restricted to command mode and are identified in the synopsis and
examples by the prompt # SCOPEPROMPT. C-Language Object utilities are identified
in the synopsis and examples by the Unix shell prompt $.
When operating within the environment BASICMODE=BITS, certain utilities must be
prefixed with a ! to prevent misinterpretation by the BITS-style combined command
mode and program mode command line interpreter.
For example:

#KILL filename !Launch file delete utility from IRIS mode
*/KILL filename !Launch file delete utility from BITS mode
*KILL "filename" !BITS KILL statement in immediate mode
*!kill process !Force Unix process KILL command in BITS mode
#!kill process !Force Unix process KILL command in IRIS mode

BATCH

SYNOPSIS
Logon and execute commands on a different port.

SYNTAX
#BATCH { /H | {port {command | ^commandfile }}}

DESCRIPTION
The BATCH command allows a user to attach an interactive or
phantom port and transmit commands to that port.
The /H option displays instructions for using BATCH.
port is an optional UniBasic port number. If port is not supplied on
the command line, prompt mode is selected (see below). The port
must be a valid UniBasic port number. If an interactive UniBasic
session is currently running on the selected port, it is terminated to
command mode. If not, a background process is created assuming the
identity of the specified port number.
command is any optional UniBasic command, such as the name of a

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 339 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

program or command. The form ^commandfile instructs BATCH to
read and transmit all of the commands in the text file to the selected
port. If command or commandfile is not supplied, prompt mode is
selected (see below).
BATCH is designed to operate in one of two modes - immediate and
prompt. Immediate mode is assumed whenever both a port and
command or commandfile is specified on the command line. This
mode is useful when a single specific command is to be performed in
background which requires no additional input. Starting a DIR or
LIBR command in background is an example when this mode is
used.
Prompt mode is assumed when any required parameter is not supplied
and BATCH enters a dialogue mode with the user. A port is requested
if one was not supplied as part of the command line. Once the port is
attached BATCH repeatedly prompts for entry of a command.
Multiple commands, such as starting a program followed by the entry
of required prompts is permitted. After successful transmission of
each command, you are prompted for another. Pressing [ESC]
terminates entry of commands and requests a new port number for
another prompt-mode session. Pressing [ESC] a second time
terminates BATCH.
When running in the environment BASICMODE=IRIS, the initial
attachment of the port is in command mode (#).

EXAMPLES
#BATCH 1 ^COMMANDFILE

#BATCH 87 LIBR [OUTPUT] ^

#BATCH

ERRORS
Illegal Port Number
Cannot attach Port

See also
PORT, CALL 98, Port Numbering and Phantom Ports

BUILDXF

SYNOPSIS
Build a new IRIS Indexed File.

SYNTAX
#BUILDXF

DESCRIPTION
BUILDXF is the standard IRIS Indexed File creation utility. It is used

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 340 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

whenever a standard Indexed Data File (not a Polyfile) is to be
created. The first real data record is always set to one (1) when
building a file with this utility.
When creating a new file, simply enter one (1) for the number of data
and indexed records since Indexed files typically expand dynamically.
The Environment Variable: PREALLOCATE may be used to limit
the number of records allowed during expansion, automatic pre-
allocation and other special Indexed File features, controls and
restrictions.
The filename must be given in the form filename! if an existing file is
being replaced.
BUILDXF supports up to 62 directories, 122-byte keys and an
unlimited number of records.
Prompt Information to be Entered
Desired Filename The desired pack, logical unit, or

directory name and filename. An "!"
must be appended to replace an existing
file.

Number of Data Records Total number of data records to be
contained in the file when created. You
must specify 1 record to create the file
for, or the prompt for the record length
is omitted. The Environment Variable
PREALLOCATE may be used to limit
the number of records allowed during
expansion, automatic pre-allocation and
other special Indexed File features,
controls and restrictions.

Data Record Length (#
words)

The maximum size, in words, of the data
records to be used.

Number of Indexed
Records

This value will be added to the Number
of Data Records entry above. For
normal use, press return.

Number of Directories Total number of directories to be
contained in the file. A maximum value
of 62 may be entered.

KEY Length for each
directory

The maximum length in words for each
KEY for each directory. If more than
one directory is defined, you will be
prompted to enter the size of each
directory's key length. A maximum
value of 61 may be entered.

EXAMPLES
#buildxf

PROGRAM TO CREATE AN INDEXED DATA FILE

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 341 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

DESIRED FILENAME? datafile

NUMBER OF DATA RECORDS? 1

DATA RECORD LENGTH (#WORDS)? 512

NUMBER OF INDEXED RECORDS? [return]

NUMBER OF DIRECTORIES? 2

ENTER KEY LENGTH (#WORDS) FOR EACH DIRECTORY:

#1 ? 4

#2 ? 12

PLEASE WAIT . . .

FILE HAS 1 DATA RECORDS

ERRORS
File already exists, use "!" to replace
Value out of range

See also
MAKEIN, Indexed Data Files, PREALLOCATE

CHANGE

SYNOPSIS
Change attributes and/or filename.

SYNTAX
#CHANGE {switches} filename (IRIS)
*/CHANGE {switches} filename (BITS)

DESCRIPTION
switches represent the optional entry of either /H or ?. Either will
display instructions.
filename is any file in the form of lu/filename, or dir/filename only.
Full Unix pathnames are not allowed.
CHANGE operates in a dialogue mode, displaying the current and
requesting new information. Press [RETURN] to move to the next
prompt without changing the displayed information. To change an
item, enter the new information and press [RETURN] Press [ESC] to
terminate the command.
When prompted for Protection, enter IRIS style 2-digit values or
enclose within <> BITS, Supplemental, or Unix 3-digit permissions.
The prompt for NEW COST is printed only for IRIS compatibility
and has no affect.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 342 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CHANGE utilizes the MODIFY statement to perform the operations.

Note When operating within the BASICMODE=BITS environment,
CHANGE invokes the internal command with the same name (See
CHANGE Command). To invoke this utility, the command must be
entered in the form: /CHANGE

EXAMPLES
#CHANGE TEST

TEST IS A UNIX DATA FILE

IF NO CHANGE, PRESS RETURN - [CHANGE ? FOR HELP]

FILENAME = TEST

NEW NAME ? [RETURN]

COST = $0.00

NEW COST ?[RETURN]

PROTECTION: 60

NEW PROTECTION ? <666>

ERRORS
File does not exist
File is Read Protected
File is Write Protected

See also
Filenames and Pathnames, File Attributes, Protection and
Permissions, Using IRIS Protections, Using Unix Permissions, BITS
Attributes, Supplemental Protection Attributes

COPY

SYNOPSIS
Make an identical copy of any file.

SYNTAX
#COPY {<attr>} destination = source,{source1}

DESCRIPTION
<attr> are any optional protections or permissions for the new file.
These may be specified in IRIS, BITS or Unix format.
destination is the name of a new file to create. It may be in the form
lu/filename, pack:filename, or it may be any Unix full pathname. If
destination begins with $, no file is created. Instead, the destination is

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 343 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

opened and data is copied a line at a time from the source. If the
destination is executable, a pipe is opened to the destination.
Otherwise, data from the source overwrites the destination.
source is the name of an existing file to which you have read-
permission. If more than one source filename is given, data is merged
into the destination.
If destination filename is to replace an existing filename, then
destination must be given in the form of filename!.
COPY creates the destination using the supplied attr or, if no attr are
supplied, using the default permissions 666. These are affected by the
current value of umask.
If the source is the name of a UniBasic Indexed Data File, and dest is
not a named pipe, both the data portion, and the ISAM portion file is
copied.
COPY utilizes the DUPLICATE statement to perform the operation.

EXAMPLES
#COPY /usr/ub/1/payrollbackup = /usr/ub/1/payroll

#COPY <644> programsave=program

#COPY $lpt=data2

#COPY $/usr/bin/pg=textfile

ERRORS
Filename does not exist
Illegal Pathname specified

See also
Filenames and Pathnames, File Attributes, Protections and
Permissions, DUPLICATE, Pipes

DIR

SYNOPSIS
Produce an expanded listing of files in a directory.

SYNTAX
#DIR {switches}

DESCRIPTION
switches are optional, and used to limit, select and control the list of
filenames printed from a {specified} directory. If no switches are
entered, all public files in the current working directory are displayed.
The following switches may be entered in any order, separated by
spaces:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 344 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

/H Print instructions for using DIR. An abbreviated
list of commands and their formats is displayed.

switches controlling re-direction & output:
/L Output to printer, $LPT. All output is paginated

and directed to the executable script lpt.
/L=$filename Output to device 'filename'. Select any executable

pipe to direct the output. All output is paginated
and directed through the pipe.

/L=filename Create and output to a text file filename.
/S Abbreviate the information displayed using two

columns. Only the filename, account, and size is
displayed.

switches controlling location and owner of files to display:
path: Specify the Unix full pathname, or a pathname

within the Environment Variable LUST from
which to create the directory listing. pathname
must be terminated by a colon.

[GRP-USR] List public files on the Unix group id (GRP) and
user id (USR). Public files are those which you
have read or write permission. Up to 10 different
[GRP-USR] selections may be entered.

[GRP-*] List all public files for one group, any user.
[*-USR] List all public files for one user, any group.
[*-*] or @ List all public files on any account.
switches controlling alphabetization of output:
/A Alphabetize by filename. All selected files are

sorted by filename.
/AA Alphabetize by user account numbers. Files are

sorted first by [GRP-USR], followed by filename.
switches restricting type & age:
T=type Restrict listing to specific file types. These types

are:
T Tree-Structured Data Files.
$ Executable device drivers, shell scripts or 'C'
programs.
C ;Contiguous Data Files.
I Indexed Data Files; all, whether poly or normal.
B BASIC Saved Program files.
S System BASIC Saved Program Files.

>X List only those files not accessed within X hours.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 345 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

<X List only those files accessed within X hours.
<<X List only those files created within X hours.
>>X List only those files older than X hours.
switches restricting filenames :
(abc*) Restrict listing to files beginning with 'abc', such

as "abc", "abcdata".
(*xyz) Restrict listing to files ending with 'xyz', such as

"xyz" and "dataxyz".
(ab*z) Restrict listing to files beginning with 'ab' and

ending with 'z'.
(*ijk*) Restrict listing to files containing 'ijk'.

Up to 20 selections, separated by commas may be
included within ().

EXAMPLES
#DIR /L=TEXTFILE @T=I (A.*, *.DAT)

#DIR /usr/ub/1: @ /A

ERRORS
No such file or directory

See also
LIBR, MAKECMND

FORMAT

SYNOPSIS
Create a Formatted Data File.

SYNTAX
#FORMAT {/H | {<attr> { [X:Y] Filename } } (IRIS)
*/FORMAT {/H | {<attr> { [X:Y] Filename } } (BITS)

DESCRIPTION
The FORMAT utility creates and defines fixed record Formatted Data
Files. Options may be entered directly on the command line. Required
parameters not entered on the command line will be requested as
input.
If a single Filename is specified on the command line, FORMAT
attempts to build it. If multiple Filenames are entered, they are not
built until the record has been defined.
The utility requests all format information required to build the file.
Enter ESC at any time to abort the file. For each field to be defined,

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 346 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

the following information is requested:
/H Display instructions for using FORMAT.
<attr> Specify the file's optional attributes. Attributes may

be specified as 2-digit IRIS protections, BITS
attributes, Supplemental attributes or 3-digit Unix
permissions enclosed with < >.

{[X:Y]} When specified on the command line, FORMAT
creates a Contiguous data file with X records of
record length Y words.

Filename Optional name(s) of the file or files to be created. A
filename must be specified on the command line
when a Contiguous data file is being created.

When the command line does not specify creation of a Contiguous
file, FORMAT enters a conversational mode. Information not
supplied on the command line is requested, including:

Request Information to be Entered
Filename Enter the filename to create. To replace an existing

file, append "!" to the end of the filename.
Attributes Enter the desired attributes for the file being

created. Attributes may be specified as 2-digit IRIS
protections, BITS attributes, Supplemental
attributes or 3-digit Unix permissions enclosed with
< >.
See also File Attributes and Permissions.

ITEM# Enter the various types of fields and their lengths to
be defined within the file. Valid types are:
Sn String data where n is the length of the field.
Valid lengths are greater than zero and less than
65535. For example, S20 will create a 20-byte
string field.
Dn Numeric data where n is the precision to be
specified. Valid precisions are 1 through 4. See also,
Numeric Variable Precision. For example, N2 will
create a 4-byte numeric field.
Bn Binary strings or matrix data, where n is the
length of the field in words. Valid lengths are
greater than zero and less than 32768. For example,
B20 will create a 40-byte binary field.
[Return] End definition, create file. FORMAT
continues to step to the next field until only
[RETURN] is entered for ITEM, or until the field
number exceeds 127.

EXAMPLES

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 347 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

#FORMAT <P> [10:10] FMTFILE

#FORMAT /H

#FORMAT FILENAME

ERRORS
Filename already exists; use "!" to replace
Invalid parameter or syntax for command
File 'filename' syntax error
Invalid! Precision must be 1 thru 4
Invalid! String item must be >0 and less than 65535
Invalid! Binary item must be >0 and less than 32768

See also
MAKEITEM Utility, Numeric Variable Precisions, Creating
Formatted ITEM files

KEYMAINT

SYNOPSIS
Analyze/Maintain Indexed Data Files.

SYNTAX
#KEYMAINT {filename}

DESCRIPTION
filename is the name of an existing UniBasic Indexed data file.
filename may be in the form lu/filename, pack:filename, or any Unix
full pathname. If a filename is not entered on the command line,
KEYMAINT prompts for its entry.
The following commands are available:
Cmd Name Description
A Add Key Insert keys into the index currently selected.

Enter Key to add:
Enter the key to insert.
Enter Record # for (key):
Enter the record # to be associated with (KEY).

C List Count Displays the number of keys that were listed last
using the last L option.

D Delete Key Delete keys from the selected index.
Enter the key you wish to delete:
Enter the key to delete.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 348 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

(KEY) deleted, return record # (rec) to free
list?
Enter N if you do not want the record returned;
any other response will return the record to the
free list. The (KEY) field will display the KEY
you deleted and the (rec) field displays the record
number used by the KEY.

F New File Change from one file to another.
Enter Filename:
Enter a new filename in the form:
filename <RETURN>
- or -
filename-index number <RETURN>
The filename may include a packname, logical
unit or directory name.

G Get Key Scan the selected index (from a specified starting
point) to locate a key to delete.
Enter beginning key to delete:
Enter the key that you wish to start the scan from.
The key and associated record number are
displayed.
(D)elete, (S)can, (E)xit:
Enter E to return to the command prompt.
Enter S to scan up to the next key.
Enter D to delete the key.

H Help Displays the help information.
I Info on File Recall file information for display.
L List Index Displays keys in the selected index.

Enter Key to start at:
Enter the key from which you wish to start the
display. The display shows 14 keys, then
responds:
Press 'Return' to see more:
Press Return to see the next 14 keys.
Press ESCape to return to the command prompt.

N New Index Change the selected index.
Enter index number:
Enter the index (directory) number you wish to
browse.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 349 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

O Output
Data
Record
String

Output up to 512 bytes of a data record as a string.

All non-printable characters are displayed as ^.
Enter Record # for (O)utput:
Enter the Record number you want to output.

R Read Data Read a data record one item at a time.
Enter key to read:
Enter the key for the record you want to read. If
you press <Return>, the response is:
Enter the Record # to read:
Enter a physical record number.
Enter type (1-6=Numeric, S###=String):
Enter a number from 1 to 6 to specify numeric
precision.
Enter S and the length for a string. String length
can be up to 512 bytes.
Enter Displacement:
Enter the byte displacement in the data record for
the item you want to read. You will then see the
record number, displacement, the type, and the
data item.

W Write Data Write a data record one item at a time.
Enter Key to write:
Enter the key of the record you want to write. If
you press <Return>, the response is:
Enter the Record # to write:
Enter a physical record number.
Enter type (1-6=Numeric, S###=String):
Enter a number from 1 to 6 to specify numeric
precision.
Enter S and the length for a string. String length
can be up to 512 bytes.
Enter Displacement:
Enter the byte displacement in the data record for
the item you want to write.
Enter data to write:
Enter the data you want to write. You will then see

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 350 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

the record number, displacement, the type, and the
data item.

X Exit
Program

Allows you to exit KEYMAINT

Z Get or
Release
Record

Get or release records.

(G)et or (R)elease Record
Record Enter G to get a record form the free list.
Enter R to release a record to the free list.
If you enter G, the display is:
Record number (rec) is now yours!
Where (rec) is the record number removed from
the free list.
If you enter R, the display is:
Enter Record number to release:
Enter the record number that you want to release
back to the free list.

General Guidelines:
Press ESCape to return to the previous prompt. You will move back
one prompt each time you press ESCape.
The /L option can be used with any command to print the output as a
log:

/L Sends the output to the system printer 'sys/lpt'.
/L=$file Sends the output to a secondary printer named file.
/L=file Sends the output to a text file named file.

EXAMPLES
KEYMAINT /H

KEYMAINT

ERRORS
Filename does not exist
File is Write-protected
Selected data record is locked
Index file structure error or svar dim length < Key count
Illegal record number (past end of file)
Key not found

See also

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 351 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Indexed Files

KILL

SYNOPSIS
Delete a single file or a list of files.

SYNTAX
#KILL filename {, filename} . . .

DESCRIPTION
filename is the name of any file to which you have write permission
and wish to remove from the system. It may also include a logical
unit, packname or directory specifier.
If a single filename is supplied, and it was deleted, the message,
"DELETED", is displayed. When a list of filenames is specified and
all files were deleted, the message, " ALL DELETED", is displayed.
If any filename in the list is invalid, KILL reports an error and
attempts to delete the remaining files in the list. If any filename is
delete protected, or you do not have write permission to the file, you
are prompted with the error description and asked whether to delete
the file. An answer of Y attempts to change the attributes and delete
the file. Pressing [RETURN] or N skips the file and proceeds with the
remainder of the filenames in the list.
When KILL is issued to an open in-use file, the filename entry is
removed from the system directory immediately to prevent further
access, but it remains open where in-use. The file is ultimately
removed when the last user closes the file. This Unix behavior more
closely resembles IRIS behavior. BITS systems did not permit the
deletion of any file which was opened and in use.
KILL utilizes the KILL statement after parsing individual filenames
from the command line. If attributes are to be changed on a prompted
deletion, the MODIFY statement is used.
When operating in the environment BASICMODE=BITS, KILL
must be preceded by a / (RUN command). Otherwise, UniBasic
assumes the entry, and attempts execution of a KILL statement in
immediate mode.
(Release 9.1) Can be used with encrypted files without an encryption
key.

EXAMPLES
KILL ABC

KILL /usr/genled,/usr/PAYROLL

/KILL filename

filename is Delete Protected. Delete (Y/N) Y

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 352 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ERRORS
File is write-protected
Filename does not exist

See also
KILL statement, MFDEL Utility

LIBR

SYNOPSIS
Generate an expanded listing of files in a directory.

SYNTAX
#LIBR {switches}

DESCRIPTION
LIBR is supplied for IRIS programmers to generate a directory
listing. LIBR uses the Unix 'ls' command to generate its output.
LIBR only operates properly if BASICMODE=IRIS is enabled.
switches are optional, and used to limit, select and control the list of
filenames printed from a {specified} directory. If no switches are
entered, all public files in the current working directory are displayed.
The following switches may be entered in any order, separated by
spaces:
@ List all accessible files for all accounts. An accessible file is

any file with read permission set for the user issuing the
command.

@g List all accessible files belonging only to accounts in group g,
where g is a decimal number

@g,u List all accessible files belonging only to the account group g,
and user u.

*type Restrict listing to specific file types. Valid types are:
T Text Files.
$ Executable device drivers, shell scripts or 'C' programs.
C Contiguous Data Files.
I Indexed Data Files; all, whether poly or normal.
B BASIC Saved Program files.
S System BASIC Saved Program Files.
F Formatted Data File

abc List all only files whose names begin with the characters given.
For example: abc, abcc, abcd, abcz, etc.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 353 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

^ Alphabetize listing by filename. All selected files are sorted by
filename. Without the up-arrow option, files are listed in order
of occurrence in directory.

>X List only those files not accessed within X hours.
<X List only those files accessed within X hours.
dir/ List files in directory dir. Only directories within the LUST

environment variable will be searched.
_ Abbreviate the information displayed using only the File Type

and Filename columns.
[dest] Output the listing to either a pipe ($lpt) or a textfile.

EXAMPLES
LIBR SYS/ @ *B

LIBR 1/ >20 <40 *I ^

ERRORS
Logical unit not active
Filename in use and no "!" supplied

See also
DIR utility, File Attributes

loadlu

SYNOPSIS
IRIS/BITS Logical Unit to Unix Transfer Utility.

SYNTAX
$ loadlu device dest type

DESCRIPTION
Load a BITS or IRIS logical unit image from tape. A list of three
arguments must follow the command. They are defined as:

device Selects the source containing an IRIS or BITS backup
tape. Normally, device specifies the Unix no-rewind tape
device name. Many systems prepend an "n" to the
device name as the no-rewind device, such as
"/dev/nrtp" or "/dev/nrct0"

dest Select the destination filename to store the BITS or IRIS
tape image, i.e. /usr/ub/tapefile.

type Select the type or format from which the original backup
was performed. Available options are:
iris IRIS media.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 354 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

bits BITS media.
starcopy PCBITS media.
dump Other foreign tapes.

If more than one logical unit resides on a single tape, loadlu will stop
at the first filemark. To append subsequent logical units, re-issue the
command using the no-rewind device

EXAMPLES
$ loadlu /dev/nrtp lu1 iris

$ loadlu /dev/nrStp1 pgms bits

ERRORS
INDEX header not found within first 99 blocks
Data does not appear to be in proper format
Read returns -1, tape appears to be in wrong format
Cannot find packname on disk
Cannot reopen /dev/xxx for reading
Cannot reopen /dev/

See also
none

lptfilter

SYNOPSIS
Filter ASCII data through a pipe.

SYNTAX
lptfilter [-ffilename] [-gn] [input_byte replacement_string]

DESCRIPTION
-f filename: Specify a filename which contains multiple

input_byte replacement_string pairs. input_byte
replacement_string pairs must be separated by
white space (tab, newline, or space). When
identical input_byte replacement_string pair are
specified in both the filename and the command
line, the pair specified on the command line
takes precedence.

$-$gn Define the mode to translate extended graphical
characters. n represents one of the following
translation methods:
0: (default) No translation is performed on

graphic mnemonics. Characters that fall

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 355 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

into the range of graphic mnemonics will
be translated normally.

1: Conditional translation of graphic
mnemonics. Graphic mnemonics are
translated once lptfilter detects a 'BG'
(\0236\) mnemonic in the data stream.
Graphic mnemonic translation is
suspended once lptfilter detects an 'EG'
(\0237) mnemonic. All characters between
sent between 'BG' and 'EG' and within the
range of \0306\ and \0341\ are translated as
graphic characters.

2: Unconditional translation of graphic
mnemonics. lptfilter will translate graphic
mnemonics without regard to the presence
of BG' or 'EG' mnemonics.

input_byte = Input byte to be translated as one of the
following:
1. Two-letter UniBasic mnemonic. For

example: 'BX', 'BG', 'G1','BU', etc.
2. Single ASCII character such as A, X, G
3. One-byte octal, decimal, or hexadecimal

value
Care should be exercised in the representation
of input bytes. A single byte, (e.g. \306\), can
have two identities - graphic and non-graphic.
DCI recommends representing input bytes with
the UniBasic mnemonics to avoid confusion.

replacement_string
=

Replace every occurrence of input_byte with
this replacement string. The
replacement_string may be a series of ASCII
characters or octal, decimal, or hexadecimal
values.

lptfilter is generally used to translate certain mnemonics for printers.
The utility filters ASCII data, but does not conform directly to IRIS
mnemonic values.
All octal, decimal, and hexadecimal values are represented by a
backslash (\) followed by a value which determines base. For
example:

Octal values are preceded by a "\0": \020
Decimal values are preceded by a "\": \16
Hexadecimal values are preceded by a
"\0x": \0x10

EXAMPLES

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 356 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

lptfilter BX \010

lptfilter \0x8D \0x0A

lptfilter -g1 -fptr1

ERRORS
lptfilter not found

See also
Configuring Printer Drivers, Installing & Configuring UniBasic, CRT
mnemonics

MAKE

SYNOPSIS
Create multiple data files with the same attributes.

SYNTAX
#MAKE {<attr>} filename {,filename ,. . .}

DESCRIPTION
attr are any optional attributes for the file. The attributes must include
the specification of a record count and the record length in the form:
count:length may be included. The file structure selection must also
be given. The structure is indicated with a "T" for tree structure, or
"C" for contiguous structure. This indicator is used for the file type.
The following other attributes can be included:

P Public. A public file can be accessed by any account. If P is
not selected, only the creator, or a user with a higher
privilege access it.

R Read protect. This attribute makes it impossible for any
other accounts to read the file.

W Write protect. No other account can write data to the file.
EXAMPLE

MAKE <100:512CP> ABC D17 DISK1 FILE-17

ERRORS
Filename already exist; use "!" to replace

See also
File Attributes, Protections and Permissions

MAKECMND

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 357 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Generate a command file for BATCH or EXEC.
SYNTAX

#MAKECMND { switches file USING DIRfile} {/H}
DESCRIPTION

switches accepts the /H help option only.
file selects the filename to create and hold a series of commands. file is
built as a standard Unix text file.
USING DIRfile selects the filename of a DIR /l=file utility output
previously executed.
MAKECMND generates a command file for use by BATCH or
EXEC commands. A command file generally consists of a set of
commands repeated for a number of filenames read from a DIR
listing.
If no options are present on the command line, the user is prompted
for the file to create, DIRfile.
The user is prompted to enter a series of commands to apply to each
of the filenames in the DIRfile. Up to 20 command lines may be
entered. Command lines are normally duplicated to the command file,
with the following replacement options:
Characters Replaced with (from DIR listing)
 ? A filename.
 ? (X,Y) Characters X through Y of a filename.
 @ The account [GRP-USR]
 <?> The file's attributes.
 <?+Y-Z> Add or subtract individual letters from the file's

attributes.
 (SAV) The appropriate save command for the BASIC program

(SAVE or PSAVE). DIR listing must be /V type.
Negative subscripts can be used with the "?" character to specify a
displacement from the end of the filename, for example:
 ? "FILENAME"
 ?(,1,) "FILENAM"
 ?(-3) "NAME"

EXAMPLES
#MAKECMND cfile USING dirlist

Create Command File

Press [RETURN] to exit

Line #1: GET ? [RETURN]

Line #2: DUMP TEMP! [RETURN]

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 358 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Line #3: GET TEMP [RETURN]

Line #4: CHANGE ? <> [RETURN]

Line #5: (SAV) <?> ?! [RETURN]

Line #6: [RETURN]

This command file could be used to dump each file to ASCII type,
then reload and save it with the original attributes.

ERRORS
Filename already exists; use "!" to replace

See Also
BATCH, DIR

MAKEHUGE

SYNOPSIS
Convert a Universal file into a Huge Universal file.

SYNTAX
$ MAKEHUGE filename

DESCRIPTION
MAKEHUGE converts an existing Universal file into a Huge
Universal file that supports file sizes larger than 2 gigabytes. The
MAKEHUGE utility does not change the index node size
(ISAMSECT) of an Indexed file. The ubcompress utility can be used
before or after converting a file to change the index node size. Huge
files are not supported on some older operating systems..

EXAMPLES
$ MAKEHUGE CUSTHISTORY

ERRORS
Command format error
Not a Universal file
Cannot open file
Cannot write to file

See Also
File Attributes

MAKEIN

SYNOPSIS

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 359 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Build a new UniBasic Index File.
SYNTAX

#MAKEIN
DESCRIPTION

MAKEIN is the standard BITS Indexed File Creation Utility. It is
used whenever a standard Indexed File is to be created. The first real
data record may be set to zero or 1.
When creating a new file, you may press return for the number of
records to allocate, since the files are dynamic.
MAKEIN supports up to 62 indices, 122-byte keys and an unlimited
number of records.
The user is prompted to enter the following information:
Prompt Information to be Entered
Filename for indexed
file

The desired filename, including any logical
unit, packname or directory pathname.
Append "!" to replace an existing file.

File attributes Protections and controls, if any, that are to
be applied to the file. The choices are: PRW.
Default is to use the user's current
protections. See BITS Attributes section for
a complete description.

Number of Data
Records

Total number of data records to be contained
in the file when created. You may either
specify an exact number of records or press
return allowing a file to expand dynamically.
The Environment Variable
PREALLOCATE is used to limit the
number of records during expansion,
automatic pre-allocation and other special
Indexed File features, controls and
restrictions.

Record length in bytes The maximum size, in bytes, of the data
record. It must be an even number, an odd-
sized record is rounded up automatically.

Number of Indices Total number of indices to be contained in
the file. A maximum value of 62 may be
entered.

KEY Length (2-122
bytes)

The maximum number of bytes in each
KEY for each index. If more than one index
is defined, you will be prompted to enter the
length of each index's key. It must be an
even number, an odd-sized key-length is
rounded up automatically.

Preallocate data portion Specify whether to allocate the number of

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 360 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

records specified during creation. Default is
to not pre-allocate the records.

Allocate record zero Specify whether you wish to use record
number zero as the first real data record.
Default is to set zero as the first real data
record.

EXAMPLES
#MAKEIN

Index File creation package.

Filename for indexed File ICFILE

File attributes P

Number of user data records [return] Dynamic

Record length in Bytes 512

Number of Indices 2

#1: KEY Length (2-122 bytes) 10

#2: Key Length (2-122 bytes) 24

Pre-allocate the data portion of the file (Y-N/N) [RETURN]

Allocate record zero (Y-N/N) [RETURN]

Creating and structuring the file, Hold on;

Index File "icfile" has been created.

ERRORS
File already exists, use "!" to replace
Value out of range

See Also
BUILDXF, Indexed Data Files, PREALLOCATE

MAKEKEY

SYNOPSIS
Create or modify a key file for use with encrypted files.

SYNTAX
#MAKEKEY

DESCRIPTION
The MAKEKEY utility is an interactive program used to create or
modify key files. Key files are used to supply the encryption keys
used to open or create encrypted files (see Encrypted Files). Key files
allow programs to transparently open, read, and write encrypted files
without having each program explicitly define encryption keys. The

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 361 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

path of the key file is normally contained by the environment variable
UBKEYFILE so that UniBasic can read the key file during
initialization. There are two forms of key files: standard key files and
master key files. Standard key files are locked to a specific system
license number (see SSN) and can be loaded into the current key list
automatically via the UBKEYFILE environment variable. Master
key files are used to move key lists between systems and to create
standard key files. Both types of key files can themselves be
encrypted by passphrases.

The following commands are available:

Name Description
LOAD Read keys from a master key file into the current key

list.
SAVE Write the current key list to a master key file.
MAKE Write the current key list to a key file.
ADD Add a new encryption key definition to the current

key list.
CHANGE Modify an existing encryption key definition in the

current key list.
DELETE Delete an encryption key definition from the current

key list.
DELETEALL Delete all encryption key definitions from the current

key list.
PRINT Display the current key list.
HELP Display a list of commands.
QUIT Exit the MAKEKEY utility and restore the key list

from UBKEYFILE.
All commands except DELETEALL can be abbreviated using the
first letter of the command. Commands can be typed in lowercase or
uppercase.

EXAMPLES
#MAKEKEY

Makekey - Key File Maintenance Utility

Key list is empty

Command (enter "help" to display commands)?a

Key name? examplekey

Supported ciphers:

1. AES-256

2. AES-128

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 362 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

3. 3DES

4. DES

Cipher number? 2

Passphrase?

Repeat passphrase?

Name Cipher Passphrase

EXAMPLEKEY AES-128 ***************

Command (enter "help" to display commands)?s

Name/path of master file? examplemaster

Passphrase?

Repeat passphrase?

Master file successfully written.

Name Cipher Passphrase

EXAMPLEKEY AES-128 ***************

Command (enter "help" to display commands)?deleteall

Key list is empty.

Command (enter "help" to display commands)?l

Path of master file (type ENTER to abort)? examplemaster

Passphrase?

1 record added.

Name Cipher Passphrase

EXAMPLEKEY AES-128 ***************

Command (enter "help" to display commands)?m

Name/path of key file? examplekeys

Passphrase (type ENTER if none)?

File label? Example of a key file

Key file successfully written.

Name Cipher Passphrase

Name Cipher Passphrase

EXAMPLEKEY AES-128 ***************

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 363 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Command (enter "help" to display commands)?q

ERRORS
Passphrase is too short (minimum 8 characters)
Passphrases do not match
Error writing master file
Unable to create file
Invalid cipher number

See Also
Encrypted Files, Indexed Files, SYSTEM statement

makeosn

SYNOPSIS
Create an OSN to activate runtime or listing of psaved programs.

SYNTAX
$ makeosn {switches}

DESCRIPTION
makeosn, which comes with the Passport product, is used in
conjunction with a DCI supplied Product Description Number (PDN)
to create multiple OSN (OEM Security Numbers). An OSN enables
the runtime and/or listing of programs encrypted by PSAVE , as well
as operation of the PSAVE command itself.
The -m switch provides for the creation of both a master and user
OSN.

EXAMPLES
$ makeosn

$ makeosn -m

ERRORS
Makeosn not running as root
No company/product description entered
Invalid PDN encryption

See Also
PSAVE, OEM

makesp

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 364 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Create a system BASIC program.

SYNTAX
$ makesp filename {filename . . .}

DESCRIPTION
filename is the name of any saved BASIC program which is to
become a system command.
makesp converts saved BASIC programs into system programs by
changing their type from SAVE to SYST. System BASIC programs
are treated as commands instead of programs when specified in a
CHAIN statement. UniBasic closes all channels and exits to
command mode copying the entire CHAIN command into the input
buffer for execution as a command.
This feature is used to create system commands and utilities from
BASIC programs. The LIBR, COPY, KILL, PORT, and TERM
utilities included with UniBasic are a few example system programs
written in BASIC.
Setting the <O> overlay attribute in system programs preserves the
current program running in memory when entered directly from
command mode.

EXAMPLES
$ makesp program1

$ makesp program1 program2 program3

ERRORS
Cannot open
No such file or directory

See Also
CHAIN, File Attributes

MFDEL

SYNOPSIS
Delete a list of files simultaneously.

SYNTAX
#MFDEL command list

DESCRIPTION
command list consists of a series of filenames to be deleted. Special
options are permitted as follows:

Convention Explanation

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 365 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

@dirname@ Specify a default directory to apply to all
subsequent filenames with the exception of
filenames in the form dirname:filename.

^Dirfile Extract the filenames to be deleted from DIRfile.
Any @dirname@ selection is overridden for the
files within the DIRfile.

EXAMPLES
MFDEL MINE @progs@ DONM THAT file files:ZZZ

ERRORS
File not found
Command format error

See Also
KILL utility, KILL statement

PORT

SYNOPSIS:
Query or Change a Port's Status.

SYNTAX
#PORT {port-range} {EVICT} {MONITOR | M | ACTIVITY}

DESCRIPTION
port-range Specifies the range of port numbers to operate upon.

Valid range is 0 thru 4095. The port-range may be a
single port number, x-y to select ports x through y
inclusive and @ or ALL for all valid port numbers.

EVICT Evict - sign off all port numbers selected by port-range.
MONITOR Monitor the activity of all port numbers selected by

port-range. The letter M or the word ACTIVITY may
replace the word MONITOR. Monitor mode displays the
following information:
Port The UniBasic port number.
Group The Group Number a particular user is

assigned to.
User The User Number a particular user is

assigned to.
Processor The Unix Process running, UniBasic.
Program The program running under UniBasic. If a

port is at command mode or at SCOPE, the
display is empty for that port's program.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 366 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EXAMPLES
#PORT ALL MONITOR

#PORT 20 EVICT

#PORT 132 ACTIVITY

ERRORS
Illegal Port; range allowed: (0-4095)
Illegal command

See Also
TERM Utility

QUERY

SYNOPSIS
Obtain detailed information about a file.

SYNTAX
#QUERY {/switches} {Filename}

DESCRIPTION
The optional switches may be used to as follows:

Switch Meaning
 ? Print instructions for using QUERY. Instructions are

also printed when no options are entered on the
command line.

 @ Output the available disk space. Performs the Unix
"df -t"

 FILE Scan the file and print historical information.
 -L If FILE is an Indexed File, compute and display the

number of keys in each directory. This option may
take several minutes to complete.

filename selects any filename, lu/filename, pack:filename, or full Unix
pathname to be queried.

EXAMPLES

#QUERY ICFILE

#QUERY -L ICFILE

#QUERY @

#query ar.customers

AR.CUSTOMERS is a UniBasic INDEXED file with 500 records of 335

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 367 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

words each

Size of UniBasic header: 512 bytes.

There are: 2 indices, 340 active records of 670 bytes each

INDEX KEY LEN WORDS KEY LEN BYTES ACTIVE KEYS

 1 3 6 Issue QUERY -L FILE

 2 9 18 Issue QUERY -L FILE

Created on UniBasic Level: 5.1

Full path and filename: /usr/dci/files/ar.customers

Priv: none, Account Group: 102, User: 204

Protection: <60> Unix: <660> Additional Attr:

, Size: 701 Blocks

Creation: 12-07-93

Accessed: 12-07-93 (0) hours ago

ERRORS
Command format error
Filename does not exist
Protected filesystem or directory
File is Read-protected

See Also
SCAN Utility, Files

SCAN

SYNOPSIS
Obtain detailed information about a file.

SYNTAX
#SCAN {switches} { directory } {filename | DIRfile } . . .

DESCRIPTION
If no switches or filenames are entered on the command line, the user
is prompted for filename to be interrogated. Press [RETURN] to
terminate this method of operation.
switches and options may be used to affect the operation as follows:

Option Meaning
/H Output instructions for using SCAN.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 368 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

/L=$name Re-direct all output to the named pipe$name.
/L=filename Re-direct all output to filename as a text file.
packname Specify the packname (directory) to be searched for

all subsequent filenames. This option may be used
to simplify command input when a number of
filenames on the same pathname are to be scanned.

filename A specific filename to obtain detailed information
for.

^DIRfile A list of filenames, created by the DIR utility to
obtain detailed information for. Each filename
within the DIR output file is scanned.

EXAMPLES
#SCAN ICFILE

#SCAN 1/data1

#SCAN /H

ERRORS
Command format error
Filename does not exist
Protected filesystem or directory
File is Read-protected

See Also
QUERY Utility, Files

TERM

SYNOPSIS
Query or change a port's status.

SYNTAX
#TERM {port-range} COMMAND {parameters}

DESCRIPTION
port-range Specifies the range of port numbers to operate upon.

Valid range is 0 thru 4095. The port-range may be a
single port number, x-y to select ports x through y
inclusive and @ or ALL for all valid port numbers.

EVICT Evict - sign off all port numbers selected by port-
range. The letter E may replace the word EVICT.

MONITOR Monitor the activity of all port numbers selected by
port-range. The letter M may replace the word
MONITOR. Monitor mode displays the following

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 369 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

information:
UniBasic Port number
tty name or number
Default pathname
User account number
Operational mode
Channel in use
Program and files currently in use

The following two optional parameters may used in
conjunction with the M COMMAND.

'F' Output all channels and files currently opened for
each UniBasic port.

'C' Causes continuous monitoring, repeating every 10
seconds.

A port can be shown to be in one of three operating modes:
Mode Description
Cmnd Prompt mode, waiting for a command or statement
Run BASIC program execution
List BASIC program being listed

EXAMPLES
TERM ALL EVICT

TERM @ E

TERM 20 M

TERM @MF

ERRORS
Illegal command, "TERM /H" for list of commands

See also
PORT Utility

ubcompress

SYNOPSIS
Compress UniBasic Indexed Files.

SYNTAX
$ ubcompress [-t tempdir] [-v] filenames

DESCRIPTION

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 370 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

ubcompress reduces the size occupied by the index portion of a
UniBasic index file. If any errors occur during compression, the
original file is unaffected.
There must be sufficient disk space for the original and a temporary
index portion at the same time. It may be useful to list the files in
order of smallest-to-largest to avoid running out of disk space when
processing the larger files.
-t tempdir specifies the directory for temporary files.
-v displays the file size and prompts user before replacing.
If your hard disk is separated into several file systems, you may need
to specify the directory in which to build the temporary file, using
either the environment variable TMPDIR, or the command line
option "-t". File types other than UniBasic indexed files are ignored.
The default temporary directory is /usr/tmp.
This utility should be run periodically on files subjected to substantial
insertion and deletion of keys. Files which insert and delete relatively
sequential keys, such as order files, temp files etc. will benefit most
from ubcompress.

EXAMPLES
ubcompress /usr/ub/1

ubcompress -t /u/tmp -v /u/ub/files

ubcompress /usr/*

ERRORS
Cannot generate temporary filename
Cannot open filename: c-tree error
Cannot create index file
Cannot initialize additional index number X
Cannot reopen index file
Cannot add key to index
Cannot close temporary file
Cannot close original file
Cannot replace original file
Cannot set original file mode
Cannot set original file ownership

See also
Indexed Files and Universal Files.

ubconvertfiles

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 371 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SYNOPSIS
Convert UniBasic file(s) to Universal file(s).

SYNTAX
$ ubconvertfiles { -h | -i x | -n | -o dir | -t x | -v n | -C h | -F | -V}
filenames

DESCRIPTION
ubconvertfiles converts non-Universal UniBasic Indexed,
Contiguous, and Formatted file(s) to Universal file(s). The source
file(s) must be UniBasic BCD file(s) and must be converted on the
native platform. The Indices must not contain IRIS style keys
(PREALLOCATE option 64) unless the “-i k” option is set and the
keys consist only of printable characters. Binary data (e.g. packed
data) should be avoided for maximum platform independence.
The converted file(s) may be read on a different hardware platform
using UniBasic and dL4. The converted file(s) may also be read on a
Microsoft Windows system using version 3.0 and higher of dL4 for
Windows.
It is recommended that you have a current backup of the file(s) to be
converted before processing. Also, verify that the file(s) to be
converted are currently not in use by someone else. In other words, no
one should have the file(s) open.

Note: You may use the ubrebuild utility to verify the integrity of an Indexed
file's deleted record list before running this program.

filenames is a space separated list of files to convert to UniBasic
Universal data files. Wildcards characters are accepted in filenames.
The command line options are:

-h print help.
-i x where 'x' is case insensitive and specifies the option(s) for

Indexed Contiguous files. Options c, e, f, and p are
mutually exclusive, but may be combined with d to
produce the desired results.
c converted file will have no deleted record list.
e abort on corrupted deleted record flag; file is not

converted.
f ignore any deleted record flag error; convert file with a

possibly corrupt deleted record list.
k convert IRIS style keys ("k" attribute). The keys must

not contain non-printable characters.
p on deleted record flag error, stop building the deleted

record list and retain the portion of the list already

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 372 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

processed. (default)
d disable "records-in-use" count for dL4 files (non-

default). Disabling the count will increase file
performance when deleting or adding records. It will
also, however, cause SEARCH statement mode 1, index
0 to report an incorrect result for STATUS=1 (number of
available records) and STATUS=7 (number of records in
use). In both cases the result will assume that there are
no deleted records in the file. Disabling the count does
not prevent the reuse of deleted records; it only effects
the SEARCH functions that return record counts. Note
that the "number of records available" is, in fact, always
inaccurate because Universal files are dynamically
expandable up to the amount of disk space available.
The QUERY utility uses the SEARCH statement and
will display an incorrect active record count for any file
with the "records-in-use" count disabled.

-n report information about the file(s) without performing a
conversion. May be used to test file(s) and/or gather
information on file(s). The information reported is the file
name, file type, file format, UniBasic release level,
workspace, convertible status, and summary of file(s)
processed. For example:
cust.master

Type: INDEXED

Format: BCD

Created on UniBasic Level: 5.5

Work space needed: 2936

Convertible

1 file(s) processed

All file(s) are convertible

The listing of filenames as generated by the ls command
may be redirected to a file, the file inspected and edited as
needed, then used as input to the ubconvertfiles utility. For
example:
ls * >files

Creates the file 'files' which contains the name of all the
files in the present working directory. This file may be
inspect and/or edited, then used as the source of filenames
to the ubconvertfiles utility as follows:
cat files | xargs ubconvertfiles -v9

-o
dir

build the Universal file(s) in directory dir and keep the
original file(s) unchanged.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 373 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

-t x where x is case insensitive and specifies the file type to
convert. Multiple options may be specified.
i for Indexed
c for Contiguous
f for Formatted

-v n verbose mode 'n' where 'n' may be 0, 1, 2, 3, 4, 5, or 9.
Each verbose mode outputs its own statistics plus those of
the lower modes. Examples may be found in the Statistical
Reports section of the ubconvert User's Guide.

-C h specify dL4 Character set 'h'
-F force conversion of non-BCD file(s).
-V print version number of this utility.

EXAMPLES
ubconvertfiles -h

ubconvertfiles -o /tmp /usr/ub/files/ar1

ubconvertfiles -t c /usr/ub/data/sales2

ERRORS
Error processing file 'filename': detected non-convertible file type:
Unix
Error processing file 'filename': is a BITS file
Error processing file 'filename': file contains IRIS style keys

See also
Contiguous Files, Formatted Files, Indexed Files, and Universal Files
in the UniBasic Reference Guide.

ubrebuild

SYNOPSIS
Rebuild a UniBasic Indexed File deleted record list.

SYNTAX
$ ubrebuild {-c } {-r } {-s } {-f } { -v } filenames

DESCRIPTION
ubrebuild rebuilds the deleted record list within a non-Universal
Indexed file. When the deleted record list is damaged, your UniBasic
application may receive a c-tree error 31.
A scan of the free record chain is performed and the file is rebuilt
based on the actual deleted record marks within the file, thus ignoring
the existing pointers in the free chain.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 374 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Several options are available in determining how to rebuild a file. The
command line options are:

-v verbose mode, displays data during operation.
-c unconditionally clear the delete list. The next record

allocated will extend (add) a new record to the file. Deleted
records are orphaned.

-r unconditionally clear the delete list. Scan all records in the
file rebuilding the delete list

-s scan delete list for errors. Report any errors and proceed to
clear or rebuild only if errors were found and -r or -c is
specified.

-f force use of a temp file (instead of memory) for -s option.
File types other than UniBasic indexed files are ignored by
ubrebuild.

EXAMPLES
ubrebuild -c /usr/ub/files

ubrebuild -s /usr/ub/files/ar1

ubrebuild *

ERRORS
Cannot gain exclusive access to filename
No record length
Unable to create temporary file

See also
Indexed Files, Universal Files, SEARCH Statement, C-tree errors

ubterm

SYNOPSIS
Create UniBasic Terminal Definition File.

SYNTAX
$ ubterm {terminal ...}

DESCRIPTION
terminal is the name of a terminal having a corresponding Unix
Terminfo driver. An error is printed if the TERMINFO name is
undefined, if the sys directory cannot be found in any path within
LUST, or permission to create a file in the sys directory is denied.
To create a UniBasic term file from a Unix Terminfo driver, a
minimum set of functions (cursor addressing & clear screen) must be
contained in the Terminfo definition. A list of UniBasic mnemonics

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 375 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

not currently defined in the Terminfo driver is displayed. Specifically,
the mnemonic CU (clear unprotect) is not defined by Terminfo and
should be added manually.
UniBasic term files are maintained using a standard editor, like "vi".

EXAMPLE
$ ubterm tvi925 wyse60

ERRORS
Cannot locate the TERMINFO driver
No sys/ directory found in "LUST" environment variable
Cannot open output file sys/term.xxx

See also
Installing UniBasic, CRT $TERM files

ubtestlock

SYNOPSIS
Diagnostic Program to Test Record Locking.

SYNTAX
$ ubtestlock filename byte-offset length { ... }

DESCRIPTION
ubtestlock is a diagnostic program to test record locking in a network
environment. It may be executed from the Unix command prompt. It
performs the following five operations, any of which may report a
system error:

1. open the file
2. seek to the byte-offset
3. read the length number of bytes
4. read-lock (without wait)
5. write-lock (without wait)

If the system is configured correctly for record locking no messages
are returned from the program and the system prompt ($) is displayed.
Any failures must be analyzed to determine if the read-lock or write-
lock operation was the actual cause of the failure. The following is a
typical message that indicates record locking is not available:

Read lock error: No locks available

filename is any absolute or relative path and name of a file that exist
on the file system for which the user has read and write access
permissions.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 376 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

byte-offset is a numeric value specifying the starting location in
filename at which to seek and perform the read, read-lock, and write-
lock operations.
length is a numeric value specifying the number of bytes to read. A
warning is reported if length specifies bytes beyond the end-of-file
(EOF). For example, if test1 is a 40 byte file and the following
command is issued:

$ ubtestlock test1 5 40

The following message is reported:
Warning: read request 40, actual read 36 in file test1

EXAMPLE
$ ubtestlock testfile 0 10

$ ubtestlock testa 0 10 testb 20 10

ERRORS
Unable to open file 'testfile': No such file or directory
Unable to open file 'testfile': Permission denied
Read lock error: Link has been severed

See also
none

WHO

SYNOPSIS
Displays information about your UniBasic process.

SYNTAX
#WHO

DESCRIPTION
WHO displays the following information about your UniBasic
process:

Port The UniBasic port number
CPU Secs (not used)
Connect The UniBasic session time in hours and minutes
Time System date and time
Disk (not used)
User User and Group Number
Default The current working directory name
Total Used (not used)

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 377 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Limit (not used)
Left (not used)

EXAMPLE
*WHO : Port 7 CPU Secs: 0.0 Connect: 10:17 Time: 15 April 1993

16:20:47 Disk: User [101-101] Default: /usr/ub/sys Total Used:

-1, Limit: -1, Left: -1

ERRORS
None

See also
TERM Utility, PORT Utility

Appendix A - ASCII CODES
ASCII, an acronym for American Standard Code for Information Interchange, is a 7-bit
representation for data transmission. ASCII characters stored internally conform to 7-bit
ASCII industry standard. 8-bit ASCII characters are reserved for graphics, and crt
mnemonics.
As discussed in Internal Representation of ASCII Characters(f), characters are toggled
from the familiar IRIS/BITS 8-bit to the internal 7-bit form.
In the following table, INT refers to the internal storage of the character, EXT the
external (program) format. ASCII codes are shown in both octal and decimal. CT is
used to indicate a CONTROL character. All codes shown are for the printable character
set. INT codes greater than 128 (200 octal) or EXT codes less than 128 (200 octal)
represent CRT mnemonics.

INT/EXT
OCTAL DECIMAL Key Char Comments

000/200 000/128 CT-@ NUL Null, tape feed.
001/201 001/129 CT-A SOH Start heading.
002/202 002/130 CT-B STX Start text.
003/203 003/131 CT-C ETX End text/message; EOM.
004/204 004/132 CT-D EOT End of transmission.
005/205 005/133 CT-E ENQ Enquiry.
006/206 006/134 CT-F ACK Acknowledge.
007/207 007/135 CT-G BEL Ring bell.
010/210 008/136 CT-H BS Backspace.
011/211 009/137 CT-I HT Horizontal tab.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 378 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

012/212 010/138 CT-J LF Line feed.
013/213 011/139 CT-K VT Vertical tab.
014/214 012/140 CT-L FF Form feed.
015/215 013/141 CT-M CR Carriage return.
016/216 014/142 CT-N SO Shift out.
017/217 015/143 CT-O SI Shift in.
020/220 016/144 CT-P DLE Data link escape.
021/221 017/145 CT-Q DC1 XON.
022/222 018/146 CT-R DC2 AUX ON.
023/223 019/147 CT-S DC3 XOFF.
024/224 020/148 CT-T DC4 AUX OFF.
025/225 021/149 CT-U NAK Negative ack.
026/226 022/150 CT-V SYN Synchronous idle.
027/227 023/151 CT-W ETB End block/ medium;LEM.
030/230 024/152 CT-X CAN Cancel.
031/231 025/153 CT-Y EM End of medium.
032/232 026/154 CT-Z SUB Substitute.
033/233 027/155 CT-[ESC Escape.
034/234 028/156 CT-\ FS File separator.
035/235 029/157 CT-] GS Group separator.
036/236 030/158 CT-^ RS Record separator.
037/237 031/159 CT-_ US Unit separator.
040/240 032/160 space SP Space
041/241 033/161 ! Exclamation point
042/242 034/162 " Quotation mark
043/243 035/163 # Pound sign
044/244 036/164 $ Dollar sign
045/245 037/165 % Per cent symbol
046/246 038/166 & Ampersand
047/247 039/167 ‘ Accent acute or '
050/250 040/168 (Left parenthesis
051/251 041/169) Right parenthesis
052/252 042/170 * Asterisk
053/253 043/171 + Plus sign
054/254 044/172 , Comma

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 379 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

055/255 045/173 - Minus sign or hyphen
056/256 046/174 . Period
057/257 047/175 / Forward slash
060/260 048/176 0 Numeral zero
061/261 049/177 1 Numeral one
062/262 050/178 2 Numeral two
063/263 051/179 3 Numeral Three
064/264 052/180 4 Numeral four
065/265 053/181 5 Numeral five
066/266 054/182 6 Numeral six
067/267 055/183 7 Numeral seven
070/270 056/184 8 Numeral eight
071/271 057/185 9 Numeral nine
072/272 058/186 : Colon
073/273 059/187 ; Semi-colon
074/274 060/188 < Less than symbol
075/275 061/189 = Equals sign
076/276 062/190 > Greater than symbol
077/277 063/191 ? Question mark
100/300 064/192 @ At sign
101/301 065/193 A Uppercase letter A
102/302 066/194 B Uppercase letter B
103/303 067/195 C Uppercase letter C
104/304 068/196 D Uppercase letter D
105/305 069/197 E Uppercase letter E
106/306 070/198 F Uppercase letter F
107/307 071/199 G Uppercase letter G
110/310 072/200 H Uppercase letter H
111/311 073/201 I Uppercase letter I
112/312 074/202 J Uppercase letter J
113/313 075/203 K Uppercase letter K
114/314 076/204 L Uppercase letter L
115/315 077/205 M Uppercase letter M
116/316 078/206 N Uppercase letter N
117/317 079/207 O Uppercase letter O

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 380 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

120/320 080/208 P Uppercase letter P
121/321 081/209 Q Uppercase letter Q
122/322 082/210 R Uppercase letter R
123/323 083/211 S Uppercase letter S
124/324 084/212 T Uppercase letter T
125/325 085/213 U Uppercase letter U
126/326 086/214 V Uppercase letter V
127/327 087/215 W Uppercase letter W
130/330 088/216 X Uppercase letter X
131/331 089/217 Y Uppercase letter Y
132/332 090/218 Z Uppercase letter Z
133/333 091/219 [Left bracket.
134/334 092/220 \ Backslash.
135/335 093/221] Right bracket.
136/336 094/222 ^ Up arrow, caret.
137/337 095/223 _ Underscore.
140/340 096/224 ‘ Accent grave.
141/341 097/225 a Lowercase letter A
142/342 098/226 b Lowercase letter B
143/343 099/227 c Lowercase letter C
144/344 100/228 d Lowercase letter D
145/345 101/229 e Lowercase letter E
146/346 102/230 f Lowercase letter F
147/347 103/231 g Lowercase letter G
150/350 104/232 h Lowercase letter H
151/351 105/233 i Lowercase letter I
152/352 106/234 j Lowercase letter J
153/353 107/235 k Lowercase letter K
154/354 108/236 l Lowercase letter L
155/355 109/237 m Lowercase letter M
156/356 110/238 n Lowercase letter N
157/357 111/239 o Lowercase letter O
160/360 112/240 p Lowercase letter P
161/361 113/241 q Lowercase letter Q
162/362 114/242 r Lowercase letter R

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 381 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

163/363 115/243 s Lowercase letter S
164/364 116/244 t Lowercase letter T
165/365 117/245 u Lowercase letter U
166/366 118/246 v Lowercase letter V
167/367 119/247 w Lowercase letter W
170/370 120/248 x Lowercase letter X
171/371 121/249 y Lowercase letter Y
172/372 122/250 z Lowercase letter Z
173/373 123/251 { Left brace
174/374 124/252 | Vertical bar
175/375 125/253 } Right brace
176/376 126/254 ~ Alt mode, Tilde
177/377 127/255 RUB DEL Delete, rubout

Appendix B - CRT Mnemonics

The following table shows the mnemonic code, \xxx\ octal format used within an
application as an equivalent to the Code, the Internal value transmitted to file or device
for the mnemonic, and a brief description of mnemonic. For a complete description of
the mnemonics, refer to CRT Expressions and Mnemonics.
Code \xxx\ Internal Description

ET 003 203 ETX Code.
RB 007 207 Ring Terminal Bell.
ML 010 210 Move Cursor Left.
TF 011 211 Tab Forward to next tab stop (BITS)
LF 012 212 Line Feed.
VT 013 213 Vertical Tab
FF 014 214 Form Feed
CR 015 215 Carriage Return.
MH 017 217 Move Cursor Home.
CS 020 220 Clear Screen.
S1 021 221 Special user code 1.
S2 022 222 Special user code 2.
S3 023 223 Special user code 3.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 382 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

S4 024 224 Special user code 4.
ES 025 225 End Status Line definition.
SO 026 226 Status On.
SF 027 227 Status Off
WS 030 230 Write Status Line.
K0 031 231 Cursor Off.
K1 032 232 Cursor Blinking Block.
K2 033 233 Cursor Steady Block.
K3 034 234 Cursor Blinking Underline.
K4 035 235 Cursor Steady Underline
BG 036 236 Begin Graphics (Extended Graphics).
EG 037 237 End Graphics.
MR 040 240 Move Cursor Right one position.
RD 041 241 Read Current Cursor position.
EF 042 242 End Function Key definition.
CU 043 243 Clear Screen Unprotected.
CL 044 244 Clear to End-of-Line (unprotected).
CE 045 245 Clear to end-of-screen (unprotected).
P1 046 246 Program Function Key 1.
P2 047 247 Program Function Key 2.
P3 050 250 Program Function Key 3.
P4 051 251 Program Function Key 4.
MD 052 252 Move Cursor Down 1 line.
MU 053 253 Move Cursor Up 1 line.
P5 054 254 Program Function Key 5.
P6 055 255 Program Function Key 6.
P7 056 256 Program Function Key 7.
P8 057 257 Program Function Key 8.
BB 060 260 Begin Blink mode.
EB 061 261 End Blink mode.
BR 062 262 Begin Reverse Video mode.
ER 063 263 End Reverse Video mode.
BD 064 264 Begin Dimmed Intensity mode.
ED 065 265 End Dimmed Intensity mode.
BP 066 266 Begin Protected Field mode.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 383 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

EP 067 267 End Protected Field mode.
BU 070 270 Begin Underline mode.
EU 071 271 End Underline mode.
BX 072 272 Begin Expanded Print mode.
EX 073 273 End Expanded Print mode.
FM 074 274 Enter Format mode.
FX 075 275 Exit Format mode.
LK 076 276 Lock Keyboard.
UK 077 277 Unlock Keyboard.
BT 100 300 Begin Transmission from CRT memory.
MP 101 301 Use Memory Pointer instead of cursor for next

positioning command.
IL 102 302 Insert Line at current position.
DL 103 303 Delete Line at current position.
IC 104 304 Insert Character at current position.
DC 105 305 Delete Character at current position.
CT 106 306 Clear Tabs {all}.
ST 107 307 Set Tab at current position.
AE 110 310 Auxiliary Port Enable.
AD 111 311 Auxiliary Port Disable.
SL 112 312 Send Line {all}.
LU 113 313 Send Line {unprotected}.
SP 114 314 Send Page {all}.
GR 115 315 Set Color Green.
TB 116 316 Tab Backward to last tab stop.
PI 117 317 Position Indicator Character.
RE 120 320 Set Color Red.
PU 121 321 Send Page {unprotected}.
YE 122 322 Set Color Yellow.
BL 123 323 Set Color Blue.
MA 124 324 Set Color Magenta.
CY 125 325 Set Color Cyan.
WH 126 326 Set Color White.
XX 127 327 Initialize Terminal defaults.
SA 130 330 User-defined code A.

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 384 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

SB 131 331 User-defined code B.
SC 132 332 User-defined code C.
SD 133 333 User-defined code D.
BV 134 334 Box Vertical; Vertical line character.
BH 135 335 Box Horizontal; Horizontal line character.

136-141 Reserved for future use.
WD 142 342 Set 80-column mode.
NR 143 343 Set 132-column mode.
RF 144 344 Reset Function Keys to defaults.
TL 145 345 Transmit line {unprotected}.
TP 146 346 Transmit line {protected} or Toggle Page.
TR 147 347 Transmit screen {unprotected}.
TS 150 350 Transmit screen {protected}.
PS 151 351 Print contents of Screen.
RS 152 352 Reset Terminal to defaults.
BA 153 353 Begin Transparent Print.
EA 154 354 End Transparent Print.
RV 155 355 Display Reverse Video as light on dark.
NV 156 356 Display Reverse Video as dark on light.
BO 157 357 Begin non-transparent Print.
EO 160 360 End non-transparent Print.
BK 161 361 Perform return without line-feed, Or Set Color Black.
IO 162 362 IOxx mnemonic prefix code.
BPW 173 373 Begin Protect Window Display replaces use of BD

dimmed intensity.
EPW 174 374 End Protect Window Display.
PC1 175 375 PC1 Cursor secondary (coordinate separator).
PC2 176 376 PC2 Cursor tertiary (sequence terminator).
PC 177 377 '@' Start of Cursor Address Sequence.
Only the preceding mnemonics and Extended Graphics Mnemonics on the following
pages may be defined within a term file. The user cannot define custom mnemonic
names.
Combination IO mnemonics are represented by the IO mnemonic byte followed by an
additional byte for 4-letter mnemonics, and two bytes for six letter mnemonics. They
have no definition within the term file, but are shown here when it may be desirable to
use octal form instead of the mnemonic:
Code \xxx\ Internal Description

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 385 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

IOBE 001 201 Begin Input Echo mode.
IOEE 002 202 End Input Echo mode.
IOBI 003 203 Begin Transparent Input.
IOEI 004 204 End Transparent Input.
IOBO 005 205 Begin Transparent Output.
IOBD 031 231 Enable Destructive Backspace.
IOED 032 232 Disable Destructive Backspace.
IOB\ 033 233 Begin Echoing \ on Escape.
IOE\ 034 234 End Echoing \ on Escape.
IOCI 035 235 Clear Type-ahead Buffer.
IOBC 036 236 Begin Activate on Control Character.
IOEC 037 237 End Active on Control Character.
IOBX 041 241 Begin XON/XOFF protocol.
IOEX 042 242 End XON/XOFF protocol.
IORS 043 243 Reset IOxx parameters.
IOIH 044 244 Set Input Handler to next byte./
The following mnemonics are accepted, but perform no-operation:
Code \xxx\ Internal Description

IOIHIR 001 201 Standard Input Handling
IOIHSM 002 202 SM Basic Input Statement.
IOIHSR 003 203 SM Basic Read Style Input.
IOISSI 004 204 Simple Input; CTRL+S/Q.
Three additional Debugging mnemonics are supported; HX, OC, and AS. They affect
the output of the next string variable presenting the entire string (including zero-bytes) in
either Hex, Octal or ASCII respectively. They are not definable as output replacement
strings within the term file.
For a complete list of terminal mnemonics, see CRT Mnemonics and Expressions.

Appendix C - Error Numbers

When an error is detected during program execution, and error branching using IF
ERR(s), ERRSET(s), or ERRSTM(s) is not enabled, the program is terminated to
debug mode (files open) and the following message is displayed:

Error in stn stn;sub-stn / text

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 386 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

where stn is the statement number, sub-stn the sub-statement number at which the error
occurred, and text is a message describing the error.
The following table represents the internal UniBasic error returned by the ERR(0)(e)
function. BASIC Error numbers are positive in the range 1 to 255. Negative error
numbers are used to return special Unix errno errors which do not map directly to a
BASIC error. The corresponding IRIS SPC(8)(e) numbers and System Errors may be
found on subsequent pages.
The numbering of errors divides them into six groups to aid in program error branching.

Group 1--Encoding Syntax and Command Errors

Error
Number Text Description

 1 Unrecognizable word
 2 Format error
 3 Incorrect parenthesis closure
 4 Incorrect subscript closure
 5 Line (stn) number is missing or invalid
 7 IFs without 'ENDIF' \
 8 'ELSE' without 'IF') Only issued by RUN or SAVE
 9 'ENDIF' without 'IF' /
 10 Too many variables defined, limit is 348
 11 Statement not executable in keyboard mode
 12 No program in partition
 13 Non-existent lines referenced which overlap renumbered lines
 15 Invalid character
 16 Invalid speed, or invalid command from your port
 17 ENTER statement is illegal if not in a subprogram
 18 The ENTER statement can only be executed once in a subprogram
 19 Program has been corrupted - cannot execute

Group 2--Syntax and Program Structure Errors

Error
Number Text Description

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 387 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 20 Syntax error
 21 Syntax error in DEFined function
 22 No such line (stn) number
 23 Variable not specified
 24 User function not defined
 25 Illegal function usage
 26 'COM' statement out of order
 27 'FOR' without a matching 'NEXT'
 28 'NEXT' without a matching 'FOR'
 29 'RETURN' without a prior 'GOSUB'
 30 Number/types of arguments do not match parameter list
 31 'Function argument' or 'Statement Mode' out of range
 32 String expression not allowed here
 33 Syntax error in 'DATA' statement or CRT control string
 34 Formatted output overflows output string
 35 Variable in CHAIN READ not passed by CHAIN WRITE
 36 Variable from CHAIN WRITE not in this program
 37 String expression must be used here
 38 Variable in CHAIN READ already contains data
 39 Variable in CHAIN WRITE contains no data

Group 3--Complexity and Limit Errors

Error
Number Text Description

 40 'FOR' statements nested too deep
 41 'GOSUB' statement nested too deep
 42 User DEFined functions nested too deep
 43 Expression too complex for evaluation
 45 Arithmetic error - (X/zero, overflow, LOG(0), or SQR -X)
 46 User partition space exhausted
 47 Execution prohibited from this account
 48 Format string is invalid or too complex for evaluation

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 388 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

Group 4--Array and String Errors

Error
Number Text Description

 50 Variable precision cannot be changed
 51 Attempt to DIMension an existing simple variable
 52 Variable name not DIMensioned
 53 Array size exceeds initial DIMension
 54 Subscript exceeds DIMension
 55 Illegal subscript specified
 56 Strings can have only one (1) DIMension
 57 Parameter variable in ENTER statement has already been allocated
 58 String or array variable has not been DIMensioned
 59 A string may not be re-DIMensioned

Group 5--Matrix Errors

Error
Number Text Description

 60 Same matrix on both sides of 'MAT' is illegal here
 61 Matrices have different DIMensions
 62 Matrix has zero DIMension; Argument is not a matrix
 63 Matrix DIMensions are not compatible for this operation
 64 Matrix is not square
 65 Matrix cannot be INVerted - has zero DETerminant

Group 6--File and I/O Errors

Error
Number Text Description

 70 Filename does not exist
 71 Filename already exists; use '!' to replace

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 389 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 72 File in use; cannot CREATE, DELETE, EOPEN or MODIFY
 74 File is in use and locked
 75 File is delete protected
 76 Out of DATA
 77 Extra INPUT numeric items; warning only
 78 INPUT of wrong type or insufficient
 79 DATA of wrong type (numeric/string)
 80 Illegal pathname or filename
 81 Illegal channel number specified (or ISAMFILES value too small)
 82 Protected Directory or file system, access not granted
 85 System is out of channels - notify Manager
 86 Not a loadable program file - wrong revision, protected or corrupted
 87 Selected channel is not open
 88 Illegal record number (past end of file)
 89 Assigned channel limit exceeded; too many OPEN files
 90 File size is too large for system; cannot expand
 91 File is Read-protected
 92 File is Write-protected
 93 Invalid parameter or syntax for command
 95 No such logical unit/pack
 96 Program is Re-SAVE/COPY protected
 98 File system has no available disk space
 100 Selected data record is locked
 101 File is not Indexed or Mapped
 102 Invalid or non-existent Index number selected
 104 Invalid or un-implemented user CALL ID number
 105 Parameter list overflow
 106 Error detected in/by user CALL routine
 107 Not enough parameters passed to user CALL
 108 User call parameters out of order
 110 C-Tree Index File error; print ERR(8) for details, or var DIM < key len
 112 CRT X,Y coordinate out of range
 114 CRT Type not selected for your port
 120 No communication file '/tmp/comm.listx.y'
 121 Communication buffer is full

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 390 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 122 Illegal port number selected
 131 Program Channel not OPEN; cannot resave until SAVE/PSAVE issued
 132 Channel is already OPEN and in-use
 133 Illegal item number selected
 134 Data does not match item specification and cannot be converted
 136 File is being built or deleted
 138 Item number is not sequential
 139 Subprogram file not found
 140 Subprogram file is read protected
 141 Subprogram file is not a BASIC program
 142 Not a data file (can't OPEN or replace)
 144 Cannot cross ISAM record boundary
 150 WINDOWS environment variable not defined or count exceeded
 151 No open windows
 152 Window tracking not enabled
 156 Record Not Written to Formatted Item File
 157 Data Read error
 158 Input timed out
 159 File is encrypted
 160 Unrecognized encryption key
 161 Unsupported encryption method
 162 Inaccessible or corrupt key file
 253 Not licensed to use this feature
 254 ESCape has been pressed and no ESCape branching enabled
 255 Security Failure - Grace or Demonstration period has expired

IRIS Error Numbers

When an error is detected during program execution, and error branching using IF
ERR(s), ERRSET(s), or ERRSTM(s) is not enabled, the program is terminated to
debug mode (files open) and the following message is displayed:

Error in stn stn;sub-stn / text

where stn is the statement number, sub-stn the sub-statement number at which the error
occurred, and text is a message describing the error.
The following table represents the error returned by the SPC(8)(e) function. In some
cases, several UniBasic errors map to the same SPC(8)(e) value. BASIC Error numbers
are positive in the range 1 to 255. Negative error numbers are used to return special Unix

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 391 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

errno errors which do not map directly to a BASIC error.

Error
Number Text Description

 1 Syntax error
 2 Illegal string operation
 3 User partition space exhausted
 4 Format error
 5 Invalid character
 6 No such line (stn) number
 8 Too many variables defined, limit is 348
 9 Unrecognizable word
 14 Out of DATA
 15 Arithmetic error - (X/zero, overflow, LOG(0), or SQR -X)
 15 Matrix cannot be INVerted - has zero DETerminant
 16 'GOSUB' statement nested too deep
 17 'RETURN' without a prior 'GOSUB'
 18 'FOR' statements nested too deep
 19 'FOR' without a matching 'NEXT'
 20 'NEXT' without a matching 'FOR'
 21 Expression too complex for evaluation
 23 Array size exceeds initial DIMension
 23 Variable precision cannot be changed
 23 Attempt to DIMension an existing simple variable
 24 Strings can have only one (1) DIMension
 25 String variable has not been DIMensioned
 27 Syntax error in DEFined function
 28 'Function argument' or 'Statement Mode' out of range
 28 Assigned channel limit exceeded; too many OPEN files
 28 Illegal subscript specified
 28 Parameter list overflow
 28 Subscript exceeds DIMension
 29 Illegal function usage
 30 User function not defined

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 392 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 31 User DEFined functions nested too deep
 32 Matrices have different DIMensions
 33 Matrix has zero DIMension; Argument is not a matrix
 33 Variable name not DIMensioned
 34 Matrix DIMensions are not compatible for this operation
 34 Same matrix on both sides of 'MAT' is illegal here
 35 Matrix is not square
 36 Invalid or un-implemented user CALL ID number
 38 Error detected in/by user CALL routine
 38 Not enough parameters passed to user CALL
 38 User call parameters out of order
 39 Formatted output overflows output string
 40 Channel is already OPEN and in-use
 41 Illegal pathname or filename
 42 Filename does not exist
 43 Invalid parameter or syntax for command
 44 Not a data file (can't OPEN or replace)
 45 File is Read-protected
 46 File is delete-protected
 49 Selected channel is not open
 51 Illegal record number (past end of file)
 52 Record Not Written to Formatted Item File
 53 Illegal item number selected
 53 Item number is not sequential
 54 Data does not match item specification and cannot be converted
 55 Statement not executable in keyboard mode
 56 No program in partition
 57 A string may not be re-DIMensioned
 58 Format string is invalid or too complex for evaluation
 62 Communication buffer is full
 62 Illegal port number selected
 67 Filename already exists; use '!' to replace
 70 DATA of wrong type (numeric/string)
 70 Data Read error
 76 File is in use and locked

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 393 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 79 Invalid speed, or invalid command from you port
 89 Execution prohibited from this account
 91 Variable in CHAIN READ not passed by CHAIN WRITE
 92 Variable from CHAIN WRITE not in this program
 93 Variable in CHAIN READ already contains data
 94 Variable in CHAIN WRITE contains no data
 95 Input timed out
 98 INPUT of wrong type or insufficient
 99 ESCape has been pressed and no ESCape branching enabled
 100 Illegal channel number specified (or ISAMFILES value too small)
 123 Selected data record is locked
 150 Program has been corrupted - cannot execute
 151 'COM' statement out of order
 152 System is out of channels - notify Manager
 153 Not a loadable program file - wrong revision, protected or corrupted
 154 No communication file '/tmp/comm.listx.y'
 155 Program Channel not OPEN; cannot resave until SAVE/PSAVE issued
 156 Cannot cross ISAM record boundary
 157 C-Tree Index File error; print ERR(8) for details, or var DIM < key len
 158 File size is too large for system; cannot expand
 159 WINDOWS environment variable not defined or count exceeded
 160 No open windows
 161 Window tracking not enabled
 162 File is not Indexed or Mapped
 163 Invalid or non-existent Index number selected
 164 CRT X,Y coordinate out of range
 165 CRT Type not selected for your port
 201 IFs without 'ENDIF'
 202 'ELSE' without 'IF'
 203 'ENDIF' without 'IF'
 206 Subprogram file not found
 208 Number/types of arguments do not match parameter list
 209 ENTER statement is illegal if not in a subprogram
 212 Subprogram file is read protected
 213 Subprogram file is not a BASIC program

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 394 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

 216 Parameter variable in ENTER statement has already been allocated
 217 The ENTER statement can only be executed once in a subprogram
 273 Not licensed to use this feature
 283 File is encrypted
 284 Unrecognized encryption key
 285 Unsupported encryption method
 286 Inaccessible or corrupt key file

System Error Numbers

When an error is detected during program execution, and error branching using IF
ERR(s), ERRSET(s), or ERRSTM(s) is not enabled, the program is terminated to
debug mode (files open) and the following message is displayed:

Error in stn stn;sub-stn / text

where stn is the statement number, sub-stn the sub-statement number at which the error
occurred, and text is a message describing the error.
All system errors are returned as negative numbers. Each error represents the Unix
errno value returned from a system call or function. If possible, errno is converted into
a standard BASIC error. If no error matches the condition, errno is negated and returned
for either ERR(0) and SPC(8). For further information, refer to your system
documentation.

Appendix D - Port as Device

The IRIS Port as a Device Driver (PDn), has been implemented as a user call under
UniBasic. All five functions, Open, Close, Read, Write and Print are available. These
functions are used to Read or Write to another serial port.
The PDn routine uses a circular buffer to capture data from the port. The default size for
this circular buffer is the same as the controlling port's INPUTSIZE environment
variable. The circular buffer size can be changed explicitly by setting a new
environment variable, PDNBUFSIZE, to a value different than INPUTSIZE.
The UniBasic PDn driver works with both interactive and non-interactive ports.
However, it is the user's responsibility to assure the port being used is disabled and the
port is not in use by a non-PDn process prior to accessing, such as uucp or cu.
CALL $DEVOPEN
The PDn port must be opened prior to any other operations. The syntax for opening a
port is:

CALL $DEVOPEN, chan.num, "$PDn"
chan.num is a pseudo device channel number. This channel number is different from the
UniBasic file channel number in that UniBasic statements that affect channels, such as

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 395 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CLOSE, will not affect this channel. The pseudo channel number must be between 0
and 99 inclusive.

$PDn has the same syntax as IRIS. For example, $PD2 will open $PD2 and $PD3 will
open $PD3. An equivalent environment variable without the leading dollar sign ($) must
define the associated UNIX port. This environment variable should be set in user's
.profile file. An example of PDn port configuration follows:

PD4=/dev/tty004; export PD4

Failure to set the appropriate environment variable results in a UniBasic error.
The PDn open routine creates a LCK..ttyxxx file to indicate a busy port. This lock file
is created in /tmp directory. Users can change the default /tmp directory by setting
LOCKDIR environment variable. The user's process ID is written in the lockfile.
CALL $DEVCLOSE
Unlike UniBasic, the user must explicitly call the close routine. The syntax to close a
pseudo channel is:

CALL $DEVCLOSE,{chan.num}
chan.num is an optional pseudo device channel number used during OPEN. All pseudo
channels are closed if channel number is omitted.
The PDn close routine removes the lock file in addition to closing the port. If the CALL
$DEVCLOSE is not issued, the lock files will not be removed when UniBasic is
terminated or a UniBasic process is killed, including "kill -15 PID".
CALL $DEVREAD

The syntax to read a port is:
CALL $DEVREAD, chan.num, rec #, offset #, time-out, str.var

chan.num pseudo device channel number
rec # record number, must be set to -1
offset # byte offset number, must be set to -1
time-out time-out value, must be set to -1
str.var string variable to store the contents of data coming from chn.num
rec #, offset #, and time-out must all be set to negative one (-1), as the CALL does not
allow these parameters to be defined.
CALL $DEVREAD supports the various modes that may be set using CALL
$DEVPRINT, such as: echo on (IOBE), echo off (IOEE), binary input (IOBI), activate
on control characters (IOBC), input len and input time out. Only string variables are
allowed since numeric variables are not supported for PDn driver under IRIS.
Like IRIS, a Basic error 95 is returned if a read request cannot be satisfied in the
allocated time.
Input character translations, similar to UniBasic Input handling, are also done during a
READ. However, Cursor tracking and hot-key swapping are not available. A hot-key
swap character is disregarded in the event it is read.
CALL $DEVPRINT

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 396 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

The syntax to print to a port is:
CALL $DEVPRINT, chan.num, rec #, offset #, time-out, str.var

chan.num pseudo device channel number
rec # record number, must be set to -1
offset # byte offset, set to either -1 or 225
time-out time out, must be set to -1
str.var any string variable to be sent to specified chan.num
rec #, offset # and time-out are usually set to negative one (-1), as IRIS does not allow
these parameters to be defined. An exception to this rule for PDn under UniBasic is
while printing a terminal mnemonic. The offset # should be set to 225 to indicate CRT
mnemonics. For example,

CALL $DEVPRINT,1,-1,225,-1,'IOCI'

CALL $DEVPRINT does not allow PRINT USING or TABS. Only string variables
are allowed, although IRIS allowed numeric data to be printed.
CALL $DEVWRITE
The $DEVWRITE call has two separate modes of operation. One for actual writing to a
port, and another for setting various parameters on a port.
The syntax to write to a port is:

CALL $DEVWRITE, chn.num, rec#, offset#, time-out, str.var
chan.num pseudo device channel number
rec # Must always be set to -1
offset # Must always be set to -1
time-out Time-out must always be set to -1
str.var Any string variable to be sent to specified chan.num
Record number, byte offset and time-out must all be set to negative one (-1) while
writing a string variable, as the CALL does not allow these parameters to be defined.
A numeric variable cannot be written to a port.
The syntax to change different modes of a port are as follows:

CALL $DEVWRITE, chn.num, rec#, mode, time-out, num.var
chan.num Pseudo device channel number
rec # Must be set to 0 when setting various port characteristics
mode Acceptable modes are 0 thru 7 inclusive, as described below
time-out Must always be set to -1 when setting various port characteristics
num.var Value to set based on mode
The following are the various modes acceptable for use with CALL $DEVWRITE:

MODE
0:

Set input time-out value in tenths of a second (in this case 1 second).
Example:

6/19/17, 12)44 PMUnibasic - Dynamic Concepts Wiki

Page 397 of 397https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&printable=yes

CALL $DEVWRITE,1,0,0,-1,10 ! set input time-out to 1 second

MODE
1 :

Set a specific input length. Example:

CALL $DEVWRITE,1,0,1,-1,2 ! set input length to 2 bytes

MODE
2 :

IRIS allows polling mode, but is not implemented for UniBasic.

CALL $DEVWRITE,1,0,2,-1,xx ! not supported

MODE
3 :

Set port baud rate. Example:

CALL $DEVWRITE,1,0,3,-1,9600 ! set port to 9600 baud

MODE
4 :

Set port word length. Example

CALL $DEVWRITE,1,0,4,-1,8 ! set word length of port to 8

MODE
5 :

Set no parity, odd parity or even parity. A zero equals no parity, a one
equals odd parity, and a 2 equals even parity. Example:

CALL $DEVWRITE,1,0,5,-1,2 ! set parity bit to even

MODE
6 :

Set to one or two stop bits. A one will set it to one stop bit, anything else
will set it to 2 stop bits. Example:

CALL $DEVWRITE,1,0,6,-1,1 ! set port to 1 stop bits

MODE
7 :

Set modem control for a port. A non-zero sets modem control, i.e. clear
CLOCAL and set HUPCL. A zero sets CLOCAL and clears HUPCL.
Example:

CALL $DEVWRITE,1,0,7,-1,1 ! set modem control hupcl

Retrieved from "https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&oldid=7332"

This page was last modified on 19 June 2017, at 12:39.

https://engineering.dynamic.com/mediawiki/index.php?title=Unibasic&oldid=7332

